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A new approach to the interpretation and analysis of coherent inelastic neutron

scattering from polycrystals (poly-CINS) is presented. This article describes a

simulation of the one-phonon coherent inelastic scattering from a lattice model

of an arbitrary crystal system. The one-phonon component is characterized by

sharp features, determined, for example, by boundaries of the (Q, !) regions

where one-phonon scattering is allowed. These features may be identified with

the same features apparent in the measured total coherent inelastic cross

section, the other components of which (multiphonon or multiple scattering)

show no sharp features. The parameters of the model can then be relaxed to

improve the fit between model and experiment. This method is of particular

interest where no single crystals are available. To test the approach, the poly-

CINS has been measured for polycrystalline aluminium using the MARI

spectrometer (ISIS), because both lattice dynamical models and measured

dispersion curves are available for this material. The models used include a

simple Lennard-Jones model fitted to the elastic constants of this material plus a

number of embedded atom method force fields. The agreement obtained

suggests that the method demonstrated should be effective in developing models

for other materials where single-crystal dispersion curves are not available.

1. Introduction
Traditionally, inelastic neutron scattering measurements have

involved either incoherent inelastic neutron scattering from

polycrystals or coherent inelastic scattering (CINS) from

single crystals. The reason that CINS from polycrystals has not

been employed to a significant extent in the past is that the

process of integrating the scattering intensity over crystallite

orientations tends to obscure the useful information that is

easily available from the direct measurement of dispersion

curves for single crystals measured using a triple-axis spec-

trometer. However, many important materials can only be

obtained in polycrystalline forms, and hence it is of interest to

investigate ways of interpreting the coherent inelastic scat-

tering from such samples. One early attempt to do this using

coherent inelastic scattering from polycrystalline graphite was

made by one of the authors (Ross, 1973). Since this time,

software development and advances in computing power have

made it possible (though still demanding) to generate models

and to fit them to the data.

There are already several software packages able to calcu-

late the key quantity required in neutron scattering, namely

the dynamic structure factor, S(Q, !), using the one-phonon

eigenvectors as determined via density functional theory

(DFT) or other methods. Notable examples are the PHONON

(http://wolf.ifj.edu.pl/phonon/) and McStas (Lefmann &

Nielsen, 1999) packages, and efforts have been made to

broaden the selection of scattering kernels to include calcu-

lated spectral contributions from multiple-phonon scattering,

multiple scattering and instrument resolution functions

(Willendrup et al., 2004; DANSE project, http://wiki.danse.us)

to facilitate direct comparison with the measured data.

However, these ‘whole spectrum’ methods have significant

limitations. The computational expense associated with the

calculation of the eigenvectors of a system is an order N3

problem, where N is the number of atoms in a basis set

describing the lattice; as the number of atoms in a system

increases, so the system rapidly becomes too large for the

application of ab initio methods for the determination of the

dynamical matrix. This is further compounded by the reci-

procal space sampling requirements for a given model; as the

size of the basis set of atoms used to describe the system

increases, so the sampling requirements (in terms of k points

sampled in reciprocal space) also increases. These two factors

alone represent an effective limit to the size of the system for

which S(Q, !) may be modelled using these ab initio methods.

In the present work we focus on the calculation of poly-

crystalline coherent inelastic neutron scattering (poly-CINS)

one-phonon cross sections using interatomic potential-based
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methods, as these are relatively computationally efficient and

are widely applicable to many systems (including those with

large unit cells) and as the force-constant parameters involved

provide a convenient starting point for least-squares optimi-

zation of the starting values. Specifically, the method has been

implemented within the program GULP (Gale & Rohl, 2003),

designed for lattice dynamical calculations based on force field

descriptions, via a new module known as Scatter. However, the

approach described could equally well be used in conjunction

with DFT packages such as CASTEP (Clark et al., 2005) or

SIESTA (Sanchez-Portal et al., 1995), from which phonon

eigenvectors may be generated.

The present method differs from a ‘whole spectrum’

approach in that it concerns itself with the identification of

prominent one-phonon scattering features appearing in

experimental neutron scattering from polycrystals; other

contributions (multiphonon, multiple scattering, resolution

broadening) would have to be included in the theoretical

neutron spectra to provide a full intensity profile for matching

to experimental data on a point by point basis. One-phonon

processes showing sharp coherent scattering features domi-

nate in the low-Q region of (Q, !) space and can be observed

experimentally with the best experimental resolution.

An outline of the Scatter code has already been published

(Roach et al., 2007), but the methodology behind its applica-

tion to the interpretation and analysis of poly-CINS is new to

this work. It is tested here for the rather simple aluminium

system.

The structure of this article is as follows. In x2, the theory

and methodology of coherent inelastic neutron scattering are

described, along with details of the current implementation

and the methodology associated with the identification and

interpretation of one-phonon scattering features. Also intro-

duced here are four semi-empirical dynamical models of

aluminium that are used to compute the dispersion curves and

bulk properties for each model. In x3, the present experi-

mental measurement using the MARI spectrometer is

described. In x4, the method developed for the systematic

analysis of poly-CINS data is used to compare our experi-

mental data for polycrystalline aluminium with the predictions

of the best of the models. The models are also compared with

the single-crystal dispersion curve data. Finally, in x5, the

general applicability of the method to different materials is

discussed.

2. Methodology

2.1. Background theory

The neutron scattering amplitude of a nucleus can have a

number of different values, owing to neutron spin and to

isotope effects, so the scattering has to be divided into two

parts: coherent and incoherent scattering. The coherent part,

depending on the average value of the scattering amplitude,

contains all the information about the relative position and

motion of the nuclei taken in pairs, while the incoherent

scattering depends only on the motions of each atom taken

independently. As shown by Van Hove (1954), the resulting

cross section can be expressed in terms of the corresponding

scattering functions, Scoh(Q, !) and Sinc(Q, !) for the coherent

and incoherent scattering cases, respectively. These functions,

which depend only on the interactions between the nuclei,

define the corresponding double differential scattering cross

sections (for materials containing only one element) as follows

(Squires, 1978):
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Here, �coh and �inc represent the two total cross sections, Q is

the momentum transfer vector [Q = (4�/�)sin� being the

magnitude of the vector, where � is half the scattering angle

and � is the wavelength of the incident neutrons], E0 is the

kinetic energy of a given scattered neutron where the incident

energy is E, b is the average (and b2 is the mean-square

average) of the bound scattering length for the nucleus, k and

k0 are the incident and final wavenumbers, respectively, of the

scattered neutron, and ! is the frequency of an excited

phonon. The scattering functions, Scoh(Q, !) and Sinc(Q, !),

were originally defined as here for a single species of nucleus.

However, for a general non-Bravais lattice (with unit cells

containing more than one atom), the terms have to be summed

over the atoms in the unit cell, although this results in a

scattering function which, in the strictest sense, is not S(Q, !)

as originally defined. Hence, the effective one-phonon scat-

tering functions for a system with multiple atomic species, as

used here, should be written as S0coh/inc(Q, !), where
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for neutron energy gain [�ð!þ !sÞ and hnsi] and energy loss

[�ð!� !sÞ and hns + 1i] of a system, generating a phonon of

wavevector q. Here ns is the number of phonons in mode s at

thermal equilibrium. In equations (3) and (4), N is the number

of atoms in the unit cell in the (non-Bravais) system and the

inner summation is over these atoms, d, with mass Md and a

position vector within the unit cell of rd, while Wd is the

associated Debye–Waller factor. The outer summations are

over s, the reciprocal lattice vector, and s, the phonon mode of
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frequency !s, providing a polarization vector eds for each

normal mode, as obtained by solving the dynamical matrix.

The reader should be aware that some texts adopt slightly

different definitions of the phase factor of the polarization

vector. For example, the text by Turchin (1965) defines the

phonon wave at a position rd within the unit cell to have the

phase of the travelling wave at that point, whereas Squires

(1978) defines this wave as having a phase relative to that of

the travelling wave at the corner of the unit cell. The Turchin

version leads to a different general formulation of the

coherent inelastic cross section from that given in equation

(3). This ‘frame of reference’ difference, whilst being irrele-

vant for a monatomic lattice, is crucial to the present objective

for the case of more than one atom/unit cell. Here the form of

the polarization vector used by Turchin will be adopted, as this

is the form employed in GULP. Hence the corrected form of

equation (3) is

S0coh Q; !ð Þ ¼
1
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X
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where nds is the polarization vector on the alternative defini-

tion given above.

Once the expressions for the neutron scattering functions

have been established, the next step is to introduce the means

by which the phonon frequency (square root of the eigen-

value) and the polarization vectors (eigenvectors) are

obtained for a given phonon wavevector, q. The approach,

briefly summarized here, follows the standard Born–von

Karman method (Born & Huang, 1956), where forces are

described in terms of potentials between pairs of atoms. This

method results in the construction of a dynamical matrix of the

form

D qð Þ ¼
P

r

D rð Þ exp i q � r� !tð Þ ð6Þ

for each of the pairwise vectors, r, at reciprocal space wave-

vector, q. The eigenvalues, !(q), and eigenvectors, n, are then

obtained from equation (7):

D qð Þn ¼ ðMdMd0 Þ
1=2!2n; ð7Þ

which is solved using jDðqÞ � ðMdMd0 Þ
1=2!2 Ij ¼ 0 (I is the

identity matrix) and hence by diagonalizing the resultant

matrix. For every q vector there is thus a set of 3d eigenvalues

(and therefore frequencies) and for each eigenvalue a corre-

sponding eigenvector (i.e. a set of polarization vectors) for

each of the d atoms; this results in the notation nds and !s for

eigenvectors and eigenvalues, respectively.

The frequencies and polarization vectors so obtained are

then used to calculate the scattering function presented in

equation (5). When performing a powder-averaged calcula-

tion, it is necessary to sample reciprocal space in a series of

concentric shells, each corresponding to a given magnitude of

the momentum transfer vector, Q, as it is rotated through �
and ’. For each magnitude and orientation of Q, the program

calculates the corresponding values of q by selecting the

nearest reciprocal lattice point and taking q relative to this

point. From this value of q, the dynamical matrix [equation

(6)] is then generated and the corresponding eigenvalues and

eigenvectors obtained [see equation (7)]. Fig. 1 illustrates this

sampling method, along with a diagrammatic representation

of the Q vector relationship with the lattice vector, s, and

phonon wavevector, q.

The resulting data are then output using a histogram-aver-

aging method, where defined intervals are used to create a

mesh of data ‘pixels’; here each pixel corresponds to a set

range in the amplitude of Q (referred to as Q, where Q = |Q|)

and to a set frequency interval. The intensities obtained for

this interval in Q are sorted into the specified histogram in !.

Assembling such slices for each Q yields S(Q, !). Resolution

broadening of the scattering � functions in Q and !, Debye–

Waller factors may be applied before summation of the

intensities, but this is not necessary for present purposes.

2.2. Semi-empirical force constant modelling of aluminium

Aluminium is a very well studied material that has attracted

attention of late owing to the interest in the use of light metal

hydrides for hydrogen storage (Schuth et al., 2004; Kang et al.,

2004). Results from recent work (Budi et al., 2009) on the

generation of new semi-empirical force constant models for

use in cluster calculations has typically been compared against

reliable DFT calculations (Pham et al., 2011) (where

comparisons are normally made with zone boundary

frequencies), bulk properties (as above), and the density of

vibrational states as obtained by both measurement and

calculation (Tang et al., 2010). The simplicity of its crystal

structure and the proliferation of these fitting models suggest

the use of aluminium as an ideal test material for the meth-

odology presented.

When selecting models for aluminium from the large

number of possible variants in the literature the emphasis here

has been to test the utility of models in frequent use. For
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Figure 1
(a) The principal poly-CINS reciprocal space sampling method used in
the Scatter code. (b) Selecting the nearest reciprocal lattice point to Q
provides the reciprocal lattice vector, s, such that q remains within the
first Brillouin zone (shaded area).



convenience, we will start with a simple Lennard-Jones 12–6

potential (Lennard-Jones & Ingham, 1925) fitted to the elastic

constants (C11, C22 and C44) of aluminium, following the

approach suggested by Halicioǧlu & Pound (1975). Although

this type of model is generally considered unsuitable for the

study of metallic systems, its very unsuitability (as well as its

very low computational cost and the rather general nature of

the potential itself) suggested its use as a model for assessing

the more heavily parameterized (and considerably more

computationally expensive) embedded atom method poten-

tials.

The most successful methodology applied to the semi-

empirical modelling of metals, however, is the embedded atom

method (EAM) (Daw & Baskes, 1983), originally developed

by Daw and Baskes to study hydrogen embrittlement in nickel

and now adapted for use in lattice dynamics and cluster

calculations. For this reason, it was decided to test the effec-

tiveness of potentials of this type for predicting the dynamical

properties of aluminium and to compare the results with the

simplest available potential – the Lennard-Jones (LJ) model,

described above.

The EAM models most frequently used in studies of pure

and alloyed periodic systems are the Sutton–Chen functional

EAM potential (Sutton & Chen, 1990), the Cleri–Rosato tight

binding EAM potential (Cleri & Rosato, 1993), the Streitz–

Mintmire EAM potential (Streitz & Mintmire, 1994), the Mei–

Davenport modified EAM (MEAM) potential (Mei &

Davenport, 1992) and the parameterized EAM (NP-B; Jasper

et al., 2005) potential. Sheng et al. have published results for an

optimized EAM potential (Sheng et al., 2011), but as they

neglected to include EAM parameters for their model

(obtained by fitting to DFT calculations), it has not been

practical to include this model in the comparison. Likewise the

many-body potential of Mishin et al. (1999), derived from a

spline fit to DFT calculations and to bulk data, provided

excellent agreement with the measured dispersion curves, but

the paper did not include an explicit model parameterization

and so this model has also been omitted. Both the Cleri–

Rosato and Streitz–Mintmire models were considered for

implementation in this study, but as the emphasis here is on

the inelastic scattering analysis, these models were neglected

for brevity. Hence the three models selected for further

analysis are the Sutton–Chen, the Mei–Davenport and the

NP-B. Functional forms and explanations of these standard

potentials have been omitted from the text, but the expres-

sions and parameters used are given in Table 1.

2.3. Dispersion curves from the semi-empirical models

The experimental data presented in this analysis of disper-

sion curve predictions are taken from the triple-axis neutron

spectroscopy study of Stedman & Nilsson (1966), as presented

in Fig. 2.

As a general preamble, it is worth pointing out the salient

features of what is a very well studied system. In the experi-

mental data, the face-centred cubic (f.c.c.) aluminium struc-

ture gives rise to the expected form of the dispersion curves in

the [100] and [111] directions – doubly degenerate transverse

acoustic (TA) modes (as a result of the fourfold and threefold

rotational symmetry along these respective axes) and a single

longitudinal acoustic (LA) mode. These modes are dominated

by the first nearest neighbour interaction (hence the near-

sinusoidal form). Thus reasonable agreement for the gradient

of the near-linear part of the curve at low |q| (the velocity of

sound) and the frequency at which the curves cross the zone

boundary is sufficient to match the shape of the curves. The

observed flattening of the [111] TA curve near the zone

boundary is a consequence of contributions to bonding from

electron screening and exchange interactions at the Fermi

surface (Hafner & Schmuck, 1974) and, in consequence,

cannot be modelled with short-ranged pair potentials.

However, the contribution of this feature to the dynamics (and

hence to the prediction of bulk properties) is relatively small,

and further consideration of this region can be neglected in
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Table 1
Functional forms and associated parameters of the potential models for aluminium.

Potential model Form of EAM functional EAM density Pair potential

Sutton–Chen Fið�iÞ ¼ �
P

i Ai�
1=2
i ,

A = 1.000 eV

�i ¼
P

i Cr�6
ij ,

C = 1303.927 Å6

’ðrijÞ ¼ a=r7,

A = 592.41956 eV Å6

NP-B Fið�iÞ ¼
P

i �Ec½1� ð�=	Þ lnð�i=�eÞ�ð�i=�eÞ
�=	

þ
P3

m¼1
1
2 ’0sm exp½�ðm1=2 � 1Þ
�

� ½1ðm1=2 � 1Þ�� ðm1=2�=	Þ lnð�i=�eÞ�ð�i=�eÞ
m1=2
=	,

Ec = 2.834 eV, � = 4.954, 	 = 5.203, 
 = 5.824,

� = 8.969, ’0 = 0.2095 eV, s1 = 6.928, s2 = 3.861,

s3 = 15.50; �e cancels with �e in density term

�i ¼
P

i

P5
l¼0ðcl=12Þðri=r0Þ

l ,

c0 = 0.4333, c1 = �7.305,

c3 = 29.812, c4 = �54.44,

c5 = �15.50, r0 = 2.760 Å

’ðrijÞ ¼ �’0½1þ �ðr=r0 � 1Þ� exp½�
ðr=r0 � 1Þ�,

’0 = 0.2095 eV, r0 = 2.760 Å, � = 8.969,


 = 5.824

Mei–Davenport Fið�iÞ ¼
P

i �Ec½1� ð�=	Þ lnð�i=�eÞ�ð�i=�eÞ
�=	

þ
P3

m¼1
1
2 ’0sm exp½�ðm1=2 � 1Þ
�

� ½1ðm1=2 � 1Þ�� ðm1=2�=	Þ lnð�i=�eÞ�ð�i=�eÞ
m1=2
=	,

Ec = 3.39 eV, � = 4.60, 	 = 7.10, 
 = 7.34759,

� = 7.35, ’0 = 0.1318 eV, s1 = 12.0, s2 = 6.0,

s3 = 24.0; �e cancels with �e in density term

�i ¼
P

i

P5
l¼0ðcl=12Þðri=r0Þ

l ,

c0 = 0.64085, c1 = �6.83764,

c3 = 26.75616, c4 = �47.16495,

c5 = �8.60834, r0 = 2.8638 Å

’ðrijÞ ¼ �’0½1þ �ðr=r0 � 1Þ� exp½�
ðr=r0 � 1Þ�,

’0 = 0.1318 eV, r0 = 2.8638 Å, � = 7.35,


 = 5.58441;

MDF taper r(cut) = 5.382 Å;

MDF taper f(cut) = 0.522 Å

Lennard-Jones

12–6 potential

N/A N/A ’ðrijÞ ¼ A=r m¼12 � B=r n¼6,

A = 38763.011, B = 118.33287



the present work – especially as it can be modelled with

longer-range pair-wise interactions or directly via DFT.

The dispersion curves in the [110] direction, along which

there is only twofold rotational symmetry, produce an LA

mode and two distinct TA modes. The shapes of the TA modes

are determined by the second nearest neighbour contributions

(even in models that do not explicitly include this interaction);

the maximum for the higher-frequency TA mode (found to be

displaced from a symmetry point) is determined by the second

nearest neighbour contribution, and its accurate positioning

requires a model with considerably more near neighbour

interactions (eight to ten interaction shells is typical). In

aluminium, this maximum is found close to ( 1
2

1
2 0).

Turning to the predicted dispersion curves, the Lennard-

Jones 12–6 potential, fitted to the elastic constants, performs

better than all of the EAM potentials in comparison with

experiment. It should be noted, however, that this model is

specifically targeted at describing the curvature of the

experimental (single-crystal) dispersion curves but is not fitted

to give zero stress at this geometry. As can be seen in Fig. 2, it

provides excellent agreement with the LA modes in all crys-

tallographic directions. The lack of nearest neighbour inter-

action terms beyond the first predictably generates only

reasonable agreement with the TA modes in the [100] and

[110] directions; this clearly demonstrates the need for addi-

tional terms for second and further nearest neighbour inter-

actions, as does the inaccurate |q| positioning of the [110] TA

maximum, although the model does predict the maximum

frequency of this mode very well.

It should be noted that the dispersion curves obtained from

the EAM models, also shown in Fig. 2, were not originally

compared with the experimental dispersion curve data as their

main use has been for studying clusters and associated ener-

getics. Hence, the accurate prediction of the lattice dynamics

was less relevant and poor fits are not unexpected. The

Sutton–Chen model provides the worst agreement with the

experimental dispersion curves, being significantly different

from experiment across the entire range of |q|, for all three

high-symmetry directions, and the prediction of the frequen-

cies at the zone boundaries, most notably the gamma point,

provides a poor dynamical description of the aluminium

lattice.

The NP-B model, which clearly overestimates the stiffness

of the bonding between atoms, produces dispersion curves

that are an improvement on those of the Sutton–Chen

potential, although the overbinding of the potential produces

frequencies for all modes that are considerably higher than the

experimental values.

The Mei–Davenport model performs best out of the EAM

potentials chosen for this comparison. This model provides a

near-perfect agreement for the TA mode in the [100] direc-

tion, over the entire range of |q|, and gives very reasonable

agreement for the LA mode in the same direction, with close

agreement in the lower-q region (|q| < 0.5) and reasonable

agreement at the zone boundary (within 20%). The [110] and

[111] directions give rise to similarly reasonable agreement to

that provided by the LA mode in the [100] direction: going

from very good agreement at low q (|q| < 0.5) to reasonable

agreement at the zone boundary in both high-symmetry

directions (certainly superior to the other EAM potentials).

There are clearly many more subtleties in the analysis of

these dispersion curves. However, the present work seeks to

present the equivalency of approach between single-crystal

and polycrystalline neutron scattering, and hence further

discussion is not relevant to the present objective.
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Figure 2
Dispersion curves calculated for the semi-empirical models (with initial
parameters) used in this work, compared with experimental triple-axis
spectrometer data gathered by Stedman & Nilsson (1966) at 80 K (red
points). Heavy black lines represent the LJ 12–6 model, heavy grey lines
the Mei–Davenport EAM, heavy yellow lines the NP-B EAM and thin
black lines the Sutton–Chen EAM.

Figure 3
Theoretical polycrystalline S0(Q, !) for aluminium, calculated using the
LJ 12–6 potential model, for the full range of Q (0�Q� 10.0 Å�1) and !
(0 < ! < 350 cm �1). The S0(Q, !) intensity rises from very low (dark blue)
through mid (light blues and yellow) to very high (dark red). White areas
denote regions in (Q, !) space where no scattering occurs, whereas dark
blue shows low-intensity scattering due to off-symmetry direction
(polycrystalline averaged) scattering.



2.4. Interpretation of one-phonon polycrystalline coherent
S(Q, x)

The present approach assumes that the one-phonon

coherent scattering process is dominant in the studied system

at low Q; for the aluminium system this is a reasonable

assumption given that aluminium is a strongly coherent scat-

terer [with a coherent cross section of 1.495 b (1 b = 100 fm2),

contrasting significantly with the incoherent cross section of

0.0082 b]. The approach also assumes no preferred orientation

of crystallites in the sample, as it uses spherical polycrystalline

averaging (although intensity changes due to preferred

orientation are readily introduced by altering the sampling

method): again a reasonable assumption for a polycrystalline

cubic system such as aluminium. The resulting contour plot of

the poly-CINS intensity for the fitted LJ 12–6 potential is

shown in Fig. 3, which was obtained using the Scatter

subroutine in the GULP program as described above. This

poly-CINS plot is a 300 (in Q) � 300 (in frequency or energy

transfer, ET) bin data set with 300 angular steps in � and ’, for

ranges of 0.0�Q� 10.0 Å�1 and 0� !� 350 cm�1 (0� ET�

43.4 meV). This produces a sampling mesh of 27 million q

points and samples (Q, !) space in an approximately

equivalent Q and energy transfer resolution to that

provided by time-of-flight instruments such as MARI.

The pattern is clearly complex but can be analysed if

approached systematically in the light of the experi-

mental or calculated dispersion curves.

Fig. 4(a) shows the dispersion surface for the first

mode (in this case, the longitudinal acoustic mode)

overlaid with a colour map that shows the S(Q, !)

intensity for the plane (hk0) over the range of the

calculation. Fig. 4(b) takes this projection and rotates

it so that the (h00) dispersion surface is visible

(equivalent to the allowed scattering from the long-

itudinal mode in the [200] direction), so that the

coherence condition is illustrated; from here, one can

clearly see the regions of allowed scattering [with the

colour map providing S(Q, !) intensity information –

white effectively denotes regions of (Q, !) space

where there is no allowed scattering]. From Fig. 4(b),

one can clearly see the regions of intense scattering

around the Brillouin zone boundaries, as well as the

increased intensity corresponding to the 1/! term in

equation (5). Fig. 4(c) shows the same data, as seen

from ‘above’, viewing the (hk0) plane; this figure

rather clearly illustrates the periodic boundary

conditions and provides a reference point for Fig. 4(d).

The white line denotes the vector from the (000) point

in the reciprocal lattice out to the (420) point.

Fig. 4(d) provides an illustration of how it is that

some of the sharp features are associated with vectors

to more remote reciprocal lattice points. The diagram

shows the (hk0) plane in reciprocal space and for a

particular value of ! that cuts the LA dispersion

surfaces close to each ‘allowed’ f.c.c. reflection, out as

far as (420). Thus the small circles represent the q

vectors corresponding to the LA phonons at that value

of !. Because of the coherence condition, the sphere in Q,

which has to be integrated over direction to yield the intensity

expected in the polycrystalline case, has to lie in the range

defined by |s � q(!)| < Q < |s + q(!)|. Thus we expect to find

sharp features for this value of ! where the Q sphere touches

one of the small circles as illustrated, and this turns out to be

along the vectors from the origin to the higher reciprocal

lattice points. Noting this, and taking into account the polar-

ization term in the intensity eds�Q, the edge features in the

scattering will be pronounced for LA modes because here the

phonon displacement vector is parallel to Q. Transverse

modes, on the other hand, will tend to peak where the Q

sphere passes through the reciprocal lattice point, as here the

displacement vector is parallel to the Q vector at the point

where the sphere crosses the dispersion surface at right angles

(and also passes through the reciprocal lattice point). Because

the steps in intensity generally occur along the [hkl] directions,

they are relatively easy to identify in the integrated one-

phonon cross section.

The process presented here is a simple one; reciprocal

lattice vectors from the origin of the reciprocal lattice to the

first 11 reciprocal lattice points are calculated for the model
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Figure 4
Views of the mode 1 dispersion surface in the QxQy plane of the reciprocal lattice
of aluminium, using the original Lennard-Jones potential (before fitting has been
applied), with scattering intensity superimposed upon the frequency surface as a
colour map. (a) An isometric projection of the dispersion surface. (b) A cross
section through the plane from the Qx-axis perspective. (c) The view looking down
on the plane. (d) A diagrammatic representation of the (hk0) plane in aluminium,
showing for example the [420] direction (broken line). The two spheres in Q show
the upper and lower values of Q for which one-phonon scattering can occur as a
result of the condition |s � q| < Q < |s + q|.



used in the theoretical generation of S0(Q, !) – namely the

Lennard-Jones 12–6 model introduced in x4. These lines are

used to calculate S0(Q, !) going through the different (hkl)

points. As expected, the cross section shows a sharp intensity

step where the two spheres touch tangentially (in the long-

itudinal case) or peak at the (hkl) point (transverse case). This

provides an initial qualitative appreciation of the features

found in the poly-CINS data (as discussed in x3). Further

clarification, in the form of figures demonstrating this curve

projection and overlay process, is provided in the supple-

mentary text1 (Fig. S5).

The next step in this process is to take cuts through the

calculated polycrystalline S(Q, !) data for given ! intervals

integrated over a narrow band of Q values and to associate,

where possible, distinct scattering features with individual

dispersion surfaces in the symmetry directions selected. In

Fig. 5, cuts of constant Q (having a single ‘bin’ width of

0.0334 Å�1) have been taken through the theoretical data

presented in Fig. 3. Each cut, which is representative of the Q

resolution available from a typical high-resolution chopper

spectrometer, is then inspected and the most prominent

features are compared with the equivalent projections of the

dispersion curves. It is observed that the steps in intensity at a

given Q tend to occur where this cut crosses one of the set of

‘dispersion’ curves calculated along higher-order s directions,

as explained above. As noted above, the intensity features

observed can be classified in terms of either peaks or coher-

ence edge features; both sets of features are determined by the

structure and vibrational characteristics of the material and

are governed by equation (4). For the purposes of this work, it

is unnecessary to identify every feature in a given cut through

the poly-CINS data set, because clearly some will arise where

the Q sphere touches the dispersion curve away from any

symmetry direction.

In this work, coherence edge features have generally been

selected for identification, as the use of experimental data

requires the summation of adjacent Q bins to reduce the

statistical error in the measured intensity (owing to the rela-

tively low count rate for a given set of detectors). This results

in a ‘smearing’ of both types of sharp feature such that the

peak–coherence edge paired features are often the only

readily identifiable feature in a given cut through an experi-

mental set. Therein lies the compromise implicit in this

approach to the analysis of poly-CINS data; a narrower range

of Q over which a summation is taken results in sharper Q-

dependent features, but this in turn reduces the number of

measured neutron counts and hence the statistical accuracy of

the data. In the extreme, a full summation over the entire

range of Q sampled by an instrument results in the effective

application of the incoherent approximation; here all Q

dependence is lost and the data collection is reduced to a

phonon density of states measurement, whereas a fine cut (as

for a single detector), providing the best Q resolution, would

result in excessively long measurement times to gain sufficient

statistics to make an effective comparison with a model.

Examples of coherence edge features in Fig. 4 include the

features containing the [111] LA modes at Q = 1.0 Å�1 and Q

= 3.4 Å�1 and the [200] TA coherence edge at Q = 1.8 Å�1, for

energy transfers of 33.8 meV (273 cm�1), 29.8 meV

(240 cm�1) and 38.6 meV (311 cm�1), respectively.

It should be noted that the full intensity of Scoh
0 (Q, !) at a

given (Q, !) value is not exclusively the result of a single mode

in a set direction in reciprocal space. Clearly, a large number of

q values contribute to a given Scoh(Q, !) intensity after

averaging over Q directions. However, it does seem that many

of the sharp features in the scattering functions do arise from

the tangential intersection of the sphere in Q with a particular

dispersion curve.
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Figure 5
Identification of prominent features in the theoretical poly-CINS data set
presented in Fig. 3. The horizontal axes are energy transfer and
vibrational frequency (meV and cm�1, respectively) and the vertical axis
is S0coh(Q, !). Major scattering features are labelled for each cut in terms
of a q point along the direction in the conventional reciprocal lattice [hkl].
Black arrows denote an identified feature, with appropriate [hkl], in the
LJ 12–6 theoretical data and grey arrows denote prominent features that
do not correspond to any of the dispersion curves used in this analysis.

1 Supplementary information is available from the IUCr electronic archives
(Reference: HE5613). Services for accessing this material are described at the
back of the journal.



2.5. Bulk properties
Here we present the bulk properties calculated from the

models described in the previous section. The values are given

in Table 2, along with experimental values from the literature.

Note that the bulk moduli calculated with GULP use the

Voigt volume derivative approach (Nye, 1957).

As shown in Table 2, the potentials all perform adequately

when compared with experiment; the single exception to this

is the binding energy predicted by the LJ 12–6 pair potential.

As is to be expected, this two-parameter LJ model is unable to

fit the binding energy, lattice parameter and mechanical

properties simultaneously. Because of its pairwise nature, the

LJ 12–6 potential cannot capture the Cauchy violation

between the elastic constants C12 and C44, unlike the EAM

models. However, this simple model, when fitted to the elastic

constants, provides good agreement across a range of other

bulk properties, in particular, the bulk moduli; the model

predicts Young’s modulus especially well compared with the

other models. It also performs adequately for the bulk and

shear moduli, although both the NP-B and Sutton–Chen

potentials do better, with the Mei–Davenport outperforming

the Lennard-Jones by a considerable margin. However, the

Lennard-Jones model performs very well in the prediction of

Poisson’s ratio; the EAM models all predict values that are

significantly different from experiment. No particular

conclusions should be drawn from the agreement with elastic

constants as these were used to parameterize the model. Thus,

on the whole, the simple LJ 12–6 model performs remarkably

well with respect to the curvature of the potential energy

surface; the Mei–Davenport model generally matches, or

slightly exceeds, its performance for most of the bulk prop-

erties compared here, while the Sutton–Chen and NP-B

potentials generally have a worse overall performance in this

regard.

When comparing the potential models it is important to

consider the relative computational expense, given that

calculations of poly-CINS will require many second-derivative

evaluations. As an example, the LJ 12–6 model completes a

standard sampling of (Q, !) space, as described in x2.4, about

300 times faster than the equivalent EAM calculations. To be

precise, the LJ 12–6 model takes around 150 s on a 8-core,

3 GHz Xeon workstation, whereas the EAM potentials

average around 45 000 s on the same workstation for the

identical sampling and phonon calculations; it is thus clear that

the LJ 12–6 model can be useful as a tool for generating the

bulk properties in systems with large numbers of atoms in the

unit cell, although its poor binding energy and more limited

transferability to other environments, such as cluster calcula-

tions, limit its broader utility.

3. Experimental

In order to collect data across a full range of momentum and

energy transfers for aluminium (necessary to investigate the Q

dependence of the vibrational modes in a poly-CINS experi-

ment), the most appropriate instrument type is a direct

geometry time-of-flight chopper spectrometer. This type of

instrument [of which the MARI spectrometer (Taylor et al.,

1991) situated at the ISIS facility, UK, is a distinguished

example] is designed to sample (Q, !) space by means of a

fixed incident neutron energy, where the scattered neutrons

are measured using a large detector bank so that energy and

momentum transfer can be recorded independently.

Data were gathered on this spectrometer over a period of

22 h, using the proton current convention for a total proton

current on target of 3600 mA h for ISIS TS1. The sample was a

94 g polycrystalline sample of 99.999% purity aluminium in

pellet form (manufactured by Goodfellow Cambridge Ltd) at

a temperature of 10 K. The fixed incident energy was

58.8 meV, which provided a sampling of (Q, !) space for 0 �

Q � 10.0 Å�1 and 0 � ! � 350 cm �1 (0 � ET � 43.4 meV) in

the characteristic ‘bishop’s mitre’ configuration obtained from

the detector coverage in neutron energy loss. Although the

instrument also collects data in neutron energy gain, neutron

energy loss was preferred (and the experiment was performed

at low temperatures). This approach more fully samples the

region of (Q, !) space of interest, because neutron energy gain

is limited to energy transfers 	kT, i.e. a few meV at low

temperature, where there will be little intensity for energy gain

above this. The data have been corrected for detector effi-

ciency, and all other pre-processing and data reduction from

raw time-of-flight data to S0(Q, !) were accomplished using

the MANTID suite of neutron scattering instrumentation

software (http://download.mantidproject.org/). The resulting

data set is shown, with a 10% maximum intensity cutoff
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Table 2
Experimental and calculated bulk properties of aluminium.

Sutton–Chen Mei–Davenport NP-B Lennard-Jones Experiment

Lattice constant (Å) 4.050 4.050 4.030 4.050† 4.0495
Binding energy per atom (eV) �3.33 �3.39 �3.43 �0.52 �3.43
Young’s modulus (GPa) 14.2 32.6 124.0 59.9 70.3
Bulk modulus (Voigt average) (GPa) 75.2 76.87 176.3 68.3 76.9
Shear modulus (Voigt average) (GPa) 9.80 22.9 83.53 35.57 26.1
Poisson’s ratio 0.468 0.429 0.383 0.354 0.345
C11 (GPa) 82 92 236 98 107
C12 (GPa) 72 69 146 54 61
C44 (GPa) 16 37 109 49 29

† For LJ 12–6 this is a fixed value and has not been derived from an optimization.



applied to avoid domination of the contour plot by the elastic

line, in Fig. 6.

Applying the neutron scattering theory described in the

previous section, it is possible to gain a good understanding of

the sharp features present in such data sets owing to one-

phonon scattering – generally due to the sphere in Q touching

and crossing particular dispersion surfaces. Multiple-phonon

terms, which will dominate at larger energy and momentum

transfers, are considerably smoothed relative to the one-

phonon terms, as are multiple-scattering effects.

Common to all such coherent polycrystalline Scoh
0 (Q, !)

plots, the one-phonon scattering functions as given by equa-

tion (5) (as a function of Q) yield scattering intensities that, on

average, increase as a function of 	Q2 until attenuated by the

increasing contribution of the Debye–Waller factor,

exp(�Wd) at higher Q.

Upon visual inspection, the first and most obvious features

of the data in Fig. 6 are the ‘arches’ of very intense scattering

associated with the LA dispersion curves, corresponding to the

superposition of the single crystallographic directions consis-

tent with the dispersion curves of a single crystal. These

features, which dominate the scattering intensities in the

experimental data, arise from the fact that, for a particular

energy transfer, h- !, the coherence condition implies that |s �
q(!)| < Q < |s + q(!)|, where q is taken along the phonon

branches in high-symmetry directions in the Brillouin zone (in

particular, for aluminium, the [200], [220] and [111] direc-

tions). As seen on closer inspection, the lower-symmetry

directions defined by vectors from the origin to higher-order

Bragg peaks are also significant. Otherwise, given the relative

complexity of these data, identifying which feature belongs to

a given vibrational mode is challenging, especially when one

considers systems with more than one atom per unit cell or

materials with noncubic symmetry. However, it is clear that

many of the dominant features in a given poly-CINS data set,

and, in particular, the simplest case of a face-centred cubic

metal with a single elemental basis, such as aluminium, are

those defined by the modes in the major crystallographic

directions defined by the s vectors of the reciprocal lattice

projected out into Q. This observation informs much of the

analysis provided in x4, as the approach taken to the analysis

of the data relies upon the identification of scattering features

using projections of dispersion curves onto momentum

transfer, Q. Thus, the ‘arches’, corresponding to the LA modes

in the [111], [200] and [220] crystallographic directions as they

return to the elastic line (zero energy transfer) at 2.68, 3.1 and

4.4 Å�1 are clearly visible, with further multiples of these at

6.2, 8.8 and 5.34 Å�1 and so on. These features are accom-

panied by the modes returning to zero energy transfer

obtained from the vectors to the higher reciprocal lattice

points for the f.c.c. lattice, such as the [311], [331], [420], [422],

[511], [531], [442] and [620] directions in the conventional

(Cartesian) reciprocal lattice directions.

The other key features that are clearly identifiable from this

dispersion curve comparison are the maximum energies of the

LA and TA modes that give rise to cutoff features in the poly-

CINS scattering associated with abrupt intensity changes that

are invariant in Q but seen as ‘bands’ of intense scattering

over the range of energy transfer. Beginning at low Q, the first

such features are those due to the maxima of the LA modes of

the [111] and [100] dispersion curves at Q = 1.34 Å�1 and Q =

1.56 Å�1, respectively, at vibrational frequencies (energy

transfers) of 325 cm�1 (40.3 meV) and 322 cm�1 (39.9 meV)

that give rise to the high-frequency limit of the scattering.

(Note that if Q is parallel to q, as in the first zone, the

condition leads to the longitudinal modes having maximum

intensity and the transverse modes zero intensity.)

4. Analysis of coherent inelastic neutron scattering
from polycrystalline aluminium

In this section, the methodology presented in x2.4 is applied to

the specific task of identifying and exploiting the poly-CINS

data from polycrystalline aluminium. Given that data sets

obtained from powder samples can be thought of as a multi-

tude of dispersion curves [deriving from every possible

direction in (Q, !) space] superimposed upon each other,

great care should be taken in identifying any given feature as

belonging to a particular phonon branch. This is particularly

so, given that it was found that many of the most intense sharp

features in the poly-CINS data set arise where the sphere in Q

crosses the dispersion surface in nonsymmetry directions.

However, by extending the analysis to include crystallographic

directions in reciprocal space other than the highest symmetry

directions, many of these features can be identified. This then

allows the experimentalist to identify specific features and use

the frequencies of these features in a fitting process to

generate theoretical models that match these features. Given

that the intensities of poly-CINS features are directly related

to the eigenvectors for the motions of planes of atoms, this

method presents an excellent means of generating physically

useful models that can predict bulk properties well.
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Figure 6
Experimental polycrystalline S0(Q, !) for aluminium at 10 K obtained on
the MARI spectrometer, ISIS, for the full range in neutron energy loss of
Q (0 � Q � 10.0 Å�1) and ! (0 � ! � 350 cm �1). The S0(Q, !) intensity
rises from very low (dark blue) through mid (yellow) to very high (dark
red). White areas denote regions in (Q, !) space where there is no
detector coverage.



The approach taken in this work has been to identify the

dominant features of the aluminium S0(Q, !) spectrum using

the simple LJ 12–6 model. Once the general features of the

plots are identified, it becomes relatively straightforward to

extract effective dispersive feature information in terms of

more traditional dispersion curves, which can then be used to

create a set of k points for use in a fitting process, as described

in x4.1. This method is applied to the experimental data set to

illustrate the utility and limitations associated with the analysis

of experimentally obtained data. In x4.2, the same approach is

applied to a comparison of the ‘best’ of the MEAM models,

the Mei–Davenport model, with the theoretical neutron

spectra; dispersion curves and bulk properties are then

recalculated for both models fitted to experimental data. It

should be noted that no resolution correction has been added

to the theoretical data, as this makes it easier to identify the

coherence edges, which are then linked to the sloping edge

features in the experimental data (see x4.1).

4.1. Comparison of experimental Al poly-CINS S000(Q, x) data
with model predictions

As noted above, the full intensity of Scoh
0 (Q, !) at a given

(Q, !) value is a superposition of the scattering seen in all

directions. That is why it is necessary to concentrate on the

identification of particular sharp features for the comparison

of experiment and theory. Once Scoh
0 (Q, !) features are

identified as being associated with a given cut in reciprocal

space, the next step is to approach the experimental S(Q, !)

data and attempt to identify equivalent features. In order to

facilitate the comparison, both experimental and theoretical

cuts (the LJ model) through the data sets at fixed Q values

may be superimposed as in Fig. 7.

We note here that there are gaps in the detector coverage

on the instrument and these affect the choice of constant Q

cuts. Hence a new set of cuts, chosen to pass through the

sharpest, most intense one-phonon features with a minimum

of gaps due to missing detectors, were selected: cuts were
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Figure 7
Selected cuts at constant Q through the experimental S0(Q, !) (black line) for aluminium at 10 K obtained on the MARI spectrometer, ISIS, from Q =
1.0 Å�1 to Q = 7.0 Å�1. The horizontal axes are energy transfer and vibrational frequency (meVand cm�1 respectively) and the vertical axis is S0coh(Q, !).
The width of cut is 0.067 A�1 and the corresponding cut through the LJ 12–6 theoretical data (fitted to elastic constants) is given as the red line. All
intensities are to scale.



made through both theoretical and experimental data sets for

a bin width of 0.0667 Å�1 (median value 
0.03335 Å�1) for

median values of Q of 2.2, 2.5, 3.2, 3.6, 4.2, 4.6, 5.0, 5.6, 6.2, 6.6

and 7.0 Å�1. The resulting comparisons are shown in Fig. 7.

Although there are significant differences in both the

intensity profiles and the positions of sharp features on the

energy transfer scale, the general Scoh
0 (Q, !) profile is in

reasonable agreement: sufficiently so to relate features in the

theoretical and experimental profiles.

From these comparisons, 31 Scoh
0 (Q, !) features could be

reasonably assigned to one of the 11 reciprocal space direc-

tions used for this treatment. In order to reduce the likelihood

of assignment errors in this process, a Python script was

written to automate the selection process somewhat; each

potential matchable feature in the experimental data (whether

peak or coherence edge) was selected directly from the rele-

vant data slice and the corresponding energy transfer for the

feature was recorded; these values were then used as sort

parameters. This sort generated a list of the nearest theoretical

dispersion surfaces in our set of [hkl] directions, and only

surfaces that passed through the feature within 1 cm�1 (�!)

were considered as potential matches. Depending on the

relative sharpness of the scattering feature, some features of

less than 1 cm�1 were discarded as being insufficiently clear to

match. Each sort then provided the dispersion curve label, the

q point (in terms of fractional reciprocal lattice vector) and the

mode number (using the mode identification in GULP) for

use in model fitting, assuming that the �! condition was met

and the feature was sufficiently distinct in both theoretical and

experimental data sets.

This process is clearly amenable to automated feature

identification via a mathematical optimization formalism.

However, for this initial work, the same process as is used for

mode assignment in other spectroscopy has been used and

only clearly distinct features have been selected for potential

comparison to experimental data.
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Figure 8
Four constant Q cuts through Fig. 3 (red line) and Fig. 7 (black line) for a Q bin of width of 0.067 Å�1. The horizontal axes are energy transfer and
vibrational frequency (meV and cm1, respectively) and the vertical axis is S0coh(Q, !). Major scattering features are labelled for each cut in terms of a
point along the direction in the conventional reciprocal lattice [hkl]. Red arrows (below spectra) denote an identified feature, with appropriate [hkl], in
the LJ 12–6 theoretical data and black arrows (above spectra) the equivalent feature in the MARI data. Relative intensities between cuts are not to scale,
for clarity of presentation.



With these criteria, of the 31 identified features in 11 cuts

through the Lennard-Jones-derived data, only 20 could be

unambiguously assigned to the experimental data. The label-

ling is provided in Fig. 8 for these 20 features, where the

arrows are labelled with the relevant direction in q space. The

upper values (black) refer to the experimental data and the

lower values (red) to the model. To aid in the visualization of

these points, Fig. S5 (in the supplementary text) shows how the

sampling of (Q, !) space has been accomplished, by projecting

the points labelled in Fig. 8 onto the Q scale used for Figs. 3

and 6.

The final step in the analysis process involved fitting two of

the models (LJ and Mei–Davenport) to these (q, !) points

using GULP’s internal least-squares minimization routine. In

this procedure, the (q, !) points were input as observables and

the optimal parameters were obtained for both models from a

variety of initial values to ensure that a reasonable global

minimum was obtained. For the Mei–Davenport model, the

EAM density terms were not fitted, although the lattice was

allowed to relax in one fit and fixed in the other to explore the

effect of fixing the lattice in such a model.

4.2. Results from the fitting of poly-CINS data to two models
for aluminium

The fitting process proved very successful for the case of the

Lennard-Jones potential model, and a global minimum was

found with values of A and B of 28273.896 eV A�12 and

46.590 eV A�6, respectively, keeping the lattice constant fixed.

The fitting process applied to the Mei–Davenport model,

whilst successful, was considerably more methodologically

dubious as the parameter space for the process is considerably

larger and, as this work is not specifically targeted at produ-

cing a more physically accurate MEAM model, little effort was

spent on ensuring that a true global empirical minimum was

reached. However, as the EAM density parameters were kept

fixed, i.e. were not included as fitting parameters, the fit

resulted in changes to the Ec, �, 	 and 
 parameters (with new

values of 3.335, 4.57, 7.047 and 11.326 eV, respectively) in the

EAM functional part of the potential, with ’0 and � changing

to 0.1330 and 7.3866 eV, respectively. The final parameteriza-

tion of each model is presented in Table 3.

Thus, in Fig. 9, the initial and final (fitted) versions of the

Mei–Davenport and Lennard-Jones models were used to

generate Scoh
0 (Q, !) data sets equivalent to those found in

Fig. 3, and constant Q cuts were taken through these data sets,

following the process described in the previous section. The

figure presents a representative example [for median Q =

4.6 Å�1, with a cut width of 0.0667 Å�1 (median value 


0.0334 Å�1)] of these data comparisons; more have been

provided in the supplementary text. As can be seen, the key

features being tracked are the peak corresponding to the [531]

dispersion curve at 145 cm�1 (18.0 meV) and the coherence

edge feature corresponding to the [422] dispersion curve at

200 cm�1 (24.8 meV) in the experimental data. Curves (a) and
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Table 3
Functional forms and associated parameters of the potential models for aluminium, fitted from poly-CINS data.

Potential model Fitted EAM functional parameters Fitted EAM density parameters Pair potential parameters

Mei–Davenport Ec = 3.335 eV, � = 4.57, 	 = 7.047,

 = 11.326, � = 7.35, ’0 = 0.1318 eV,
s1 = 12.0, s2 = 6.0, s3 = 24.0

c0 = 0.64085, c1 = �6.83764,
c3 = 26.75616, c4 = �47.16495,
c5 = �8.60834, r0 = 2.8638 Å

’0 = 0.1330 eV, r0 = 2.8638 Å,
� = 7.3866, 
 = 5.58441

Lennard-Jones (4 Å cutoff) N/A N/A A = 28273.896, B = 46.590074
Lennard-Jones (12 Å cutoff) N/A N/A A = 44389.768, B = 135.77357

Figure 9
Comparison of four theoretical models, using the constant Q cut (width of
0.067 Å�1) for Q = 4.6 Å�1 from Fig. 8, with experimental data for
aluminium at 10 K obtained on the MARI spectrometer, ISIS (grey line).
(a) The original LJ 12–6 model, (b) the LJ 12–6 model fitted from MARI
experimental data, (c) the original Mei–Davenport model and (d) the
Mei–Davenport model fitted from MARI experimental data. The
horizontal axes are energy transfer and vibrational frequency (meV and
cm�1, respectively) and the vertical axis is S0coh(Q, !).



(c) show the theoretical Scoh
0 (Q, !) generated from the initial

versions of the models and clearly illustrate the better

agreement with experiment provided by the LJ model. Curves

(b) and (d) are the equivalent Scoh
0 (Q, !) data generated after

the fitting procedure It is clear that both models show signif-

icant improvement; in particular, the peak corresponding to

the [531] direction shows much improved agreement with the

experimental data. This is not surprising given that the

features discussed were used as observables in the fitting

process. However, selection of other cuts also produces

features that are in better agreement with experiment (see

supporting text for additional examples).

At this point in the analysis, it becomes clear that the

present process lends itself very naturally to an iterative

approach to the fitting process; although the present treatment

deals with only a single ‘run through’ of the method, the most

sensible means of improving fits [and hence the quality of the

model generating Scoh
0 (Q, !)] would be to take the outputs of

the current method and, rather than moving straight to bulk

properties and dispersion curves, to re-apply the process

(probably several times) by taking cuts through the data set

generated by the new model(s) and running through the

feature identification and the fitting steps again. This

approach, which would resemble a profile refinement process

as used for diffraction data (in effect, inelastic profile refine-

ment), would minimize the differences between the theore-

tical and experimental Scoh
0 (Q, !); work is in progress to

demonstrate this approach.

Once the fitted models have been inspected for agreement

with experiment, the final stage in the analysis is that of

generating bulk properties and dispersion curves for the

original and fitted models. Fig. 10 presents the dispersion

curves for the two versions of the Lennard-Jones and of the

Mei–Davenport models compared with the single-crystal

dispersion curve data of Stedman & Nilsson. Rather

encouragingly, both fitted potential models generate disper-

sion curves that are very similar, illustrating that the sampling

of reciprocal space is consistent for both models. Both of the

fitted models also produce dispersion curves that are in better

agreement with the experimental curves, after allowing for the

difference in temperature: the Stedman & Nilsson data were

taken at 80 K, whereas the models generated are for data

taken at 10 K. The higher temperatures will result in slightly

softer modes and hence lower maximum frequencies at the

zone boundaries. Of course, none of the models effectively

reproduce the curvature of the TA modes in the [110] direc-

tion: both models have very short cutoff distances for the

interactions (first nearest neighbour for the LJ model and

fourth nearest neighbour for the Mei–Davenport model),

which will significantly influence the curvature of the disper-

sion curves in this region. Indeed, the work by Gilat &

Nicklow (1966) suggests that effective Born–von Karman

force constant models in metals such as aluminium are

sensitive to nearest neighbour interactions out to at least the

eighth nearest neighbour distance. However, both models do

show an improved agreement with experiment (both for the

single-crystal values and for the data reported in the present

work).

Finally, the bulk properties of aluminium were calculated

for both fitted models. The results are presented in Table 4.

The fitted Lennard-Jones model, which produces improved

dispersion curves, nevertheless performs somewhat less well

than the original model as far as the bulk properties are
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Figure 10
Dispersion curves calculated for the semi-empirical models fitted to
experimental data in this work, compared with the experimental triple-
axis spectrometer data (red points) previously presented in Fig. 3. Heavy
black lines are the original LJ 12–6 model, thin black lines the fitted LJ
model, thick grey lines the original Mei–Davenport model and thin grey
lines the fitted Mei–Davenport model.

Table 4
Comparison of bulk properties from models fitted to poly-CINS data in this work.

Original Mei–Davenport Fitted Mei–Davenport Original LJ 12–6 Fitted LJ 12–6 Experiment

Lattice constant (Å) 4.050 4.050 (4.170) 4.050† 4.050† 4.0495
Binding energy per atom (eV) �3.326 �3.44 (�3.48) �0.52 �0.88 �3.43
Young’s modulus (GPa) 14.2 37.1 (37.1) 59.9 44.8 70.3
Bulk modulus (Voigt average) (GPa) 75.2 80.0 (81.9) 68.3 66.5 76.9
Shear modulus (Voigt average) (GPa) 9.80 31.9 (26.8) 35.57 32.85 26.1
Poisson’s ratio 0.468 0.423 (0.425) 0.354 0.388 0.345
C11 (GPa) 82 97 (99) 98 88 107
C12 (GPa) 72 71 (73) 54 56 61
C44 (GPa) 16 44 (36) 49 44 29

† For LJ 12–6 this is a fixed value and has not been derived from an optimization.



concerned. This is unsurprising given that the initial model was

fitted to experimental elastic constants, but changes to the

force constants A and B are relatively small. The bulk prop-

erty calculations for the Mei–Davenport model were handled

in two ways; the first was a straight fixed-lattice calculation

where the potential generated very good agreement with

experimental data; in the case of binding energy (not strictly

valid for fixed-lattice calculations), Young’s and shear moduli,

and elastic constant predictions, the fitted model outperforms

the original model and generates predicted bulk properties

consistently closer to experimental values. With the constraint

of a fixed lattice removed, the model fitted to the Scoh
0 (Q, !)

data produced a second set of predicted bulk properties (in

parentheses in Table 4). Although this results in a relaxation

of the lattice, giving rise to a lattice constant that is signifi-

cantly too large (4.17 Å, rather than the experimental value of

4.05 Å), the model performs much better than either the

Lennard-Jones (fitted) or the original Mei–Davenport model

in terms of predicted binding energy and the other bulk

properties, especially the elastic moduli (Young’s, bulk and

shear). We have demonstrated that the results can be mark-

edly improved simply by expanding the cutoff of the LJ 12–6

model to 12.0 Å. This results in a model that provides broadly

similar agreement (in terms of bulk values) to that of the

original LJ model (fitted from elastic constants), yet requires

no adjustment of the lattice constants (i.e. the model predicts a

lattice spacing of 4.05 Å when allowed to relax). The resultant

values of the parameters are included in Table 3 but further

discussion is postponed.

4.3. Discussion on the extension of the method to other
systems

As has been stated earlier, aluminium was chosen to illus-

trate the methodology for this work because it has the simplest

possible crystalline structure as well as being a very well

understood material in terms of both bulk properties and

dynamics. Given the complexity of polycrystalline data sets,

aluminium represents the simplest possible case to apply in

terms of both basis size and symmetry, yet for this method to

be generally useful, it should be extensible to materials with

polyatomic basis sets and should also provide some demon-

strable advantages to the current method of analysing powder

spectra – namely the incoherent approximation.

Currently, the standard approach to assigning vibrational

frequencies for polycrystalline coherent scattering systems is

via the so-called incoherent approximation, a detailed treat-

ment of which can be found elsewhere (Mitchell et al., 2005;

Kearley, 1995). In this approach, the experimental data are

integrated over the full angular range of detectors, which

provides greatly improved statistics at the cost of obscuring all

explicit Q dependence in the resulting two-dimensional

(frequency versus integrated intensity) data sets. The general

method effectively treats the resulting data as a means of

experimentally determining the phonon density of states, g(!).

These data are then compared, with minimal processing, with

a gamma point calculation [typically using DFT and software

such as PHONON or a-CLIMAX (Ramirez-Cuesta, 2004) to

post-process the force constant outputs into simulated

inelastic neutron intensity data], and some implicit Q depen-

dence is then inferred from relative intensities or the intensity

profile as a whole. As an analysis method, it has much to

recommend it: the method is very computationally efficient (a

gamma point calculation is relatively computationally inex-

pensive and can be performed on a desktop workstation in

very little time for small-unit-cell systems) and, as has been

mentioned, there are a number of freely available support

software packages available to assist in this analysis. However,

it is clear that there are several issues with this approach, the

most significant being that explicit Q dependence of the

vibrational modes is lost entirely; as one is dealing with the

density of vibrational states, one may not track the curvature

of individual modes. Indeed, before the computational

resources became available for routine DFT calculations,

much of the most detailed inelastic scattering simulation and

fitting used semi-empirical models and carefully considered

correction factors (Egelstaff & Poole, 1969) to properly weight

the integrated intensities. The scattering data were plotted as a

function of Q2 at a given angle, and the high-Q data were

extrapolated back to yield a gradient at small Q2, where the

actual data shows large fluctuations due to coherent terms.

This would result in semi-empirical force constant fits that

could be very difficult to interpret and assign properly, given

the sensitivity of the fits to the relative intensity profiles

(Kearley, 1995).

After the advent of the easily accessible computational

resources required to directly generate intensities using DFT,

the emphasis shifted to using the aforementioned DFT direct

simulation approach, typically compared with directly inte-

grated g(!). However, this approach directly integrates the

scattering over observed values of Q at a given energy and

assumes that the coherent scattering averages out. Our

calculations show that there are significant differences

between the actual density of states obtained from GULP and

the above quantity obtained from the GULP poly-CINS

output. The most notable one is that of intensity differences

between the strict incoherent density of states, especially at

low Q, where contributions from the coherent scattering in this

region produce a ‘summed up over Q/angles’ profile for the

incoherent approximation that significantly deviates from the

density of states. There are also issues associated with fitting

an improved model: DFT calculations do not, in general,

provide precise matches to INS data sets, and the scaling

approach (Mitchell et al., 2005) used to assign modes unam-

biguously can obscure the quality of a given calculation. In any

case, DFT outputs cannot be ‘fitted’ to provide functional

models for T > 0 K systems with ease. The poly-CINS method

does not suffer from this limitation (although DFT inputs can

be used to provide an initial starting point for finite

temperature calculations), as the Q dependence of individual

modes can be identified and tracked, without resort to either

complex correction factors or scaling of frequencies.

As the size of the basis set increases from the monatomic

basis used for this work, other features in the scattering data
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will become relevant to discuss – most notably the scattering

from optic modes (as aluminium is monatomic, it does not

possess optic modes). Although this work has restricted itself

to the discussion of the dynamics of the aluminium system,

and by definition scattering profiles derived from acoustic

modes, the authors have measured a number of polyatomic

systems (with lower symmetries than cubic aluminium) using

this approach, most notably graphite (Roach, 2006; Roach,

Heuser et al., 2013; Roach, Parker et al., 2013), MgD2 (Buckley

et al., 2013) and C60 (Roach, 2006; Roach, Heuser et al., 2013;

Roach, Parker et al., 2013). In all these cases, optic modes

generate the same coherence edge and peak features (they are

still subject to the same selection condition as acoustic modes)

and can be measured and identified, although these can be

more difficult to distinguish than in the present case, requiring

extremely long data collection runs on high-intensity instru-

ments to provide sufficiently high count rates to distinguish

these features from noise. This is especially so in the case of

very large systems and systems with relatively ‘flat’ optic mode

branches (such as C60), which require correspondingly high

resolution sampling in the calculation of the poly-CINS

intensities. Lower-symmetry systems also appear to pose no

particular problem, providing the sampling of reciprocal space

is sufficiently tight.

Finally, zone boundary effects can add to the variation of

intensities, and one might speculate that this issue might affect

the identification of edge and peak features where scattering

close to the zone edge is very much more intense (see Fig. 4b

and comments in x2.4); indeed, it is very likely that a number

of the most intense features in Figs. 7 and 8 are due to the

orientational averaging of this effect. This is, however, more

likely to be an issue with samples with crystallites of higher-

symmetry materials (such as aluminium), as the Brillouin zone

path is very simple and these effects will superimpose in the

orientational averaging much more obviously. With lower-

symmetry crystallites, this would probably average out into a

smoother intensity profile. However, it is important to check

on this. Fig. S5 in the supplementary text provides a conve-

nient method of checking for bias introduced as a result of this

effect, as well as a means of checking other sampling bias (TA

rather than LA, for instance, or zone centre versus zone edge).

In the case of aluminium, and the sampling and feature

selection for this work, it appears that the sampling is evenly

split between zone edge and other regions. It is quite clear that

some coherence edge features are more pronounced near the

zone edges, but it is also clear (from Figs. 8 and S5) that

scattering beyond these areas is sufficiently intense to identify

these features away from the zone edge.

5. Conclusions

In the present paper we describe the structure of an extension

to the GULP program, which calculates the polycrystalline

coherent inelastic neutron scattering directly from a dyna-

mical matrix for the crystal. This model for Scoh
0 (Q, !) can be

compared directly with experimental measurements made

using an inelastic neutron spectrometer, either as a complete

contour plot or in terms of profiles along observed loci in (Q,

!) space. The method has been applied to aluminium as a

simple example of a crystalline material for which dispersion

curve data are available; this provides definitive corroboration

of the methodology. Three popular semi-empirical models

have been simulated, along with a simple model generated for

the purpose of method checking. It was found that these

models differ significantly from each other in terms of the

dispersion curves and the bulk properties predicted by each.

The best performing of these four models (the Lennard-Jones

and the Mei–Davenport) were then used to identify and

analyse the polycrystalline coherent inelastic neutron scat-

tering spectrum from a polycrystalline aluminium sample.

Cuts were used through the data to identify dispersive features

that were then used as fitting observables in a least-squares fit

of the model to the neutron data.

The method described, which relies on the analyst to

identify scattering features in the neutron data that corre-

spond to single-crystal dispersion curves in a polycrystal, has

proven to be effective in the simple case of aluminium. The

strength of the method is that it does not require full sampling

of (Q, !) space – even along the locus of a cut through

experimental data – to generate fitting observables. Rather it

applies an understanding of the ‘rules’ behind coherent

inelastic scattering to identify scattering features that coincide

with dispersion curves in single-crystal samples, and then uses

these points in (Q, !) space to generate individual q points for

fitting using lattice dynamics codes. Furthermore, although fits

to experimental data can be improved with the addition of

computationally calculated two-phonon and multiphonon

scattering contributions, dynamic Debye–Waller factor

contributions, multiple scattering corrections, and other

(instrument-specific) contributions, none of these are neces-

sary to identify the majority of one-phonon edges in a poly-

crystalline sample. This in turn means that the computational

costs for a given analysis are orders of magnitude less than

would be required for a full calculation using a total scattering

approach. As one increases the size of a given unit cell, the

computational expense of the full calculation rapidly becomes

prohibitive and the required sampling of reciprocal space itself

becomes a limiting factor; even simple systems with unit cells

containing less than 20 or so atoms require significant

computational resources for such calculations. Work is

underway on the extension of this method to systems with

larger unit cells. With regard to the complementarity of the

poly-CINS method with incoherent inelastic neutron scat-

tering, it is worth pointing out that, for systems dominated by

incoherent scattering that are not suitable for isotope substi-

tution with coherently scattering nuclei, the poly-CINS

method would provide little additional useful information and

so mode assignment via incoherent scattering would be the

most efficient method to use. However, for those materials

that can be readily isotope substituted to take advantage of

one or more elements with isotopes with appreciable coherent

cross sections, the poly-CINS method could be used and the

signal from the incoherent scattering would be calculated and

added to produce a composite S0(Q, !). This plot would be
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used to identify features with no Q dependence and exclude

them from the search for Q-dependent scattering features.

Mixed metal hydrides/deuterides would be an example of

where poly-CINS would provide a more complete experi-

mental verification of a given model than via the incoherent

approximation or incoherent inelastic scattering alone.

Although this type of experimental measurement has not

been much used in the past, it seems clear that, with the power

of modern computational resources, it has the potential to

become an important technique for analysing the dynamics of

a wide range of intrinsically polycrystalline solids that have

coherent cross sections (and incoherent scattering can be

simulated to isolate the coherent scattering features for

systems with more mixed coherent–incoherent cross sections).

In order that this approach be more accessible, the software

used for this work will shortly be available in the next release

of the GULP code, along with the analysis tools (written in

Python) used to efficiently identify and compare dispersion

curves and theoretical and experimental data sets.
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