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pyFAI is an open-source software package designed to perform azimuthal

integration and, correspondingly, two-dimensional regrouping on area-detector

frames for small- and wide-angle X-ray scattering experiments. It is written in

Python (with binary submodules for improved performance), a language widely

accepted and used by the scientific community today, which enables users to

easily incorporate the pyFAI library into their processing pipeline. This article

focuses on recent work, especially the ease of calibration, its accuracy and the

execution speed for integration.1

1. Introduction

Azimuthal integration is a common mathematical operation

when using area detectors for recording powder diffraction

and scattering patterns, which ensure larger solid angle

coverage and hence a better harvest of X-ray photons. This

data reduction step is often one of the most time-consuming

tasks in the processing pipeline and sometimes limits the

productivity of modern synchrotron beamlines, where

diffraction is used to probe samples with a point-focused beam

in two-dimensional raster scans or diffraction tomography

experiments using detectors capable of high frame rates.

We describe the version 0.10 of the Python library pyFAI

(released in October 2014), which is designed for such data

reduction processing, including pre-processing, image re-

binning (geometry distortion, one- and two-dimensional

averaging) and the auxiliary tools (Kieffer & Karkoulis, 2013).

Among these tools, we will focus on the one used to calibrate

the experimental setup of a powder diffraction or SAXS

experiment (that comprises an area detector) by exploiting the

Debye–Scherrer rings collected from a reference compound.

After describing how the experimental geometry is internally

represented in pyFAI, we present the various image analysis

algorithms used to extract Debye–Scherrer rings. The peak

positions are combined with the prior knowledge of a calibrant

(d spacing) and the wavelength of the X-rays to refine of the

detector’s position in space.

Once this geometry is known, azimuthal regrouping can be

performed after typical corrections are done: dark-current

subtraction and flat-field, solid-angle and polarization

corrections are included in the standard processing pipeline.

pyFAI implements various integration algorithms, including

multiple-pixel splitting schemes, which will be described and

mutually compared on the basis of speed, accuracy and

memory consumption. An example will be given on how

pyFAI can be used to decompose diffraction images into

amorphous and crystalline components and how this can be

applied to serial crystallography.

As pyFAI is a library, other projects related to pyFAI have

been created and will be briefly described, most of them

providing integrated graphical user interfaces (GUIs).

Appendices contain information about the pyFAI project

structure and an overview on how to calibrate the experi-

mental setup parameters, as well as a description of the library

and how the azimuthal integration is implemented on many-

core systems using OpenCL (Stone et al., 2010).

2. Experimental geometry

In pyFAI, the basic configuration is defined by the description

of an area-detector whose position in space is determined

through the sample position and the incident X-ray beam.

2.1. Detector

Like most other diffraction image processing packages,

pyFAI allows the definition of two-dimensional detectors with

a constant pixel size (in metres), but this approach reaches its

limits with several detector types, such as multi-module and

fibre optic taper coupled detectors. Large-area pixel detectors

are often composed of smaller modules (e.g. Pilatus from

Dectris, Maxipix from ESRF etc.). By construction, such

detectors exhibit gaps between modules along with pixels of

various sizes within a single module, and hence they require

specific data masks. Optically coupled detectors need also to

be corrected for small spatial displacements, often called

geometric distortion. This is why detectors need more complex

descriptions than just the pixel size. To avoid complicated and

error-prone sets of parameters, detector classes have been

introduced.

1 This article will form part of a virtual special issue of the journal, presenting
some highlights of the 12th Biennial Conference on High-Resolution X-ray
Diffraction and Imaging (XTOP2014).
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2.1.1. Detectors classes. Detectors classes are used to

define families of detectors. In order to take the specificities of

each detector into account, pyFAI contains about 40 detector

classes. These contain a mask (invalid pixels, gaps, . . . ) and a

method to calculate the pixel positions in Cartesian coordi-

nates. For optically coupled CCD detectors, the geometrical

distortion is often described by a two-dimensional cubic spline

which can be imported into the detector instance and used to

calculate the actual pixel position in space.

2.1.2. Nexus detectors. Any detector object in pyFAI can

be saved into an HDF5 file following the NeXus convention

(NIAC, 2003; Könnecke et al., 2015).2 Detector objects can

subsequently be restored from disk, making complex detector

definitions that are less error prone. Pixels of an area detector

are saved as a four-dimensional data set: i.e. a two-dimensional

array of vertices pointing to every corner of each pixel,

generating an array of shape (Ny, Nx, Nc, 3), where Nx and Ny

are the dimensions of the detector, Nc is the number of corners

of each pixel, usually four, and the last entry contains the

coordinates of the vertex itself. This kind of definition, while

relying on large description files, can address some of the most

complex detector layouts:

(i) hexagonal pixels (Nc ¼ 6, e.g. Pixirad detectors)

(ii) curved/bent imaging plates (e.g. Rigaku)

(iii) pixel detectors with tiled modules (e.g. some Xpad

detectors from ImXpad)

(iv) semi-cylindrical pixel detectors (e.g. Pilatus12M from

Dectris)

2.2. Geometry

In pyFAI, the experiment geometry is determined by the

position of the detector in space, the origin being located at

the sample position, more precisely, where the X-ray beam

crosses the diffractometer main axis. The detector being a rigid

body, its position in space is described by six parameters: three

coordinates and three rotations (Fig. 1). In pyFAI, the beam

centre is not directly used as it is ill-defined with highly tilted

detectors. Like SPD (Boesecke, 2007), we use the orthogonal

projection of the origin on the detector surface called the

PONI (for point of normal incidence). For nonplanar detec-

tors, the PONI is defined in the plane d3 ¼ 0 in the detector’s

coordinate system. The sample-to-detector distance is defined

as the origin–PONI distance (abbreviated dist), and the PONI

coordinates (abbreviated poni1 and poni2) are measured in

the detector’s reference system (origin at the lower left corner

of the image, looking from the viewpoint of the sample). As

the pixel size may not be constant, all three distances (dist,

poni1 and poni2) are given in metres. The three rotations

(named rot1, rot2 and rot3, in radians) correspond to the

rotations along the three orthogonal axes around the origin

(sample position) in this order: vertical axis, horizontal axis

and finally along the beam axis.

When all rotations are zero, the detector is in transmission

mode with the incident beam orthogonal to the detector’s

surface. The choice of SI units may look cumbersome or odd

to users familiar with other tools like FIT2D (Hammersley et

al., 1996) or SPD (Boesecke, 2007). To address such issues, the

geometry used in pyFAI can be exported to and imported

from parameter sets compatible with other software packages.

Geometries used in other codes can be promptly included in

pyFAI to ease comparison of results and cross-validation of

approaches.

2.3. Binning

One of the strengths of the above geometry is the capability

of performing binning operations on the detector without

having to recalibrate or recalculate the position in space. All

pyFAI detector classes have a binning option available that

can increase the pixel size and divide the detector shape

accordingly. This works even for detectors that require

distortion correction: pyFAI can bin or un-bin the spline

describing the distortion, on the fly, the position of the PONI

being independent of the pixel coordinates.

3. Calibration

The calibration of the detector position is performed using the

Debye–Scherrer rings collected from a reference powder

called the calibrant. The rings are extracted (see x3.2.1) and

control points are placed at the local maxima on the rings. The

geometry of the experiment is obtained from a least-squares

fitting of the 2� angles. In this work we will call them ‘rings’

even if, for a planar detector, they are actually the conic

intersections of the X-ray beam cones with the detector plane.

pyFAI does not assume that rings are conic sections (the

detector could be nonplanar) and is able to optimize the

geometric parameters of a wide range of experiments. The

support for the geometry refinement of nonplanar detectors is

still under development.

3.1. Calibrant

pyFAI provides ten calibrant descriptions covering the most

used ones: ceria, corundum, gold, lanthanum hexaboride and
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Figure 1
The geometry used by pyFAI is inspired by SPD (Boesecke, 2007).

2 Slightly extended as pyFAI ’s detector definition is richer than the one
provided by the NIAC.



silicon for powder diffraction measurements; silver behenate,

tetradecanol and para-bromobenzoic acid for small-angle

scattering experiments. Any file containing d-spacing values in

ångströms can be used as calibrant and loaded into the Cali-

brant class. The calibrant object is in charge of calculating the

reference aperture of the diffraction cones (2�), provided the

wavelength or energy is known.

3.2. Peak picking

With the advent of micro- and nano-focused beams at

modern synchrotron facilities (Riekel et al., 2010), fewer

crystals get hit by the beam going through the sample, causing

the Debye–Scherrer rings to be spotty. As grinding of the

reference powder is not advised (it would broaden the peaks

and may even introduce strain), we decided to address this

issue by further analysing and reconstructing the Debye–

Scherrer rings. An alternative approach would be the use of

single-crystal indexing techniques, using for example the Fable

software (Oddershede et al., 2010) as demonstrated for

diffraction tomography experiments (Bonnin et al., 2014).

3.2.1. ‘Massif’ extraction. ‘Massif’ extraction allows a clear

separation between regions containing high photon counts

(rings) and background. This is done by calculating the

difference between the image and a blurred version of the

same image, using a Gaussian blur filter (of width �). The

borders of high-intensity regions (called massif) feature

negative intensities in the difference image, so positive regions

are labelled as (fractions of) a ring. Peaks, i.e. local maxima,

are sampled within the same region and belong to the same

ring. The width of the Gaussian, �, in pixel units, has to be

larger than the typical distance between two peaks within a

ring and smaller than the distance between two rings. pyFAI

takes a heuristic approach to guess an acceptable parameter

value in most cases, while providing also a manual override

through the command line argument �gaussian=sigma.

3.2.2. Subpixel accuracy. Subpixel accuracy is often needed

when measuring strains in materials, as highlighted by Borbely

et al. (2014). The accuracy on the peak position is obtained

using a second-order Taylor polynomial of the intensity in the

neighbourhood of the peak position x0:

IðxÞ ¼ Iðx0Þ þ rIðx0Þ � ðx� x0Þ þ
1
2 ðx� x0Þ

T
� HIðx0Þ � ðx� x0Þ

ð1Þ

where I, rI andHI are the scalar field of intensity, its gradient

(vector) and Hessian (matrix), respectively, measured at the

maximum pixel position. Differentiating equation (1), one

obtains

rIðxÞ ¼ rIðx0Þ þ HIðx0Þ � ðx� x0Þ: ð2Þ

The position of the actual maximum x is obtained by substi-

tuting rIðxÞ ¼ 0 in equation (2). Hence,

x ¼ x0 � ½HIðx0Þ�
�1
� rIðx0Þ: ð3Þ

These derivatives, rI and HI, are numerically evaluated on a

3 � 3 neighbourhood (smallest possible size to calculate the

Hessian matrix). With noisy data, it could happen that x is far

away from x0 (more than one pixel), which is obviously wrong.

In such cases, x is taken as the centre of mass of the 3 � 3

neighbourhood around x0 (less precise, but more robust).

3.2.3. Blob detection. Blob detection is a computer vision

method which allows peak picking to be performed without a

priori knowledge of the intensity values in the image. This

feature is essential, as diffraction images exhibit a very large

dynamic range.

The diffraction image is sequentially blurred using Gaussian

filters, the width of which, �, follows the geometric series 1=2,

21=2=2, 1, 21=2, 2, 2ð21=2Þ, . . . . From each image blurred over a

scale �, the subsequent blurred image (over �0 ¼ 21=2�) is

subtracted to create a difference of Gaussians image (called

DoG) which highlights the features of the image with a typical

size �. A three-dimensional scale space (x; y; �) representa-

tion is created from the DoG images.

This method provides not only the locations of the peaks (as

local maxima in scale space) but also the typical size of the

peaks. Peak position, scale and intensity are refined as

described in x3.2.2, extended to the three-dimensional scale

space.

To keep the computation time reasonable, the imple-

mentation of the blob detection relies on Gaussian convolu-

tion in real space (i.e. without Fourier transform), separated in

the horizontal and vertical directions, with small convolution

kernels of width 8� þ 1. To prevent an excessive growth of the

window width, a pyramid of Gaussians is built by binning

blurred images by a factor 2 when reaching � ¼ 2.

The drawback of this algorithm, besides the computation

time, is its very high sensitivity to noise in flat regions. This is

why blob detection is only used in the recalibration procedure

to extract all peaks in a region of interest, as determined from

an approximate geometry. Moreover this algorithm cannot

detect peaks the width of which is smaller than � ¼ 0:7 (which

corresponds to three pixels).

3.3. Graphical user interface for calibration

Only a minimalistic GUI (called pyFAI-calib; see Fig. 2) is

provided for peak picking, with visual assignment of the ring

number. A rough estimate of the geometry is usually obtained

via a mouse click on two of the innermost rings with a ‘usual’

transmission setup. For more challenging setups (small sensi-

tive area, tilted detectors, spotty rings, . . . ) like the one

presented in Fig. 2, more rings may be needed. The four

groups of coloured dots correspond to the control points

(peaks) extracted using the algorithm described in x3.2.1

(obtained from five mouse clicks). Each group of points is

assigned to a diffraction ring (using the spin box in the menu

bar). The refinement is performed to minimize the error in 2�
(squared) by using the sequential least-squares programming

function (scipy.optimize.min_slsqp) from SciPy (Jones et al.,

2001). After the refinement of the geometry, the iso-contour of

the refined 2� array is superimposed on the diffraction image.

These are the four dashed lines drawn on Fig. 2 to mark where

Debye–Scherrer rings are expected, allowing a visual valida-

tion of the calibration.
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From this initial rough calibration, pyFAI enables the user

to perform many operations in the command line interface

mode, like setting, constraining, fixing and refining para-

meters, extracting a new set of key points, or performing the

integration. The complete set of options is described in

Appendix B.

4. Azimuthal integration

The core task of pyFAI, as the name suggests, is to perform

one- or two-dimensional azimuthal (and radial) integration as

fast as possible. To achieve good performances in a Python

environment, several binary extensions are used to enable

multi-threading or even many-core acceleration [i.e. graphics

processors units (GPUs) and Intel Xeon Phi accelerators].

More details on the techniques used to speed up the code,

especially on the GPU porting, are described by Kieffer &

Ashiotis (2014) and briefly summarized in Appendix D.

4.1. Programming interface for azimuthal integration

The initial idea behind pyFAI was to provide an easy way to

perform azimuthal/radial integration for scientists, ideally in a

single command. In the following code snippet we show how

this is done:

In the first line, three key libraries are loaded: Fabio

(Knudsen et al., 2013) to read images, Matplotlib (Hunter,

2007) to display the results and pyFAI itself to be able to

perform azimuthal integration. In the second and third lines,

the image and the geometry are loaded. The two last lines are

meant to display the result.

In this snippet, the most crucial part is the fourth line, in

which the image img is azimuthally integrated over 1000 bins

with conversion into the output space, which is the cone

aperture (2�) given in degrees. Other output units like the

scattering vector magnitude q or the radius r (in the detector

plane) are available. By the method keyword one can select

the algorithm to be used.

4.2. Pixel-splitting schemes and implementation

pyFAI implements a dozen azimuthal integration proce-

dures which can be classified according to the way the inte-

gration is performed and which pixel-splitting scheme is used

(see Table 1).

4.2.1. Histogram versus lookup table. The naive way to

integrate data (also called ‘direct integration’) is to treat an

image pixel by pixel, very much like a histogram. This is a

scatter operation, which is hard to parallelize but cheap as to

memory occupation. Using a scatter to gather transformation,

the azimuthal integration for a given geometry can be stored

into a lookup table (LUT) and applied like a sparse-matrix-

times-dense-vector multiplication (sometimes called ‘back-

wards integration’). Whilst being much more memory
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Table 1
Methods available within pyFAI for azimuthal integration, along with
their speed and memory footprint.

Measurements were performed on a 3 GHz quad-core computer using a
2048� 2048 pixel image.

Pixel splitting Direct histogram Lookup table (reverse)

No splitting numpy (889 ms 336 MB) CSR nosplit (48 ms 330 MB)
cython (361 ms 323 MB)

Bounding box splitbbox (129 ms 343 MB) splitBBoxLUT (59 ms 327 MB)
CSR bbox (52 ms 330MB)

Tight splitting splitpixel (516 ms, 480 MB) CSR full (51 ms, 502 MB)

Figure 2
The pyFAI calibration window: manual peak picking and ring assignment
can be performed though it. The data correspond to a lanthanum
hexaboride (LaB6) calibrant on the Cristal beamline at Synchrotron
Soleil taken at 18.57 keV on an Xpad S540 flat pixel detector tilted
vertically by about 15�. This detector presents large (vertical) gaps
between modules, explaining the incomplete arcs of rings a, b and d.
Extracted control points are marked with dots, one colour per group
(assigned to a letter), and the fitted iso-2� contours are overlaid as dashed
lines (red, orange and yellow coloured). The iso-2� contour plot is not
smooth because of gaps in the detector, explaining the incompleteness of
some rings.



consuming, this implementation is effective in terms of

parallelization and speed. The compressed row storage (CSR)

matrix representation is now used instead of the LUT and

generates a smaller memory footprint.

4.2.2. Three pixel-splitting schemes. Three pixel-splitting

schemes are available in pyFAI and define the way photons

counted by a pixel are assigned to the various histogram bins,

especially when the pixels are large (like on Pilatus detectors):

(1) No splitting: the full intensity is assigned into a single bin

(Dirac like shape), the one at the middle of the pixel (like in

the histogram).

(2) Bounding box splitting: the pixel is abstracted by a

simpler rectangular box oriented parallel to the radial and

azimuthal directions.

(3) Tight/full pixel splitting: the only assumption made is

that pixel edges are deemed to be straight lines. This is also

known as polygon-based interpolation (van der Walt, 2010).

Fig. 3 displays the way a single pixel is split into a large

number of bins using the three schemes explained above. The

way FIT2D splits pixels has been added for comparison: it

looks similar to the bounding box pixel splitting but there are

differences in the implementation details.

4.2.3. Speed and memory consumption. Table 1 lists the

various available implementations together with their execu-

tion speed and the memory footprint for integrating a

2048� 2048 pixel image into 1000 bins.

4.2.4. About error propagation. During the regrouping

process, pyFAI can propagate errors, assuming that the initial

pixel-wise variance is known, for example as extracted from a

multi-frame experiment. Besides this, two single-frame

variance estimators are available. The Poisson model assumes

that the variance within a pixel is equal to the raw signal and

propagates it. The second estimator postulates the isotropic

distribution of the signal and calculates the variance within all

pixels contributing to a single output bin.

While pixel splitting provides smoother results, any pixel-

splitting scheme introduces some serial correlation between

neighbouring bins, resulting in an overestimation of the

propagated error, as described by Yang et al. (2014). Never-

theless, this effect is often negligible owing to the point-spread

function of typical area detectors.

4.3. Graphical user interface for azimuthal integration

A minimalistic GUI, called pyFAI-integrate, is shown in

Fig. 4. It illustrates most of the features available in pyFAI.

The top frame displays the geometric description of the

experiment. The middle frame targets the per-pixel correc-

tions to be applied: dark current subtraction, flat-field

correction, polarization and solid angle effects, and static and

dynamic masking. The check boxes next to each field are used

to toggle the given correction. The third frame displays

information about the output format, and the number of bins

in the radial and azimuthal directions, together with the

selection of the integration output space (these are manda-

tory). The bottom frame allows an OpenCL device (CPU/

GPU) to be selected for use in the computation.

5. Application examples

Azimuthal regrouping and its inverse transformation

(assuming uniform intensity distribution throughout the
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Figure 3
Contribution to a powder diffraction pattern from a single pixel,
showcasing the different pixel-splitting algorithms. pyFAI implementa-
tions are compared with the corresponding FIT2D algorithm.

Figure 4
Graphical interface for performing azimuthal integration on a set of
images.



azimuthal angles) can be performed using pyFAI, which offers

many opportunities for applications.

5.1. Diffraction image generation

Once the geometry has been defined (i.e. by loading a

PONI-file), the 2� and � positions of every single pixel of the

detector are known. If one assumes signal isotropy along the

azimuthal angle range (like an ideal powder without preferred

orientation), two-dimensional diffraction patterns can be

generated as illustrated in the example below:

The method calcfrom1d is available from any Azimuthal-

Integrator or Geometry class instance. It is used together with a

calibrant object to simulate a diffraction image suitable to test

pyFAI or other calibration codes (for example, to validate the

geometry transformation from one program to another).

In the above code snippet, second line, a reference sample,

LaB6, is chosen from the list of calibrants known to pyFAI

before the wavelength is set. Once combined with the

geometric information, the calibrant object is able to generate

a two-dimensional NumPy (Oliphant, 2007) array containing

the simulated Debye–Scherrer diffraction rings, which can be

saved or displayed on the screen. The fake_calibration_image

method takes more parameters to help set the U, V and W

parameters from Caglioti’s formula (Caglioti et al., 1958) to

include the broadening of peaks according to the simple

resolution function. In pyFAI, only the d-spacing values of the

calibrants are stored, and thus the reconstructed image will

have all rings with the same intensity (once integrated).

5.2. Image offset and validation of the calibration

By regenerating a two-dimensional diffraction image from

the integrated powder pattern one can assess the quality of the

calibration used for the integration. The calibration tool,

pyFAI-calib, includes a ‘validate’ command which evaluates

the spatial offset between the two-dimensional diffraction

image and the image regenerated from the integrated pattern,

using a classical phase correlation algorithm. This determines

the precision of the PONI localization, which can be better

than a tenth of a pixel, when calibrating images with contin-

uous rings (i.e. not spotty) and with a mask large enough to

remove the beam stop and all parasitic scattering.

5.3. Amorphous background removal

The pyFAI azimuthal integrator features a separate method

for separating automatically a background featuring an

azimuthal symmetry (amorphous scattering or powder ring)

from the Bragg peaks.

Based on what was described by Kieffer & Wright (2013),

two-dimensional azimuthal integration is performed on the

input image. The output two-dimensional image is filtered

along the azimuthal � axis using a percentile (often the

median) filter to reconstruct the powder diffraction curve

without the sharp Bragg spots. The number of points in the

azimuthal and radial directions as well as the percentile value

can be adjusted, but the default values are in general

reasonably good.

The reconstructed two-dimensional image corresponds to

the amorphous/powder/isotropic component of the input

image and the subtraction of this image from the raw data

contains only the signal coming from large crystals. Fig. 5 (left

hand side) presents a close-up of protein single-crystal data

recorded on a Pilatus3-2M detector (image taken at the ID23-

2 beamline of the ESRF). A diffuse amorphous halo is clearly

visible. After using the automatic amorphous background

removal, which takes into account the mask needed for such

pixel detectors, only Bragg peaks remain (right hand side of

the image).

5.3.1. Application to serial crystallography. In serial crys-

tallography experiments, tiny crystals in their solvent are

moved into the X-ray beam (using a jet or moving a sample

holder) and scattering data are acquired continuously, using a

fast detector (from dozens of Hz to kHz). These experiments

produce a huge quantity of data while only a small fraction of

the frames contain some diffraction signal. pyFAI has been

integrated into the processing software NanoPeakCell, which
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Figure 5
Automatic removal of the amorphous signal (ice ring) from Bragg peaks
in a protein crystallography experiment (data from beamline ID23-2 at
the ESRF).



provides a graphical interface for frame selection in serial

crystallography. pyFAI has also been integrated into the

LImA data acquisition system (Homs et al., 2012), where the

quantity of single-crystal diffraction data within each frame

can be assessed and a decision taken on whether to save a

given frame or not. This way, a huge amount of disk space and

network bandwidth can be saved.

6. Related work

Currently, the pyFAI library runs either as a standalone

application or embedded in other software on several beam-

lines at the ESRF to perform azimuthal/radial integration

online:

(a) inside the LImA image acquisition library, running on

the computer controlling the camera;

(b) in one dedicated data analysis server like EDNA

(Incardona et al., 2009) in the case of the BioSaxs beamline,

BM29 (Pernot et al., 2013), or the Dahu server at the

TRUSAXS beamline, ID02.

Other institutes have independently integrated pyFAI into

their processing pipelines: NanoPeakCell (developed at IBS

by N. Coquelle), PySAXS (developed at CEA by O. Taché),

Dpdak [developed at the Petra III synchrotron by G. Benecke

et al. (2014)] and Dioptas (developed at the APS synchrotron

by C. Prescher). Most of these software packages offer a GUI

to facilitate the data processing for a specific type of experi-

ment.

7. Conclusion and future work

In this work, we have described the improvements in v0.10 of

the pyFAI library, focusing on the detector representation in

space, ring extraction algorithms and pixel-splitting schemes

for azimuthal integration. The number of independent

projects now relying on pyFAI proves that it fulfils a number

of needs in the scientific community.

On the other hand, there are plenty of unresolved issues: all

algorithms designed to perform azimuthal integration are not

yet implemented in two dimensions. Is it possible to address

the error propagation issue while keeping pixel splitting? Can

all algorithms used in pyFAI be ported to GPU to offload the

processor? The GUIs for calibration and integration, while

helpful, are really minimalistic. The automatic ring extraction

using computer vision techniques could be improved and the

calibration might be fully automated. The functionality

relating to the geometry refinement of nonplanar detectors is

not yet complete. The version number (v0.10) clearly indicates

that a great wealth of work has been done but also yields a

warning about possible changes in the programming interface

in future versions for encompassing numerous new features.

The open-source nature of the project means that such

changes will be fully visible and is intended to encourage

contributions from the community.

APPENDIX A
Project structure

pyFAI is an open-source project licensed under the General

Public License (GPL v3+). It is mainly written in Python (v2.6,

2.7, 3.2 or newer) and is heavily reliant on the Python scientific

‘ecosystem’: NumPy (Oliphant, 2007), SciPy (Jones et al.,

2001) and Matplotlib (Hunter, 2007). It exhibits high perfor-

mance in image treatment and azimuthal/radial integration

thanks to Cython (Behnel et al., 2011) and PyOpenCL

(Klöckner et al., 2012). PyOpenCL remains an optional

dependency; therefore all OpenCL code features a Python or

Cython implementation as well. For the sake of consistency

with other ESRF software projects (Solé et al., 2007), the GUI

was developed using PyQt (or PySide). The project is hosted

on GitHub (https://github.com/pyFAI), which provides the

issue tracker in addition to code hosting. A pyFAI mailing list

is available: pyfai@esrf.fr (send ‘subscribe pyfai’ by e-mail to

sympa@esrf.fr to subscribe to the mailing list). New features

and changes in the API are discussed there. Originally

developed under Linux, the software is also tested and

supported on other operating systems like Windows and

MacOSX. To ease the distribution, the software is available on

the PyPI package repository (http://pypi.python.org) and as an

official Debian package and is included in other well known

Linux distributions like Ubuntu.

Everyone is welcome to fork the project and adapt it to his/

her own needs: CEA Saclay, Soleil, DESY and APS have

already done so. Collaboration is encouraged and new

developments can be submitted and merged into the main

branch via pull requests (on the GitHub interface).

While there are a couple of official releases every year

(better tested versions), pyFAI features a comprehensive test

suite and uses a continuous integration mechanism to ensure

that any snapshot of the master branch provides valid results.

APPENDIX B
Calibration tool

The pyFAI calibration tool, called pyFAI-calib, has been

available along with the integration tool since the very

beginning of the project, because having the same geometry

module for both calibration and integration has been a top

priority in the project’s specifications. The geometry file

(commonly called PONI-file) is updated at each optimization

step and delivers the whole description of the experiment

(together with time stamps, making it easy to edit by hand).

This single-file geometry avoids copy-and-paste errors of

spatial coordinates.

B1. Calibration command line interface

While the GUI for peak picking has significantly improved

(Fig. 2), the command line interface used for the optimization

process has become more versatile.

Starting from an initial coarse calibration, pyFAI allows for

performing many operations to refine all parameters: distance,

centre position, rotation of the detector and, optionally, the
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wavelength (all units are in the SI). The following commands

are available:

(a) help: shows the help message

(b) abort: quits the program directly

(c) assign: changes the assignment of groups to rings

(d) done: performs the azimuthal integration and quits

(e) get: prints out the value of the requested parameter,

get wavelength

( f) set: defines the value of the selected parameter,

set wavelength 1:54e� 10

(g) bound: selects the region of validity for a given para-

meter,
bound dist 0:1 0:5

(h) bounds: reviews and modifies the region of validity for

all parameters

(i) fix: prevents the parameter from being refined,

fix wavelength

( j) free: allows the parameter to be refined,

free rot1

(k) refine: re-runs the least-squares refinement

(l) validate: estimates the accuracy of the calibration on

the whole image by overlaying and correlating the raw image

with the back-projected integrated pattern

(m) recalib n blob: extracts a new set of control points

from the n innermost rings; the optional parameter blob

selects the ring extraction algorithm to use

(n) reset: sets the geometry to its default values (centred

orthogonal detector)

(o) show: prints out the current geometry parameters on the

screen

(p) integrate: performs the one- and two-dimensional

integration and displays it in a separate window to validate the

quality of the calibration

If the initial calibration is correct, like in Fig. 2, the proce-

dure to get a perfect calibration should be ‘recalib  -
done - - ’. If the predicted rings become too large or too

small compared to the actual ones, the wavelength can be

refined. For this purpose, it is advisable to extract as many

rings as deemed reasonable using recalib n then run free

wavelength and refine. Since distance and wavelength are

heavily correlated, it is important to take into account as many

rings as possible at high angle. The validate option allows

measurement of the offset between the actual diffraction

image and an image generated from the refined geometry

using phase correlation. In most cases it is possible to attain a

precision of about one-tenth of a pixel for determining the

PONI position.

B2. Automatic distance and centre calibration

The calibration procedure has been automated for the

macromolecular crystallography beamlines (MX) at the

ESRF. The sample-to-detector distance and the beam centre

need to be input in the header of the collected images in order

to process them automatically. As the area detector is on a

moving stage, the distance and centre position change at every

data collection. Via the MX-calibrate tool of pyFAI, it is

possible to calibrate the geometries of a set of images

recorded at various distances using the Debye–Scherrer rings

of a reference compound. After subsequently performing the

peak picking using blob detection (as described in x3.2.3) and

the least-squares refinement of the geometry on every input

frame, the program returns distances and beam centre posi-

tions as a function of the detector motor position, without

manual intervention.

APPENDIX C
Layers in the pyFAI library

pyFAI has multiple entry points depending on the type of

application and the user skills.

C1. Top level graphical application

A couple of top level applications, pyFAI-calib and pyFAI-

integrate, provide a graphical user interface to inexperienced

users. These interfaces are the least flexible ones and, because

they are GUIs, are not tested against regression.

C2. Top level application

A bunch of simple scripts are provided with pyFAI for

various kinds of processing (like pyFAI-saxs, pyFAI-waxs and

diff_tomo), which can be integrated into shell scripts for batch

processing.

C3. Top level Python interface

pyFAI provides at the top level the AzimuthalIntegrator

object, which can be created from a PONI-file and used to

integrate data. Pre-processing options (dark, flat, mask, solid

angle and polarization correction) can be passed to the inte-

grate1d or integrate2d methods. These methods also ‘know’

how to save processed data on disk. This is probably the most

flexible level of use of pyFAI, and the best tested one.

Moreover, nothing from the underlying levels is hidden.

C4. Mid level API

Below the AzimuthalIntegrator are the geometry calcula-

tion, the detector description, calibrants, geometry

refinement, . . . . These modules are implemented in Python

using NumPy, but often a second implementation exists in

Cython for performance purposes. The equivalence of these

implementations is a core target of the pyFAI test suite.

C5. Regridding/histogramming engines

These number-crunching engines are typically written in

Cython or OpenCL with a Python binding and can only be

accessed from the Python level. They expose only the core

number-crunching routines for integration or distortion

correction.

research papers

J. Appl. Cryst. (2015). 48, 510–519 Giannis Ashiotis et al. � pyFAI 517



The pyFAI project is very modular and can be accessed at

various levels depending on the user’s needs.

APPENDIX D
Parallel implementations using OpenCL

Azimuthal integration, like many computationally intensive

parts in pyFAI, was written as an OpenCL kernel and inter-

faced to Python via PyOpenCL (Klöckner et al., 2012).

PyOpenCL provides a shared execution model which is

effective both on usual processors (CPUs), on graphics cards

(GPUs) and on accelerators like the Intel Xeon Phi.

D1. Azimuthal integration

The direct azimuthal integration (histogram) is basically a

scatter operation which requires extensive memory locking

(inefficient over many threads). To overcome this limitation,

pixels have been associated with the output bin of the histo-

gram and stored in a LUT, making the integration look like a

simple (if large and sparse) matrix–vector product (Kieffer &

Wright, 2013). The sparse matrix CSR format is now used in

pyFAI, using only half of the space that the LUT previously

used (Kieffer & Ashiotis, 2014). Furthermore, all threads

within a workgroup collaborate to calculate the matrix–vector

product via a so-called ‘parallel reduction’, ensuring addi-

tional speedup (especially on GPUs). The compensated

algebra (Kahan summation) is kept to maintain the accuracy

of the calculation while using single precision (32 bit) floating

point arithmetic.

D2. Performance

Fig. 6 shows the performance of pyFAI in terms of frames

processed per second versus the input image size (in semi-

logarithmic scale). The computations were run on a dual-

socket Intel Xeon E5-2667 (2 hexacore @2.9Ghz) computer

with an Nvidia Tesla K20 GPU and an Intel Xeon Phi accel-

erator.

In this benchmark, four groups of curves can be identified:

(1) The lower continuous blue curve presenting the serial

Cython code using histograms (corresponding to the

‘splitbbox’ method), which is the slowest implementation

(even if it is 7� faster than a NumPy implementation).

(2) The red and green continuous curves, which correspond

to the two parallel Cython implementations for lookup-table-

based integration (using LUT and CSR representation).

(3) The group of dashed curves that represent the OpenCL

optimized code running on 12 CPU cores, 60 cores from the

accelerator and GPU (LUT implementation).

(4) The upper dashed black curve, hence the fastest,

corresponding to the CSR sparse matrix multiplication algo-

rithm implemented in OpenCL and running on the Tesla K20

card. It is two times faster than any other implementation: a

4096� 4096 pixel image can be processed in less the 19 ms, i.e.

885 megapixels per second. This gain in performance is

obtained from the collaborative partial reduction of all

threads within a workgroup.
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