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A teaching tool is proposed to help beginner students of crystallography

understand how crystallographic calculations work. Examples of the most

important methods taught in X-ray crystallography courses have been adapted

to a one-dimensional hypothetical structure. All calculations can be carried out

in class with a scientific calculator or by using a simple spreadsheet.

1. Introduction

One of the challenges in teaching crystallography is to provide

a digestible explanation of what goes on inside the very

powerful black boxes that we all currently use for structure

solution and refinement. The student is typically faced with

indigestible mathematical formulae involving triple summa-

tions concerning multitudes of atoms and reflections in direct

or reciprocal space. Stout & Jensen (1968) showed how the

principles of this daunting mathematical landscape could be

clarified by examining the calculation of structure factors and

Fourier series for a hypothetical one-dimensional one-atom

problem. We have taken this approach and extended it to the

Patterson function, direct methods and least-squares refine-

ment. By simplifying the three-dimensional expressions to

analyze a one-dimensional one-atom problem, it is possible to

carry out all relevant calculations with a pocket calculator or

simple spreadsheet in class. In common with Stout & Jensen,

the chosen one-dimensional structure has a unit-cell length of

10 Å, has an inversion center and contains two carbon atoms

at x = �0.1833, as shown below. The hypothetical experiment

was carried out with Cu K� radiation, � = 1.5418 Å.

As this is proposed as a teaching aid, minimal information is

provided to introduce each section, but the transformation of

three-dimensional (3D) to one-dimensional (1D) equations is

given, followed by numerical or partial numerical examples.

For class use, it is simple to remove calculated numbers from

the tables to allow hand calculations as exercises or as

homework. Details of the underlying theory may be found in a

number of standard books or from web-based materials (see

http://iycr2014.org/learn/educational-materials).

2. Bragg’s law

The following table of ‘experimental’ observations may be

generated for the hypothetical structure, along with the

corresponding reciprocal lattice below.
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3. Unit-cell refinement

Given the observed Bragg angles for the series of indexed

reflections shown above, we can obtain the best values for the

unit-cell dimensions using a linear least-squares approach. The

following treatment is numerically equivalent to minimizingP
ðd�2obs � d�2calcÞ

2
.

3D : d�2 ¼ 4
sin2 �

�2
¼
�

h2a�2 þ k2b�2 þ l2c�2 þ 2klb�c� cos��

þ 2hla�c� cos �� þ 2hka�b� cos ��
�

1D : d�2 ¼ 4
sin2 �

�2
¼ h2a�2

For n observations, we can write
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A v b

We may thus solve for v in the following way:

ðATAÞ�1
ðATAÞv ¼ ðATAÞ�1ATb

v ¼ ðATAÞ�1ATb

Using the values of sin �=� and h given above we obtain the

results tabulated below:

4. Patterson function

Taking the square of the structure factor amplitudes given

above, we may calculate a Patterson map. A partial map is

given below. Given the equivalent positions, x, �x, the

Patterson vectors will be at 2x, �2x. From the observed

maximum at 0.36, we obtain x = 0.18 for one carbon atom.

3D : Pðu; v;wÞ ¼
1

V

P
h

P
k

P
l

jFhklj
2 cos 2�ðhuþ kvþ lwÞ

1D : PðuÞ ¼
1

L

P
h

jFhj
2 cos 2�ðhuÞ

PðuÞ ¼
1

L
jF0j

2
þ 2

P12

h¼1

jFhj
2 cos 2�ðhuÞ

� �
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5. Structure factor calculation

If the structure is known, then we can calculate structure

factors from the atomic positions and the scattering power of

the atoms. The following example uses the result of the

Patterson function [x(C1) = 0.18] to calculate the corre-

sponding structure factors and compare them with their

observed values. The comparison of the two sets of values

provides the traditional crystallographic R factor.

3D : Fhkl ¼
P

j

f j exp 2�iðhxj þ kyj þ lzjÞ
� �

1D : Fh ¼
P

j

f j exp
�
2�iðhxjÞ

�

¼
P2

j¼1

f jðcos 2�hxj þ i sin 2�hxjÞ

¼ 2f C cos 2�hx1

R ¼

P
j�FjP
jFOj
¼

P
FO

�� ��� FC

�� ���� ��P
FO

�� �� ¼ 0:108

6. Fourier summation

Using appropriate phases computed as above coupled with the

observed structure factor amplitudes, a Fourier map will have

maxima at the atomic positions. The details of a partial Fourier

summation assuming Friedel’s law are shown in the table

below, followed by a plot of the function. The maximum is

found at x = 0.18.

3D : �ðx; y; zÞ ¼
1

V

P
h

P
k

P
l

Fhkl cos 2�ðhxþ kyþ lzÞ

1D : �ðxÞ ¼
1

L

P
h

Fh cos 2�ðhxÞ

�ðxÞ ¼
1

L
F0 þ 2

P
h

Fh cos 2�ðhxÞ

� �

7. Direct methods

Direct methods for phase determination use probabilities

based on normalized structure factors (E), which are calcu-

lated from F for stationary point atoms. The following sections

define the appropriate E values, show how the origin is

defined, employ the probabilities obtained from �1 and �2

relationships to obtain probable phases for a few reflections,

use symbolic addition to extend these phases, and then use this

subset of phased E values to compute a Fourier map.

7.1. E values

The following expressions remove the dependence of

structure factors on sin �=� and normalize with respect to the

total number of electrons in the structure.

3D : E2
hkl ¼ F2

hkl

	PN
1

f 2
i

1D : E2
h ¼ F2

h

	P2

1

f 2
C
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7.2. Origin definition

As shown in the following table, the phases of reflections

with all even indices are invariant with respect to the choice of

origin, whereas all other parities may change phase in a

predictable manner. Thus a suitable choice of a few phases

may be used to define the origin of the structure.

7.3. Probabilities from R1 and R2 relationships

In the following, H and K represent different values of h

forming triples, whereas in the three-dimensional case the

triples would contain h, k, l. The values of P+ indicate the

probability that the product of the phases is positive. For �1

(involving only pairs of reflections) the most probable result is

highlighted in bold. For �2, only a selection of triples has been

calculated. Again the most probable results have been high-

lighted in bold, plus two more of more modest probability in

bold italics.

�1 Pþ ¼ þ1=2þ 1=2 tanh
�

EHEHE2H

�� ��
 �
=21=2

�

�2 Pþ ¼ 1=2þ 1=2 tanh
�

EHEKEH�K

�� ��
 �
=21=2

�

7.4. Structure solution

Define origin – choose h odd with high E.

h = 5, E = 1.223, phase +.

Insert known phases for the high-probability triples such

that the product is positive, and add symbols for unknowns:

Pþ
�1 3A 3A 6þ 0:947

�2 5þ 11þ 6þ 0:968

3A 11þ 8A 0:975

3A 8A 5þ 0:987

2A 5þ 3A 0:889

2A 8A 6þ 0:868

Thus A = �, or else all would be + (the ‘uranium’ disaster).

Calculate a Fourier map using only the phased E values –

�ðxÞ ¼ ð1=LÞ½E0 þ 2
P

hEh cos 2�ðhxÞ�:

Thus the maximum in the density is again at x = 0.18.
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8. Structure refinement

When atomic positions have been determined by any of the

methods described above, it is common practice to refine this

structure model using nonlinear least-squares methods. Shifts

in atomic coordinates are thus calculated to iteratively obtain

the best fit between the model structure and the experimental

data. The following equations are mathematically equivalent

to minimizing
P
ðjFobsj � jFcalcjÞ

2. All Fs in the following

expressions represent amplitudes.

For the general case

Xall
parameters

i

@Fcalc
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	xi ¼ Fobs � Fcalc
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�

�
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¼
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�

�

�

�
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0
BBBBBB@

1
CCCCCCA

A 	x �F

For one parameter in one dimension

@Fcalc

@x
	x ¼ Fobs � Fcalc

A 	x �F

@F1calc

@x1�

�

�

�
@Fncalc

@x1

0
BBBBBBBB@

1
CCCCCCCCA
ð	xÞ ¼

F1obs � F1calc

�

�

�

�

Fnobs � Fncalc

0
BBBBBB@

1
CCCCCCA

A 	x �F

We may solve for 	x as follows: ðATAÞ
�1
ðATAÞ	x ¼

ðATAÞ
�1

AT�F, thus 	x ¼ ðATAÞ
�1

AT�F.

9. Conclusion

By simple extrapolation of the one-dimensional example

proposed by Stout & Jensen (1968), we have provided a

teaching tool that covers the basics of structure determination

and refinement in a way that should be digestible to a beginner

student of X-ray crystallography.

References

Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination, A
Practical Guide. New York: Macmillan.

teaching and education

J. Appl. Cryst. (2015). 48, 901–905 A. Alan Pinkerton � Why crystal structure analysis works 905

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gj5136&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=gj5136&bbid=BB1

