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Crystal defects induce strong distortions in diffraction patterns. A single defect

alone can yield strong and fine features that are observed in high-resolution

diffraction experiments such as coherent X-ray diffraction. The case of face-

centred cubic nanocrystals is studied numerically and the signatures of typical

defects close to Bragg positions are identified. Crystals of a few tens of

nanometres are modelled with realistic atomic potentials and ‘relaxed’ after

introduction of well defined defects such as pure screw or edge dislocations, or

Frank or prismatic loops. Diffraction patterns calculated in the kinematic

approximation reveal various signatures of the defects depending on the Miller

indices. They are strongly modified by the dissociation of the dislocations.

Selection rules on the Miller indices are provided, to observe the maximum

effect of given crystal defects in the initial and relaxed configurations. The effect

of several physical and geometrical parameters such as stacking fault energy,

crystal shape and defect position are discussed. The method is illustrated on a

complex structure resulting from the simulated nanoindentation of a gold

nanocrystal.

1. Introduction

The microstructure of materials plays a large role in deter-

mining their physical properties (Hull & Bacon, 2001; Hirth &

Lothe, 1968). Even in a small crystallite, elastic strain and

crystal defects are of primary importance, in particular in

small-scale structures. For instance, electron transport prop-

erties and superconductivity (Ying et al., 2013) are strongly

affected by dislocations, and the mechanical response of

crystals is driven by dislocation motion, such that the presence

of a few dislocations and their nature strongly impact the

mechanical properties of submicrometre crystals (Bei et al.,

2008). Tailoring and monitoring the microstructure of mate-

rials is therefore of primary importance in order to guarantee

the best performance of nanodevices.

A variety of experimental techniques are available for

evidencing and identifying crystal defects. Among them,

transmission electron microscopy (TEM) is routinely used to

produce various imaging contrasts of dislocations in real space

by selecting pertinent diffraction vectors, according to well

known invisibility criteria (Wiliams & Carter, 1996). It has

atomic resolution and thus can evidence individual crystal

defects. However, the use of TEM is hindered by strong

experimental constraints on the sample environment and

thickness. These restrictions are relaxed for X-rays, which thus

have a great potential for the study of defects in crystals.
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Elastic diffuse scattering of X-rays (Krivoglaz, 1969),

neutrons (Moisy-Maurice et al., 1981) or electrons (Zhou et al.,

2005) has been used since the 1970s to study crystals

containing defects with displacement fields. Near Bragg posi-

tions (Huang diffuse scattering), it provides valuable infor-

mation on long-range lattice distortions, far away from defects.

Further away from Bragg peaks, asymptotic diffuse scattering

(also known as Stokes–Wilson scattering) can in some cases

provide information on shorter-range lattice distortions

(Dederichs, 1971). However, the signature of defect cores, so-

called Laue scattering (Larson & Schmatz, 1980) or structural

diffuse scattering (Ehrhart et al., 1982), whose extent is limited

in real space, is very diffuse in reciprocal space (Krivoglaz,

1969; Fultz & Howe, 2007) and orders of magnitude weaker

than the Huang diffuse scattering. Despite this limitation, it

has been used successfully on a large number of systems. In

the early 1970s X-ray scattering from single and clusters of

point defects was investigated theoretically (Dederichs, 1973;

Trinkaus, 1972). A few years later, Huang diffuse scattering

from dislocation loops was considered, both experimentally

(Larson & Schmatz, 1980; Larson & Young, 1987) and

numerically (Ehrhart et al., 1982). More recently, the calcu-

lated and measured X-ray diffuse scattering from threading

dislocations in epitaxial GaN layers provided a precise esti-

mation of the dislocation density and the relative proportion

of dislocations (edge or screw type), in good agreement with

already existing destructive methods (Barchuk et al., 2010).

Since neutrons and X-rays probe large volumes of materials

containing many defects of various types, the interpretation of

diffuse scattering usually assumes a model for the dominant

defects and a rather large density of them. In the case of

dislocation loops or stacking faults, diffuse scattering has to be

averaged over all possible loop orientations. Interpreting

correctly the shape and symmetry of the elastic diffuse scat-

tering requires the use of single crystals and careful averaging

procedures. The smaller probe size (�50 nm) achievable with

electron beams has allowed the measurement of electron

diffuse scattering from single defects and individual disloca-

tion loops (Kirk et al., 2005, 2006). Similar studies with X-rays

are now being developed thanks to the progress of X-ray

focusing optics.

In the past decade, the availability of intense coherent

X-ray beams from third-generation synchrotron facilities has

allowed the emergence of a very attractive technique to probe

the microstructure of crystals: coherent X-ray diffraction

(CXD) (Livet, 2007; Sutton, 2008). In Bragg geometry, it

probes the deviation from the perfect crystal lattice and has

been successfully used to characterize elastic strain in isolated

crystals (Beutier et al., 2012) and to show the presence of

crystal defects such as stacking faults (Chamard et al., 2008;

Favre-Nicolin et al., 2010) and dislocation loops (Jacques et al.,

2011). Recently, the same principles have been applied to

electrons, and the first measurements of coherent electron

diffraction have been reported (Huang et al., 2008).

Following Sayre’s principle (Sayre, 1952), CXD has been

turned into an imaging technique known as coherent diffrac-

tion imaging (CDI) (Miao et al., 1999): by oversampling the

diffraction pattern and with the help of iterative phase

retrieval algorithms, the scattering function that encodes the

crystal density and, in the Bragg case, a projection of the

displacement field (Robinson & Harder, 2009; Pfeifer et al.,

2006) can be recovered. In the latter case, the three-dimen-

sional measurement of the reciprocal space in the vicinity of a

Bragg reflection yields a three-dimensional image of the

strained crystal (Pfeifer et al., 2006) with a typical resolution of

a few nanometres and a strain sensitivity better than 10�3

(Watari et al., 2011). Several Bragg reflections can be

combined to recover all the components of the displacement

field (Newton et al., 2010). While this method of character-

ization is now well established for weakly strained systems, its

application to highly strained systems has so far been

successful only for a limited number of cases owing to the

strong inhomogeneity of the phase to be recovered (Minke-

vich et al., 2008; Diaz et al., 2010; Vaxelaire et al., 2010). In its

original version, CDI was restricted to finite objects, because

phase retrieval algorithms need a real-space constraint (such

as a finite support constraint) in order to converge. In recent

years, this limitation has been lifted by the introduction of

ptychography, a scanning version of CDI: with scanning steps

smaller than the beam size, sufficient redundancy is obtained

in the data to allow the reconstruction of extended objects

with the help of dedicated algorithms (Rodenburg & Faulkner,

2004). In Bragg conditions it has been used to reconstruct the

strain field of extended objects (Hruszkewycz et al., 2012;

Godard et al., 2011) and to reconstruct a single dislocation and

its associated strain field (Takahashi et al., 2013); however, the

case of multiple defects is still out of reach.

CDI and ptychography often fail to provide a real-space

reconstruction quickly, while a rapid evaluation of data might

be needed during experiments. This is particularly true in the

case of Bragg ptychography, which requires a considerable

quantity of data. Moreover, for both CDI and ptychography

the definition of a good input for the initialization of the

inversion cycles is of primary importance. There is thus an

interest in understanding diffraction patterns qualitatively and

interpreting them directly in reciprocal space. In particular,

during in situ mechanical loading of a sample (Beutier et al.,

2013; Ren et al., 2014), one would like to witness the first

plastic events by measuring a CXD pattern and interpreting it

on the fly. Here we use this direct approach, which consists in

first modelling the object in real space and second computing

the corresponding reciprocal-space pattern, and try to identify

characteristic signatures of defects that can be observed in

experimental CXD data. While obtaining the displacement

field of the sample in real space provides a more compre-

hensive picture, all the information is present in reciprocal

space, and it should in principle be possible to extract valuable

information on the nature of defects within the sample without

the difficulty of reverting to real space.

So far only a few studies have been carried out on individual

defects with CXD: misfit dislocations in an epitaxial SiGe thin

film (Robinson et al., 2005), Frank dislocation loops in silicon

(Jacques et al., 2011), a single dislocation in silicon (Takahashi

et al., 2013), stacking faults in semiconductor nanowires
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(Chamard et al., 2008; Favre-Nicolin et al., 2010), and dislo-

cations in charge and spin density waves (Le Bolloc’h et al.,

2005; Jacques et al., 2009). In the present paper, focused on

common face-centred cubic (f.c.c.) metals, we demonstrate

that CXD can be used to identify single defects directly from

their signature in the diffraction pattern, provided the Bragg

reflection is well chosen. We establish that, similarly to TEM

(Wiliams & Carter, 1996), the careful choice of diffraction

conditions is essential when it comes to highlighting specific

defects.

We consider first the cases of single defects: a single defect

can induce strong modifications of the diffraction pattern and

therefore a good understanding of these elementary cases is

necessary before investigating crystals with multiple defects.

There are a large variety of crystal defects. We focus here on

the most common ones for f.c.c. crystals. After introducing the

tools and methods used for this study in x2, we start with the

screw and edge dislocations (xx3.1 and 3.2 respectively), then

the stacking faults (x3.3), and finally the Frank and prismatic

dislocation loops (xx3.4 and 3.5, respectively), crystalline

defects commonly introduced in metals by irradiation (Stoller

et al., 1992), rapid thermal treatments (quench) or mechanical

loading (indentation). In x3.6 we investigate the effect of the

size and shape of the crystal, and in x3.7 we discuss the effect

of the position of the defect in the crystal. Finally, we apply our

methodology in x4 to the analysis of a more complex structure

resulting from the simulated nanoindentation of a gold

nanocrystal.

2. Tools and methods

A common method to analyse CXD measurements is to model

the diffracting object with the finite element method (FEM)

and to calculate the CXD pattern by Fourier transforming a

modified electronic density (Diaz et al., 2010; Beutier et al.,

2012). FEM uses a continuous description of matter and thus

has the advantage of allowing the modelling of large crystals.

However, this continuous description is not able to deal with

plasticity, despite a possible correction of the elastic strain by

taking into account the plastic relaxation (Proudhon et al.,

2010). It is therefore not well suited to the study of faulted

crystals. Alternatively, analytical models have been used to

explain the effect of ‘perfect’ crystal defects in CXD patterns.

While such a simple model gives a reasonable description of

defects in electronic crystals (Le Bolloc’h et al., 2005; Jacques

et al., 2009), it does not take into account the dissociation of

dislocations into partials, which can have a strong effect on the

CXD patterns. In this study we use an atomistic description of

matter, in order to accurately model crystal defects. This

comes at the price of the size of the studied objects, but

progress in atomic scale modelling and X-ray focusing optics

has allowed a convergence of the scales of individual objects

that these techniques can study (Schroer et al., 2008). With an

electron beam it is possible to deal with even smaller scales,

and using coherent electron diffraction beams Huang et al.

(2008) were able to extract valuable information on the

surface relaxation of gold nanocrystals of less than 5 nm in

diameter. Here we deal with crystals of typical size of the

order of a few tens of nanometres.

Molecular statics is used to simulate nanocrystals of

common f.c.c. transition metals (aluminium, copper, silver,

gold and nickel), modelled with embedded atom method

(EAM) potentials (Mishin et al., 1999, 2001; Williams et al.,

2006; Grochola et al., 2005) that accurately reproduce elastic

properties as well as surface and stacking fault energies. The

geometry considered here consists of a free-standing equili-

brium-shaped crystallite, which minimizes the surface energy

through a Wulff construction (Winterbottom, 1967) (see

Fig. 1a). Owing to the low surface energy of its {111} and {100}

facets, this geometry exhibits a remarkable stability and is

commonly observed experimentally (Mordehai, Lee et al.,

2011; Sadan & Kaplan, 2006). Since we want to highlight the

effect of defects we do not consider here the case of pre-

strained particles, for instance when a crystallite is in an

epitaxial relationship with a substrate. The reference crystal-

lite considered throughout this study contains 106 atoms and

measures approximately 30 � 30 � 30 nm. The defects are

introduced with defined characters: edge or screw dislocations,

Frank and prismatic dislocation loops, and stacking faults. The

system is relaxed by energy minimization at 0 K using a

quenched dynamical algorithm (Rodney et al., 2005). The large

difference between the stacking fault energies (SFEs) of the

selected materials is expected to strongly influence the char-

acteristics of the crystalline defects (Rodney et al., 2005;

Groves & Kelly, 1963; Smallman & Green, 1964). Under-

standing the influence of this parameter on relaxation and its

corresponding effect on diffraction patterns is one of the goals

of the present study. We also focus on the ability of CXD to

determine the parameters that define a dislocation, its Burgers

vector, line direction, and slip and dissociation planes. The

three-dimensional CXD patterns are calculated by summing

the amplitudes scattered by each atom with its phase factor,

following a kinematic approximation:

IðqÞ ¼

����P
j

expð2i�q � rjÞ

����
2

; ð1Þ

where q is the scattering vector and rj the position of atom j.

Here we discarded the atomic scattering factor as we are

dealing with mono-element materials. The kinematic approx-

imation is justified by the relatively small size of the crystals

studied here and the large perturbation of the perfect lattice

caused by the defects in such small volumes. Equation (1)

assumes a plane wave illumination, which is a reasonable

approximation for most experimental conditions on such small

objects at synchrotron radiation facilities, even with micro-

focusing optics (Mastropietro et al., 2011). Equation (1) also

assumes fully coherent scattering. Absorption and refraction

effects are not considered in this study.

For objects of size L and lattice parameter a, the reciprocal

space must be probed with a step no larger than a/2L in

reciprocal lattice units (r.l.u.) in order to resolve the smallest

possible features in reciprocal space. In the case of 30 nm

crystals of common f.c.c. transition metals, a/2L ’ 0.02 r.l.u.
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(0.006 Å�1 in the case of a 30 nm copper nanocrystal), but we

typically sample the diffraction pattern with a step size of

0.0015 r.l.u. (0.00045 Å�1) to obtain smoother representations.

Given the large number of atoms (�106) and the similarly

large number of points in reciprocal space for which the

calculation is performed (typically 100 � 100 � 100 = 106 for

each pattern), the computation is performed with a graphical

processing unit (GPU), which allows massive parallelism.

Current GPUs that include up to 2500 cores are particularly

efficient for computing large diffraction maps. Equation (1)

was computed with the PyNX code (Favre-Nicolin et al., 2011)

on an NVidia GTX 580 GPU, which achieves a speed of

calculation of up to 4 � 1010 atoms reflections s�1. This is

almost three orders of magnitude higher than with a single

core central processing unit (CPU). For our usual calculations

[sum in equation (1) for 106 atoms and 106 points in reciprocal

space], the calculation of the three-dimensional CXD pattern

around a Bragg position takes about 25–30 s. Such calculations

can easily be performed during experiments to help data

evaluation.

In the present study, all the calculations are carried out in

the vicinity of Bragg positions g defined by their Miller indices

hkl. g is a particular case of the generic scattering vector q, and

in the following it will be referred to as the diffraction vector.

The effect of dislocations on CXD patterns arises from their

corresponding atomic displacement field u(r) with respect to

the lattice of the perfect crystal. A commonly reported

method in electron microscopy is to use a diffraction vector

parallel to the dislocation line (Wiliams & Carter, 1996). The

invisibility condition g �b = 0 (Wiliams & Carter, 1996; Head et

al., 1967; Steeds, 1966), where b is the Burgers vector of the

dislocation, is also extensively employed in this study, in

particular to show the effect of dissociation. According to

equation (1), it is clear that crystal defects distort the

diffraction pattern when they produce a displacement field

that is not perpendicular to the diffraction vector g, and

conversely one can expect a maximal effect when the main

direction of the displacement field is parallel to g. However, in

most cases, the detailed distortion cannot be predicted easily:

already in infinite or semi-infinite isotropic materials the

displacement field can have a complex analytical form, and the

situation is further complicated by the relaxation of the

system, which is affected by the interatomic potentials and the

tension-free mechanical equilibrium conditions at the free

surfaces. All these considerations explain the need to rely on

an atomistic description with reliable interatomic potentials

for a more complete and accurate description of the problem.

3. Simulations on f.c.c. nanocrystals

Fig. 1 illustrates a 30 � 30 � 30 nm perfect (strain and defect-

free) copper nanocrystal in Wulff geometry after relaxation

(Fig. 1a) and the corresponding three-dimensional intensity

map of its reciprocal space calculated according to equation

(1) (Fig. 1b). In the following it will be referred to as the

reference nanocrystal.

It is important to notice that the assumption of a strain-free

and defect-free object for the reference nanocrystal is only

valid in the initial state, i.e. before the nanocrystal has been

relaxed by energy minimization. Upon relaxation a contrac-

tion of the surface atoms towards the bulk can be observed

(Huang et al., 2008). As illustrated in Fig. 1(a), the motion of

the surface atoms is strongly correlated to their coordination

number, explaining why such high displacement is observed

for corner and edge atoms. Additionally, since the {100}

surface atoms are less coordinated than the {111} surface

atoms, the {100} facets tend to contract more towards the bulk

than the {111} facets. Coherent X-ray diffraction is very

sensitive to the atomic structure of the nanocrystal surfaces,

and characteristic features due to the contraction of nano-

crystal facets during relaxation can be observed on the

calculated CXD patterns. They also depend on the hkl indices

of the Bragg reflection. However, we will see in the next

section that the introduction of a single defect within the

crystallite produces an even stronger signature on CXD

patterns. As a result, in the case of defective nanocrystals, even

if the contraction of surface atoms still has some effects on the

calculated diffraction patterns, they can be assumed negligible

in comparison to the features associated with the defect and its

corresponding displacement field. Since we deal only with

defective nanocrystals in the next sections, the effect of the

displacement of surface atoms and the corresponding surface

strain is not further addressed in this work.

If we were dealing with a perfect crystal, the CXD patterns

around all allowed Bragg reflections would be identical to the

CXD pattern at the origin of reciprocal lattice. Here the

surface relaxation is weak enough that the CXD patterns still

display essentially the same features, which can be observed

for instance around g = 220 (Fig. 1c). The intensity is maximal

at the Bragg position. The diffraction pattern forms streaks

along the {111} and {100} directions due to the crystal facets,

and these streaks are fringed because of the finite size of the

crystal. We call I0 = N2, where N is the number of atoms in the

nanocrystal, the intensity scattered at the exact Bragg position

by the perfect crystal. In the following we will use this refer-

ence intensity to quantify the effect of crystal defects. For the

reference nanocrystal all the calculations around a given

Bragg reflection are performed in a reciprocal space volume of

0.045 � 0.045 � 0.0675 Å�1. Since all the calculations

presented in x3 are performed on crystals whose size and

number of atoms are similar to the reference crystal, the

investigated area of reciprocal space in x3 is always the same

and equal to 0.045 � 0.0675 Å�1 [area within the black

rectangle surrounding a CXD pattern, such as Fig. 1(c)].

Consequently, in order to simplify the figures, axes are not

shown on the reciprocal space figures. Additionally, the

dynamical range of intensities is limited to 4.2 decades, which

is typical for a CXD experiment. Similarly, the intensity

dynamical range is kept to the same value all through x3.

3.1. Screw dislocations

For a screw dislocation, the displacement field u(r) is

parallel to the dislocation line and the Burgers vector b, such
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that u is proportional to b and g �b = 0 is an invisibility

condition for a perfect screw dislocation. However, this

condition is not strictly fulfilled in the vicinity of g (q 6¼ g),

such that a weak distortion of the Bragg spot cannot be

excluded. This distortion could lead to strong diffuse scat-

tering in the case of many defects measured with an inco-

herent X-ray beam.

The screw dislocation simulated here has a Burgers vector

b = 1
2[110]. It is introduced at the centre of the nanocrystal with

its associated displacement field in an infinite isotropic

medium: ux = u ||b = b�/2�. The initial configuration is relaxed

by quenched molecular dynamics simulations to get the

relaxed positions and the corresponding atomic displacement

field. Figs. 2(a) and 2(c) show the ux component of the atomic

displacement field, i.e. parallel to the Burgers vector and line

direction, for both the initial and the relaxed configuration: it

is exactly equal to �b/2 in the initial configuration, while it

increases during the relaxation process, partly because of the

dissociation into partial dislocations but also because of the

contraction of surface atoms described in the previous section.

In Figs. 2(b) and 2(d), atoms are colour coded according to

their coordination number and only the defective, corner and

edge atoms are shown. The dislocation dissociates in both

{111} planes that contain the Burgers vector, i.e. the (111) and

(111) planes, and thus adopts a nonplanar configuration

(Fig. 2d). At the end of the relaxation process two sets of two

partial Shockley dislocations (Hull & Bacon, 2001) are stabi-

lized within the nanocrystal, with respective Burgers vectors of
1
6[211] and 1

6[121] in the (111) plane and 1
6[211] and 1

6[121] in the

(111) plane. This crossed configuration is more energetically

favourable than the configuration with coplanar stacking

faults because of the negative energy of the intersecting node

(Rasmussen et al., 1997). The ux component of the atomic

displacement field is exactly equal to b/4 within the (111)

stacking fault ribbon. The contraction of the surface atoms

towards the bulk, which is particularly high for corner and

edge atoms owing to their low coordination number, is similar

to the case of the defect-free crystal.

The invisibility criterion g �b = 0 is selected to show the

effect of dissociation. With such a diffraction condition, when

the dislocation is not dissociated (Fig. 2e), the Bragg peak is

undistorted compared to that of a perfect crystal. This is not

the case for the dissociated dislocation, which yields a splitting

of the Bragg peak along b (Fig. 2f). For low h, k, l values

(typically for h + k + l < 4) no splitting can be seen, but the

elongation of the Bragg peak along b is clearly visible. This

demonstrates that dissociation can be unambiguously shown

using CXD. For this particular diffraction vector, interference

between the faulted planes and the facets also induces strong

distortions in the fringes along the [111] and [111] directions. It

is well known that stacking faults create streaks along the

normal of their plane, but here the effect is modulated by the

form factor of the crystal. A closer look at the intensity profile

along the [111] direction (Fig. 2g) reveals that the fringe

intensity decreases steadily as we move away from the Bragg

position in the case of a perfect dislocation, while the intensity

profile is more erratic in the case of a dissociated dislocation,

with a drop of intensity every two fringes. The doubling of the
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Figure 1
(a) Defect-free gold nanocrystal of Wulff geometry and size 30 � 30 � 30 nm. The colour scale encodes the magnitude of displacements of the surface
atoms after relaxation. (b) Three-dimensional intensity map of the corresponding reciprocal space. (c) Zoom on the Bragg reflection g = 220. The area of
the reciprocal space is kept to the same value in all figures and is equal to 0.045 � 0.0675 Å�1.
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Figure 2
Screw dislocation in a 30 � 30 � 30 nm copper crystal with Wulff geometry. (a) and (c) The colour scale shows the ux component of the atomic
displacement field for both initial and relaxed configurations. (b) and (d) Perfect screw dislocation with b = 1

2[110] and dissociation of the perfect
dislocation in two sets of Shockley partials in the (111) and (111) planes. Only the defect, edge and corner atoms are shown. Calculated CXD patterns
with g �b = 0 (g = 224) for a perfect (e) and dissociated dislocations ( f ). (g) Intensity along [111] (log scale). Calculated CXD patterns with g || b (g = 220)
for a perfect (h) and dissociated dislocations (i). ( j) Intensity along [001]. Perfect (k) and dissociated dislocations (l) and intensity along [001] (m) with
g || bp (g = 242). Perfect (n) and dissociated dislocations (o) and intensity (p) along [110] for general g (g = 200). The area of the reciprocal space is kept to
the same value in all figures and is equal to 0.045 � 0.0675 Å�1.



fringe periodicity can be explained by the position of the

stacking fault at the centre of the crystallite, which implies that

the distance between two (111) facets is twice the distance

between a (111) facet and the (111) faulted plane. As the

extent in reciprocal space is inversely proportional to that in

real space, the period of the fringes produced by the stacking

fault fringes is therefore twice the period of the fringes

induced by the crystal facets.

The case g ||b shown in Figs. 2(h) and 2(i) for a perfect and a

dissociated dislocation, respectively, exhibits a very char-

acteristic signature on the CXD pattern: at the Bragg position,

the intensity vanishes (completely for the perfect dislocation,

almost completely for the dissociated dislocation). Instead we

observe a ring-shaped distribution of intensity around the

Bragg position. For a perfect screw dislocation at the centre of

an isotropic material, the symmetry would impose a uniaxial

distribution of intensity with axis parallel to the dislocation

line. Here the anisotropy of the elasticity tensor slightly

distorts the perfect ring (Fig. 2h). The ring size is strongly

dependent on the Miller indices of the reflection and on the

crystal size. For g = 220 and a 30 � 30 � 30 nm crystallite, the

ring diameter is d = 0.01 Å�1. Micro- or nanocrystals observed

experimentally are often one order of magnitude larger

(Beutier et al., 2012; Mordehai, Lee et al., 2011), resulting in a

ring diameter ten times smaller in reciprocal space. Our ability

to resolve such features experimentally will be discussed in the

last section. For a dissociated dislocation (Fig. 2i), a ring-

shaped pattern is still obtained, but the distribution of inten-

sity in the ring is more contrasted and the intensity at the

centre does not completely vanish anymore (it is in fact not

strictly zero in the case of the perfect dislocation, but it

increases by a factor of 25 when the dislocation dissociates).

Owing to the dissociation into partials, the strain around the

dislocations is inhomogeneous, but one can assume that this

inhomogeneity does not produce a sufficient effect to affect

the shape of the CXD pattern. However, the effect of disso-

ciation can clearly be seen in the distribution of intensity on

the CXD pattern. A tetragonal distribution, typical of the

[110] zone axis, is observed in both cases, but in the case of the

perfect dislocation it looks almost hexagonal, reflecting the

crystal shape projected along the dislocation axis, since the

latter induces no strong asymmetry. In the dissociated case, the

symmetry of the defect structure induces a significant change

of distribution and its anisotropy dominates the symmetry of

the crystal shape. For the latter, the maxima of intensity are

along [001], which is a good indication of the anisotropy of the

strain along the [001] and [110] axes. The intensity profile

along [001] (Fig. 2j) reveals an increase of the maxima of

intensity of about 20%, while the intensity of the maxima

along [110] decreases by 25%.

When g is parallel to a partial Burgers vector bp (Figs. 2k

and 2l) the resulting diffraction pattern for a perfect disloca-

tion is very similar to the case g ||b, with a ring-shaped pattern

oriented along b. After dissociation, a ring-shaped pattern is

still observed, but now oriented along the partial Burgers

vector bp. For these particular diffraction conditions, we can

infer that the Shockley partial is seen as a single perfect

dislocation with a signature independent of the other partial

and of the stacking fault.

Finally, for a general g (Figs. 2n and 2o), a perfect screw

dislocation still produces a ring-shaped diffraction pattern

with an axis along b. A relaxed system yields a distorted and

disoriented ring-shaped pattern. Under such diffraction

conditions, all four Shockley partials contribute to the

diffraction pattern. However, unlike the particular cases

detailed above, the ring axis is dependent on g but not directed

along any particular direction.

The screw dislocation is therefore a relatively simple case to

understand. For a perfect dislocation, only two cases are

possible. When the extinction condition g �b = 0 is fulfilled, the

dislocation remains invisible and the resulting pattern is

similar to that of a perfect crystal. For any other diffraction

vector, the characteristic signature of a perfect dislocation is a

ring-shaped pattern oriented along b. Analysis of CXD

patterns produced by a dissociated dislocation is not as

straightforward, but it appears very clear that the diffraction

conditions where g is perpendicular to b or parallel to a

potential bp are best suited to show the effect of dissociation.

For diffraction vectors yielding a ring-shaped pattern, the

anisotropic distribution of intensity and the increase of the

maximum of intensity (by approximately 20%) and of the

intensity in Bragg position are also good indicators of a

dissociation.

3.2. Edge dislocations

Now we introduce an edge dislocation at the centre of the

reference crystal. The Burgers vector is b = 1
2[110], which is by

definition perpendicular to the dislocation line direction t =

[112]. Similarly to a perfect screw dislocation, an edge dislo-

cation dissociates during relaxation into two Shockley partials,

but the dissociation is now planar and constrained to the (111)

slip plane of the dislocation (Figs. 3c and 3d).

The analysis of the CXD pattern is less straightforward in

this case than for a screw dislocation because of the strain

component normal to the slip plane. We use Cartesian coor-

dinates x, y, z so that the z axis is along the dislocation line t

and the x axis is along the Burgers vector b (the y axis is along

a third direction b � t). In the approximation of an isotropic

and infinite material, the symmetry of the problem constrains

the displacement field in the xy plane and it is independent of

z. Furthermore, an analytical expression can be derived (Hull

& Bacon, 2001; Hirth & Lothe, 1968):

ux ¼ u k b ¼
b

2�
tan�1 y

x
þ

1

2ð1� �Þ

xy

ðx2 þ y2Þ

� �
; ð2Þ

uy ¼ u k ðb� tÞ

¼
b

8�ð1� �Þ
ð1� 2�Þ logðx2 þ y2Þ þ

ðx2 � y2Þ

ðx2 þ y2Þ

� �
; ð3Þ

where � is the Poisson ratio. This analytical displacement field

is injected into the perfect nanocrystal as the initial state of the

edge dislocation before relaxation. The ux component of the

atomic displacement field is shown in Figs. 3(a) and 3(c) for
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Figure 3
Edge dislocation in a 30 � 30 � 30 nm copper crystal. (a) and (c) ux component of the atomic displacement field for both initial and relaxed
configurations. (b) and (d) Perfect edge dislocation with b = 1

2[110] and t = [112] and dissociation of the perfect dislocation into two Shockley partials in
the (111) plane. Only the defect, edge and corner atoms are shown. Calculated CXD pattern for a perfect (e) and dissociated ( f ) dislocations. (g)
Intensity along [111] for perfect and dissociated dislocations (log scale) with g �b = 0 and g � (b � t) = 0 (g = 224). Perfect (h) and dissociated dislocations
(i) and intensity along [111] for both cases ( j) with g �b = 0 and g � (b � t) 6¼ 0 (g = 224). Perfect (k) and dissociated dislocations (l) and intensity along
[111] for a defect-free crystal and dissociated dislocation (log scale) (m) with g || b (g = 220). Perfect (n) and dissociated dislocations (o) and intensity
along [111] for both cases (p) with g �bp (g = 242). The selected area of the reciprocal space is kept to the same value in all figures and is equal to 0.045�
0.0675 Å�1.



the initial and relaxed configurations, respectively. Similarly to

the case of the screw dislocation, it is equal to �b/2 for a

perfect edge dislocation. Upon relaxation it slightly increases

owing to the dissociation into partials and to the contraction of

surface atoms. For atoms within the (111) stacking fault ribbon

ux = b/4. From equations (2) and (3), one can easily under-

stand that complete invisibility of an edge dislocation may

only be achieved when g �b = 0 and g �(b� t) = 0, satisfied only

if g is parallel to the dislocation line.

As illustrated in Fig. 3(e), when the diffraction vector fulfils

this invisibility condition, the dislocation indeed remains

invisible and the resulting CXD pattern is similar to that of a

perfect crystal. As revealed by the intensity profile along the

[111] direction, dissociation of the dislocation (Fig. 3g) results

in the appearance of intense fringes along [111] with twice the

period of the crystal finite-size fringes. As shown in the

previous section, this is clear evidence of the presence of a

stacking fault in the (111) plane located at the centre of the

crystallite. In the vicinity of g = 224, the invisibility condition is

not strictly fulfilled, resulting in a large decrease of the

maximum intensity of the central spot (around 35%, Fig. 3f).

However, in such diffraction conditions, only displacements

parallel to the dislocation line can be detected. They are not

strictly equal to zero when the dislocation is relaxed, but they

remain very limited and the effect produced by the dissocia-

tion on the calculated CXD pattern remains relatively weak.

The conditions g �b = 0 with g not parallel to t are more suited

to show the effect of the dissociation. In these conditions

(Fig. 3h), a perfect dislocation yields a CXD pattern elongated

along b with a strong decrease of intensity of the Bragg spot

(40% of the perfect crystal), consistent with the fact that this

diffraction condition is sensitive to the displacements in the

planes perpendicular to the dislocation line (Hull & Bacon,

2001; Wiliams & Carter, 1996). The CXD pattern obtained for

the dissociated dislocation (Fig. 3i and 3j) is very similar to

that of a dissociated screw dislocation, with a split of the Bragg

peak along b and fringes along the [111] direction associated

with the (111) stacking fault (Fig. 3j). Similarly to the screw

dislocation, the split of the Bragg peak is not visible for low h,

k, l values (h + k + l < 4), which only induce an elongation

along b. The correlation between the intensity and spacing of

Bragg spots and the crystal SFE is addressed in more detail in

x3.3.

When g ||b (Figs. 3k and 3l), as in the case of a screw

dislocation, an edge dislocation produces a strong and char-

acteristic signature, but the effect of dissociation is not as

significant. Close to the Bragg position one can notice the

elongation of the Bragg spot intensity along b for perfect and

dissociated dislocations. The effect of dissociation is reflected

by an increase of the Bragg spot intensity by a factor of two

during relaxation. Both perfect and dissociated dislocations

also induce intense fringes along the [111] direction, with an

apparent doubling of the fringes’ period. This doubling of the

period has also been reported by Wilson (1952, 1955) and

Gailhanou & Roussel (2013) in the case of a perfect screw

dislocation. It is not related to a (111) stacking fault since it is

observed for both perfect and dissociated dislocations. For

g ||bp (Figs. 3n and 3o), similar fringes along [111] and an

elongation along b can be observed for both perfect and

dissociated dislocations. A more surprising result is the

vanishing intensity at the exact Bragg peak position, probably

related to the �/2 phase jump induced by the dislocation for

the 242 reflection. As in the g ||b case, the intensity of the

central spots increases by a factor of three during relaxation.

For any other selected diffraction vector, the calculated

CXD pattern results in two clear and identifiable effects: a

splitting or at least an elongation along b and intense fringes

along [111] (i.e. the direction perpendicular to the dissociation

plane).

3.3. Stacking faults

Similarly to dislocations, stacking faults induce a global shift

of one part of the crystal with respect to another and thus

appear as phase defects in diffraction. But, while dislocations

induce a long-distance heterogeneous strain field, elastic strain

caused by a stacking fault remains limited to the vicinity of the

fault (Hirth & Lothe, 1968). According to equation (1), CXD

is sensitive to the displacement field, even in the absence of

elastic strain, and in fact the stacking fault is the case that can

produce the maximum interference contrast. The relatively

simple signature on CXD patterns combined with their

frequent occurrence in nanowires with low SFE (one-dimen-

sional systems) has already motivated numerous studies of

such materials using CXD (Chamard et al., 2008; Favre-Nicolin

et al., 2010; Jacques et al., 2013): it has been used to evaluate

the number of stacking faults in an InSb pillar (Jacques et al.,

2013) and to get useful information about the fault sequence

in a GaAs/GaP nanowire (Favre-Nicolin et al., 2010). While

CXD has been mostly used to study systems with no or very

few crystal defects, these studies demonstrate that it can be

used efficiently on systems with multiple defects. This opens

the perspective to apply the technique to a wider range of

systems, even if the case of multiple defects is so far limited to

one-dimensional systems. In the present paper we deal with

the case of stacking faults in three-dimensional systems.

Stacking faults are fairly common in f.c.c. metals and usually

occur in {111} crystallographic planes.

Let us start with the simple case of a stacking fault

completely separating the crystal into two parts either side of a

(111) plane. The phase jump �’ across the stacking fault can

be expressed as

�’ ¼ 2�
h

k

l

0
@

1
A � n111

3

1

1

1

0
@

1
A ¼ 2�

3
n111ðhþ kþ lÞ; ð4Þ

where n111 is the number of faulted planes. If it is a multiple of

3, �’ is a multiple of 2� for any Bragg reflection and it is

impossible to show the fault in diffraction, unless the volume

of the faulted part becomes comparable to that of the rest of

the crystal.

A stacking fault is created by the insertion or the removal of

a close-packed {111} layer in the crystal. The removal of a

plane is called an intrinsic stacking fault, whereas the insertion
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of a layer is called an extrinsic stacking fault. If the stacking

fault results from the dissociation of a perfect dislocation, it is

necessarily intrinsic (n111 = 2). Close to a Bragg position, the h,

k, l values can be approximated by the integer values of the

Bragg position. Depending on the selected diffraction vector,

only two cases can occur. When h + k + l = 3n, the resulting

phase jump is a multiple of 2� and the stacking fault remains

invisible (Fig. 4b). This invisibility condition can be exploited

to hide a particular type of stacking fault and instead highlight

elastic strain and other defects (Favre-Nicolin et al., 2010).

When h + k + l 6¼ 3n, the stacking fault causes a phase shift of

�2�/3 between the two parts of the crystal, inducing a strong

signature in the diffraction pattern. The intensity in the vici-

nity of the Bragg position g can then be expressed as follows:

Iðq ’ gÞ ’ jF1ðqÞ þ F2ðqÞ expð2i�=3Þj2; ð5Þ

where F1 and F2 are the structure factors of the crystal parts on

either side of the stacking fault. At the exact Bragg position,

F1 and F2 are essentially proportional to the respective volume

fractions x and 1 � x of unfaulted material either side of the

stacking fault and

IðgÞ ¼ x2 þ ð1� xÞ
2
� xð1� xÞ: ð6Þ

Destructive interference is maximal when the two volumes are

equal: the intensity is then a quarter of the intensity diffracted

by the perfect crystal, which means that the best contrast is

obtained when the stacking fault is located in the middle of the

volume.

The complete picture of the vicinity of the Bragg position

(q ’ g) is obtained with PyNX calculations performed on our

model crystal after introduction of a traversing stacking fault

passing through the centre (Fig. 4a). It confirms that the

stacking fault is invisible on the 111 reflection (h + k + l = 3n)

(Fig. 4b), while it has a clear signature on the 111 reflection

(h + k + l 6¼ 3n) (Fig. 4c). The intensity at the exact 111 Bragg

position roughly equals one-quarter of the intensity at the

exact 111 Bragg position, as predicted above. The most char-

acteristic signature of the stacking fault is the reinforcement of

the intensity on the streak along [111], with a modification of

its fringes, while fringes along other directions are barely

changed. Here the modification of the fringes is essentially a

doubling of the period, which is a consequence of the stacking

fault being in the middle of the crystal.

Regarding experimental matters, it is also important to be

able to distinguish between intrinsic and extrinsic stacking

faults. It is a well known result that the elastic diffuse scat-

tering from dislocation loops is sensitive to the vacancy

(presence of an intrinsic stacking fault) or interstitial

(presence of an extrinsic stacking fault) character of a partial

dislocation loop (Ehrhart et al., 1982). Here we perform the

calculation around the 220 reflection (h + k + l 6¼ 3n). For an

intrinsic stacking fault, as illustrated in Fig. 4(b), the satellite

spot (weakest part of the split Bragg peak) is located in the

lower q values with respect to the Bragg peak position. For an

extrinsic stacking fault (not shown here), this same satellite

spot is located in the positive q values with respect to the

Bragg position. These results are in good agreement with

previous calculations on dislocation

loops and stacking faults (Ehrhart et

al., 1982; Nordlund et al., 2000).

Traversing stacking faults are not

the only common case in nanocrystals:

as seen above, dissociated dislocations

can stabilize in ribbon-shaped stacking

faults, because of the competition

between SFE and repulsive forces

between the partials. It is interesting to

see if one can get an idea of the

extension of a single stacking fault

from a CXD measurement. For a given

material, the ability of a perfect dislo-

cation to dissociate and produce a

stacking fault is influenced by two

main parameters: its stacking fault

energy �s and its shear modulus �. The

dissociation length of a dislocation is

controlled by the adimensional mate-

rial parameter �s/�bp, where bp is the

modulus of the partial Burgers vector

of the dislocation (Chassagne et al.,

2011). Materials with a low �s/�bp

value have widely dissociated disloca-

tions with a high constriction stress,

while the occurrence of dissociated

dislocations or stacking faults is less
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Figure 4
(a) (111) Stacking fault in a silver crystal with a Wulff geometry induced by the complete relaxation
of a perfect edge line dislocation. (b) Corresponding CXD pattern when g fulfils the extinction
conditions, i.e. h + k + l = 3n (g = 111). (c) The same CXD pattern when h + k + l 6¼ 3n (g = 111). (d)
Intensity along [111] for both cases (log scale). The selected area of the reciprocal space is kept to the
same value in all figures and is equal to 0.045 � 0.0675 Å�1.



frequent in materials with a high �s/�bp. Calculations were

performed on five different f.c.c. metals with similar size and

shape (Fig. 5, gold and nickel are not shown) and SFEs ranging

from 17.8 mJ m�2 (silver) to 149.3 mJ m�2 (aluminium)

(Cockayne et al., 1971). Values given by EAM potentials and

experiments are reported in Table 1. They are in very good

agreement, except for the case of gold, for which the discre-

pancy between EAM and experimental values is close to 25%.

We use the SFE given by the EAM potentials to calculate the

parameter �s/�bp, whose values are reported in Table 1. As

illustrated in Figs. 5(a)–5(c), the dissociation length obtained

upon relaxation (1600 relaxation steps) decreases consistently

when �s/�bp increases: the dislocation is widely dissociated in

silver, which has the lowest �s/�bp, whereas the dissociation

remains very limited in aluminium (highest �s/�bp).

When looking at the CXD patterns (Figs. 5d–5f) and the

intensity profile along [110] (Fig. 5g), one observes the inverse

phenomena: a narrow stacking fault induces a large splitting

distance (i.e. the distance between the maxima of intensity of

the split Bragg peak) with intense maxima of intensity, a low

minimum of intensity at the Bragg position and a large split-

ting distance of the Bragg peaks (Figs. 5d–5g), whereas a wide

stacking fault induces a weak splitting, with low maxima of

intensity, low intensity drop in Bragg position and a small

splitting distance of the Bragg peaks. One can also notice the

increasing intensity of the [111] fringes and the decreasing

distance between the maxima of intensity along [110] as the

stacking fault spreads into the crystallite. Copper, gold and

nickel have similar �s/�bp values and the resulting dislocation

dissociation lengths upon relaxation for these three materials

are hence rather close. The case of nickel is quite interesting

since it has an SFE similar to that of aluminium; however, its

high shear modulus allows it to attain a dissociation length

equivalent to that obtained for copper. This illustrates the

influence of both parameters on the occurrence of stacking

faults. Calculations of CXD patterns for nickel and gold (not
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Figure 5
Dissociated edge dislocations in a 30� 30� 30 nm crystal and corresponding displacement field (ux component) for aluminium (a), copper (b) and silver
(c) crystals with a Wulff geometry. (d)–( f ) Corresponding CXD patterns with g �b = 0 (g = 224). (g) and (h) Intensity profiles along [110] and [111]
(logarithmic scale). The selected area of the reciprocal space is kept to the same value in all figures and is equal to 0.045 � 0.0675 Å�1.



shown here) logically lead to results very similar to the case of

copper. Regarding experimental matters, it is then a safe

assumption to expect the same kind of structural defects in

these three f.c.c. metals, and as a result the calculations

presented for copper in this study can also be used as a

reference for experimental work on gold or nickel crystallites.

From these first conclusions, some complementary calcula-

tions on the relaxation of systems with low SFE such as silver

were performed. During the first steps of relaxation (Figs. 6a

and 6d), the stacking fault remains rather narrow. For g� b = 0,

both partials and the stacking fault display a strong signature

on the CXD pattern, with, respectively, a splitting of the Bragg

peak along b and intense fringes along [111]. After 3000

relaxation steps, the stacking fault continues to spread and the

splitting of the Bragg reflection cannot be observed any

longer, while the [111] fringes become more intense. As the

stacking fault extends, the intensity at the Bragg position

increases, while the global maximum of intensity steadily

decreases, and so does the splitting of the Bragg reflection

(Figs. 6b, 6e and 6g). At this stage of relaxation, the inho-
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Figure 6
Relaxation for a crystal with a low SFE (silver). ux component of the atomic displacement after 900 relaxation steps (a), 3000 relaxation steps (b) and full
relaxation (c). (d)–( f ) Corresponding CXD pattern for g �b = 0 (g = 224). (g)–(h) Intensity along [110] and [111] (log scale). The selected area of the
reciprocal space is kept to the same value in all figures and is equal to 0.045 � 0.0675 Å�1.

Table 1
SFE of five f.c.c. metals, from EAM and experiments, and their �s/�bp parameter, the corresponding dissociation length in real space, as obtained after
1600 relaxation steps, splitting distance (see text for more details) and maximum intensity in reciprocal space for g = 224.

Ag Cu Au Ni Al

�s (mJ m�2): EAM 17.8 (Williams et al.,
2006)

44.7 (Mishin et al.,
2001)

42.6 (Grochola et al.,
2005)

125.2 (Mishin et al.,
1999)

149.3 (Mishin et al.,
1999)

�s (mJ m�2): experiments 16 (Hirth & Lothe,
1968)

45 (Westmacott &
Peck, 1971)

32 (Jenkins, 1972) 125 (Balluffi, 1978) 144 (Carter & Ray,
1977)

�s/�bp (�10�3): EAM 3.5 7.4 9.5 11.7 33.5
Average dissociation length (Å) 85 37 47 29 18
Splitting distance (�10�3 Å�1) 6.67 15.1 12.9 16.5 17.1
Maximum intensity 1.87 � 1011 2.25 � 1011 2.25 � 1011 2.21 � 1011 2.67 � 1011



mogeneous strain around the dislocation induces a very low

maximum of intensity on the CXD pattern (Figs. 6e and 6g).

During the final steps of relaxation, the stacking fault

continues to spread until it emerges on one of the crystal

facets and the signature of the Shockley partials (i.e. splitting

of the Bragg peak along b) completely vanishes, while the

intensity of the [111] fringes increases with the width of the

stacking fault (Fig. 6h). One can also notice the sharp increase

of the maximum intensity which coincides with the disap-

pearance of the Shockley partials from the nanocrystal. One

can assume that the rather large inhomogeneous strain around

the partials during the dissociation (Figs. 6a and 6b) results in

a drop of intensity during the relaxation. As the partials leave

the crystal, the strain around the stacking fault is weak and

with a very limited extent (restrained to the two faulted planes

of the intrinsic stacking fault) (Fig. 6c), resulting in a larger

intensity close to the Bragg position.

3.4. Frank loop

A Frank partial dislocation is formed as the boundary of a

fault formed by inserting or removing a close-packed {111}

layer of atoms in a perfect crystal. Geometrically, the Frank

intrinsic stacking fault is identical to the intrinsic fault

produced by the dissociation of a perfect dislocation, except

that the bounding partial is different. An intrinsic Frank loop

is often called a vacancy Frank loop, whereas an extrinsic

Frank loop can be referred to as an interstitial Frank loop. The

Burgers vector of a Frank loop is perpendicular to the {111}

fault plane, with a magnitude equal to the interplanar spacing,

i.e. b is of type 1
3h111i. Here, an extrinsic Frank loop with b =

1
3[111] is introduced in a 30 � 30 � 30 nm silver nanocrystal

with a Wulff shape (Fig. 7a).

During relaxation, the Frank partial dissociates into a low-

energy, so-called stair-rod, dislocation (Hull & Bacon, 2001)

and a Shockley partial on an intersecting {111} plane according

to a reaction of the type

1
3 ½111� ¼ 1

6 ½101� þ 1
6 ½121�: ð7Þ

The hexagonal Frank loop with Burgers vector 1
3[111] can

dissociate to produce a stair rod along each edge and a

Shockley partial on the three inclined {111} planes as illu-

strated in Fig. 7(a).

Calculations of diffuse scattering performed on perfect

(prismatic) and partial (Frank) dislocation loops in f.c.c.

metals (Ehrhart et al., 1982) and semiconductors (Nordlund et

al., 2000) have already provided a very accurate picture of the

scattering that can be expected from such defects. The Huang

diffuse scattering of perfect and Frank

dislocation loops has also been studied

experimentally by Larson & Schmatz

(1980) and Larson & Young (1987).

They have demonstrated that Huang

diffuse scattering can be used to deter-

mine the vacancy or interstitial char-

acter of a loop, to estimate the relative

proportion of this type of loop in a

given population, and to estimate their

size. It is shown by Nordlund et al.

(2000) that the general features

observed in diffuse scattering patterns

are mostly independent of the choice of

the Bragg peak. We demonstrate in the

following that in the case of CXD, the

choice of the Bragg reflection is essen-

tial to show the characteristic signature

of a Frank or a prismatic dislocation

loop.

A Frank loop is a pure edge disloca-

tion since the Burgers vector is always

perpendicular to the dislocation line.

Contrary to the case of a straight edge

dislocation there is no diffraction

condition where g �u = 0 for all the loop

edges [i.e. g �b = 0 AND g �(b � t) = 0].

This particular case can be used to

distinguish a Frank loop from a straight

dislocation when analysing CXD

patterns.

As in the case of a straight dislocation

line (x3.2), g �b = 0 is a partial extinction
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Figure 7
(a) Relaxed Frank dislocation loop with b = 1

3[111] in the centre of a 30 � 30 � 30 nm Wulff silver
crystal. The colour code represents the coordination number, such that only the defective atoms and
nanocrystal edges are shown. Calculated CXD patterns when g ||bSR (g = 220) (b), when g || bS (g =
224) (c), when g ||b (g = 111) (d) and when g �b = 0 (g = 220) (e). The selected area of the reciprocal
space is kept to the same value in all figures and is equal to 0.045 � 0.0675 Å�1.



condition, since it ignores the part of the displacement parallel

to the Burgers vector, such that little perturbation is observed

around these reflections (Fig. 7e). The other part of the

displacement field and the relaxation in stair rods and

Shockley partials are responsible for the weak reduction of

intensity of the central peak (85% of the perfect crystal) and

the weak distortions of the pattern visible in Fig. 7(e).

The case g ||b at the end of the relaxation (Fig. 7d) also

produces some interesting results, with a drastic reduction of

intensity of the central spot (30% of the perfect crystal) and

the appearance of a satellite spot along the [111] direction.

This reduction in intensity is obviously related to the presence

of the loop in the centre of the volume. In agreement with the

invisibility conditions for a stacking fault detailed in x3.3, the

characteristic signature of a (111) stacking fault, i.e. fringes

along [111], is not visible on the CXD pattern in this case. This

particular reflection is also well suited to determine the

interstitial or vacancy character of the Frank loop. As shown

in Fig. 7(d), the scattering is more intense for the high q values

(presence of a satellite peak) with respect to the theoretical

Bragg position. This distribution of

the scattering is expected for an

interstitial Frank loop and is in good

agreement with the results of Ehrhart

et al. (1982) and Nordlund et al.

(2000). In the case of a vacancy Frank

loop and for this particular reflection

(not shown here), the satellite peak is

located in the lower q values with

respect to the theoretical Bragg

position.

As illustrated in Fig. 7(b), the

dissociation in Shockley and stair-rod

partials induces a very characteristic

signature on CXD patterns when the

diffraction vector is parallel to a h110i

direction (Fig. 7b) (but not perpen-

dicular to b, i.e. only the hh0, h0h and

0hh reflections with h even can be

used), corresponding to the Burgers

vector of a partial stair rod. The

pattern then looks fairly similar to

that of a screw dislocation, with a

ring-shaped pattern oriented along

bSR = 1
6h110i (where bSR is the

Burgers vector of the stair-rod dislo-

cation). This kind of pattern is not

observed when the loop is not disso-

ciated and is a clear indication of the

formation of a stair-rod dislocation

during relaxation.

When looking at the other set of

partials, i.e. when g is parallel to one

of the Shockley partials [g ||bS, g = 224

(Fig. 7c), where bS is the Burgers

vector of the Shockley partial dislo-

cation], the resulting CXD pattern is

very disturbed at the end of relaxation, with intense fringes

along [111] and an elongated central spot with very low

intensity in comparison to a perfect crystal (only 8% of the

Bragg peak intensity). During the first stages of relaxation, the

intensity of the central spot is similar to that of a perfect

crystal, and only the fringes along [111] indicate the presence

of a defect in the crystal. Hence these particular Bragg

conditions appear particularly well suited to show the disso-

ciation of the Frank partial in its intersecting slip planes.

3.5. Prismatic loop

A prismatic dislocation loop has a Burgers vector not

contained in the plane of the loop. We introduce a prismatic

loop at the centre of a 30 � 30 � 30 nm copper crystal with a

Wulff geometry. The Burgers vector b = 1
2[101] decomposes

during relaxation into partial dislocations in its (111) and (111)

slip planes, as illustrated in Fig. 8(a). Since the Burgers vector

is perpendicular to the dislocation line, the loop edges are

pure edge dislocations and the invisibility criteria, i.e. g �b = 0
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Figure 8
(a) Relaxed prismatic dislocation loop with b = 1

2[101] at the centre of a 30 � 30 � 30 nm Wulff copper
crystal. The colour code represents the coordination number, such that only the defective atoms and
nanocrystal edges are shown. The loop decomposes into partial dislocations in its (111) and (111) slip
planes. (b) The same dislocation loop viewed along the [101] direction. Calculated CXD pattern for
g || b (g = 202) (c), g ||bp (g = 422) (d), g �b = 0 and g � (b � t) 6¼ 0 (g = 262) (e), and g �b = 0 and g � (b �
t) = 0 (g = 020) ( f ). The selected area of the reciprocal space is kept to the same value in all figures and
is equal to 0.045 � 0.0675 Å�1.
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Table 2
Summary of all the most relevant cases that can be encountered during the study of the signature of single defects.

For each case the maximum intensity calculated on the CXD pattern is compared with the intensity for a defect-free crystal with the same size and shape. In the
following n is the direction normal to a stacking fault, t is the dislocation line direction, and b� t is the direction perpendicular to both the Burgers vector and the
dislocation line direction. The best conditions to show the defect are highlighted in italic, while the invisibility conditions are highlighted in bold. N/A: not
applicable; SF: stacking fault.

Screw dislocation Edge dislocation

Unrelaxed Relaxed Unrelaxed Relaxed Stacking fault
Frank dislocation
loop

Prismatic
dislocation loop

g � (b � t) = 0 Single clean spot Single clean spot Single clean spot Single clean spot,
fringes along n

N/A Small drop of
intensity in
Bragg position

Single clean spot,
slight distortion
in the pattern

I = I0 I = I0 I = I0 I = 0.78I0 I = 0.85I0 I = I0

g �b = 0,
g � (b � t ) 6¼ 0

Single clean spot Splitting along b,
fringes along n

Elongation along b Splitting along b,
fringes along n

N/A Single clean spot,
slight distur-
bances

Single clean spot,
drop of intensity
in Bragg posi-
tion

I = I0 I = 0.2I0 I = 0.4I0 I = 0.2I0 I = 0.8I0 I = 0.65I0

g || b Ring-shaped
pattern: ring axis
along b; extinc-
tion in Bragg
position

Ring-shaped
pattern: ring axis
along b; extinc-
tion in Bragg
position;
maxima of
intensity along
[001]

Fringes along n,
elongation of
Bragg peak
along b

Fringes along n,
elongation of
Bragg peak
along b and
increased inten-
sity in Bragg
position

N/A Satellite spot and
low intensity in
Bragg position

Hexagonal-shaped
pattern with
elongation along
b, fringes along
n, intensity
maximal in
Bragg position

I = 0.14I0 I = 0.18I0 I = 0.18I0 I = 0.33I0 I = 0.3I0 I = 0.5I0

No fringes along n:
g with h + k + l =
3n

g || bp Ring-shaped
pattern: ring axis
along b; extinc-
tion in Bragg
position

Ring-shaped
pattern: ring axis
along bp ; extinc-
tion in Bragg
position

Fringes along n,
elongation of
fringes along b,
extinction in
Bragg position

Fringes and split-
ting along n,
elongation of
fringes along b

N/A Distorted ring-
shaped pattern
for g || bSR with
ring axis along
bSR

Similar to g || b with
a lower intensity
in Bragg posi-
tion

I = 0.09I0 I = 0.11I0 I = 0.09I0 I = 0.23I0 I = 0.16I0 I = 0.35I0

g with h + k +
l = 3n

N/A (no SF) Fringes along n
disappear

N/A (no SF) Fringes along n
disappear

Single clean spot Fringes along n
disappear

Fringes along n
disappear

I = I0

g with h + k +
l 6¼ 3n

N/A Fringes along n N/A Fringes along n Intense fringes
along n and
splitting due to
the �2�/3 phase
jump induced by
the SF; intensity
in Bragg posi-
tion 25% that of
perfect crystal

N/A N/A

General g Ring-shaped
pattern; ring
diameter inver-
sely propor-
tional to crystal
size and hkl
indices

Ring-shaped
pattern; distor-
tion and disor-
ientation of the
ring depending
on the hkl
indices of the
diffraction
vector; increase
of the maxima of
intensity during
relaxation

Fringes and split-
ting along n and
elongation of
Bragg peak and/
or of fringes
along b,
depending on
the selected
diffraction
vector

Fringes and split-
ting along n and
elongation/
splitting along b
depending on
the selected
diffraction
vector; increase
of the maximum
intensity during
relaxation

Only two possible
cases (see
above)

Three main effects:
(1) fringes along
n normal to the
SF, (2) ring-
shaped pattern
along one of the
stair-rod partials,
and (3) decrease
of the intensity
of the central
spot and
appearance of a
satellite spot
depending on
hkl

Distorted hexa-
gonal-shaped
pattern not
oriented along a
particular direc-
tion and depen-
dent on the hkl
indices of g;
maximum inten-
sity lower than
that of perfect
crystal



and g �(b � t) = 0, described in x3.2 apply for this type of

defect. However, as in the Frank loop case, since the loop

edges are not all aligned, there are always segments of the

dislocation loop where g �(b� t) 6¼ 0, which produces a visible

effect on the CXD pattern. But, when g �b = 0 and g �(b � t) =

0 for two opposite segments of the loop (for instance g = 020)

(Fig. 8f), the signature of the prismatic loop on CXD patterns

is very faint, and the intensity of the Bragg spot is similar to

the case of the perfect crystal, with no elongation in any

particular direction. When g �b = 0 but g �(b � t) 6¼ 0, i.e. g is

not parallel to any segment of the loop [the case g = 262 is

shown in Fig. 8(e)], the prismatic loop induces some pertur-

bation in the CXD pattern, which is expected since such

conditions do not lead to a complete extinction for an edge

dislocation. The central spot intensity slightly decreases (65%

of that of a perfect crystal) and the diffraction pattern is

elongated in the (110) plane along the [111], [111] and [001]

directions. We now focus on diffraction conditions where the

prismatic loop should produce a strong and characteristic

signature, i.e. g ||b. As shown in Fig. 8(c) (g = 202), one can

observe a hexagonal-shaped pattern with an elongation along

the Burgers vector direction b = 1
2[101] and a strong decrease

of the intensity of the central spot (by half compared to the

perfect crystal). One can also notice the increased intensity of

the [111] and [111] fringes, due to the stacking faults in the

dissociated loop edges. Similarly to an edge dislocation, the

conditions when g ||bp, for instance g = 422 (Fig. 8d), also

produce a characteristic signature (Fig. 8e). The resulting

diffraction pattern is similar to the case g ||b (Fig. 8c) with a

hexagonal-shaped pattern elongated along b and a reduction

of the central spot intensity by a factor of three. Finally, for a

general diffraction vector g the defect signature can clearly be

identified on the CXD pattern, but its intensity is generally

lower than for the particular cases g ||b and g ||bp. Additionally,

the hexagonal-shaped pattern is slightly disoriented with

respect to b.

In conclusion to this section, similarly to simple dislocation

lines and stacking faults, Frank and prismatic loops produce a

characteristic signature strongly influenced by the choice of

the diffraction vector and the invisibility conditions. The main

difference between a dislocation loop and a line dislocation

lies in the choice of the diffraction conditions to show such

defects. While for the latter the case g �b = 0 is an appropriate

choice to show dissociation, this condition is less adapted to

dislocation loops since it will hide their characteristic signa-

ture. However, we will see in the last section that the proper

use of these invisibility conditions turns out to be particularly

useful to determine the Burgers vector of any kind of dislo-

cation.

This study of simple and ideal cases of single defects drives

us to a simple conclusion: a given crystalline defect has a

characteristic signature, which can be identified and inter-

preted using coherent X-ray diffraction. Equally important is

the influence of the diffraction vector on the resulting CXD

pattern, and the need to select the appropriate vector in order

to highlight or hide the signature of a given crystal defect. One

has to keep in mind that particular cases detailed throughout

this study are not always the best suited for all types of crys-

talline defects. These considerations should be useful in order

to select the best experimental conditions to show a given

crystalline defect. Additionally, as illustrated in the next

section, these simple cases can be used to understand and

interpret CXD patterns from more complex and realistic

structures. An overview of the cases detailed throughout this

study is presented in Table 2, which highlights the best

diffraction conditions to show each type of crystalline defect.

3.6. Influence of the crystal size and shape

The cases detailed in xx3.1–3.5 share the same geometry

with a single defect introduced at the centre of a Wulff crystal.

However, the position of the dislocation and the boundary

conditions of the crystal might have a considerable influence

on the defect signature, and their effect is now investigated. To

study the effect of the crystal shape, we compare the results

obtained with a crystal of Wulff geometry with a spherical

crystal. We simulated a sphere of copper with radius r =

14.1 nm (corresponding to 1.2 � 106 atoms, a number similar

to the reference crystal), at the centre of which we introduce a

dislocation line of pure screw or pure edge character, with

Burgers vector b = 1
2[110]. Similarly to what has been observed

with the Wulff geometry, the perfect screw dislocation

dissociates during relaxation into two sets of two Shockley

partials in its two {111} slip planes, while the edge dislocation

dissociates in the (111) plane only (Fig. 9j). As illustrated in

Figs. 9(d) and 9(g), the ux component of the displacement field

is very similar to the one obtained for a Wulff geometry. In

both cases it is exactly equal to�b/2. The only differences that

can be expected in the calculated CXD patterns should be

related to the nanocrystal shape. In the case of perfect crystals,

the influence of the shape is seen in the form factor: instead of

streaked fringes along the facet directions, one observes

spherical fringes, and the shape of the central spot also reveals

the geometry (Figs. 9b and 9c). Such details are easily shown

experimentally with decent statistics. To examine the case of

faulted crystals, we choose a diffraction vector parallel to the

Burgers vector (g = 220). As illustrated in Fig. 9(e), the perfect

screw dislocation still yields a ring-shaped pattern with its axis

along the Burgers vector direction. The crystal shape only

affects the distribution of intensity in the ring (Figs. 9e and 9f).

For the perfect edge dislocation, similar conclusions are

drawn, and the calculated CXD patterns displays the same

features as have been observed for the Wulff crystal, such as

fringes along the [111] direction and the elongation of the

Bragg peak along b. The distribution of intensity is very

similar for both Wulff and spherical crystallites (Figs. 9h and

9i).

The edge and screw dislocations are not stable in a spherical

crystallite and the Shockley partials tend to leave the crys-

tallite during relaxation. To make relevant comparisons

between relaxed dislocations in the sphere and the Wulff

crystallites, the relaxation is stopped after the same number of

steps in both configurations (typically 1600 steps for the

copper nanocrystal) before the disappearance of the partials
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from the crystallite (Fig. 9j). Additionally, the contraction of

the surface atoms towards the bulk during relaxation is

strongly affected by the change of geometry. For these two

reasons, the obtained values of the ux component of the atomic

displacement field (Fig. 9j) differ from the ones obtained in the

Wulff geometry (x3.2).

We use the extinction condition g �b = 0 (g = 224) to show

the effect of dissociation. The Bragg peak splits along the

Burgers vector direction, and fringes along the normal to the

stacking fault (n = [111]) are clearly seen, even though the

crystal does not have (111) facets (Fig. 9k). Another inter-

esting observation is the similarity of the ratio Idefect /I0

between the two crystallites for all types of defects.

From these examples, one can conclude that the boundary

conditions have only limited influence on CXD patterns.

While the shape determines the form factor of the Bragg

reflection, yielding for instance strong fringes in faceted

crystals, the shape and intensity distribution of the features

induced by the defects, generally close to the Bragg position,

are only marginally affected. It is important to notice that a

logarithmic scale, and therefore a few decades of dynamical

range in the data, are needed to characterize the form factor,

whereas the defects have an obvious impact on the central

part of the pattern if the Bragg reflection is well chosen.

The effect of the crystallite size has also been investigated

by comparing the obtained CXD patterns of Wulff shaped

crystals with sizes ranging from 5 to 60 nm. While this would

be a simple scaling exercise in a continuous description of

matter such as FEM, here the problem is not invariant because

of the fundamental size of the defect, given by the modulus of

the Burgers vector. Of course, we evidence in the diffraction

patterns the scaling of the form factor in proportion to the

change of size of the crystal. But, one might expect a signifi-

cant effect related to the change of ratio between crystal shape

and defect size. However, no significant size effects are seen

on the signatures of the defects, regardless of the type of
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Figure 9
(a) Defect-free copper spherical crystal with r = 14.1 nm. Corresponding CXD patterns with g || b (g = 220) for the sphere (b) and the reference copper
crystal in a Wulff geometry (c). (d) Perfect screw dislocation with b = 1

2[110] at the centre of the section in the same spherical crystal. The colour scale
shows the ux component of the atomic displacement field. Corresponding CXD patterns with g || b (g = 220) for a sphere (e) and a Wulff crystal ( f ). (g)
Perfect edge dislocation with b = 1

2[110] in the same crystal. Corresponding CXD patterns with g || b (g = 220) for a sphere (h) and a Wulff crystal (i). ( j)
Dissociation of the perfect dislocation into two Shockley partials in the (111) plane with bp1 = 1

6[121] and bp2 = 1
6[211] in the same crystal. Corresponding

CXD patterns with g �b = 0 (g = 224) for a sphere (k) and a Wulff crystal (l). The selected area of the reciprocal space is kept to the same value in all
figures and is equal to 0.045 � 0.0675 Å�1.



defect and the chosen Bragg reflection, in the range of sizes

explored. This suggests that we are still in a size range in which

a continuous description of matter would be valid, providing a

sufficiently good continuous description of the defect and its

strain field. An important consequence of the weak influence

of size and shape of the crystal containing the defect is that the

results presented above can be generally applied to a wide

range of size and shapes of f.c.c. crystals. This is particularly

useful since samples may contain many crystals of the same

materials with a wide range of size and shapes, depending on

the processing route (in particular in the case of dewetting;

Beutier et al., 2013; Mordehai, Lee et al., 2011; Mordehai,

Kazakevich et al., 2011).

3.7. Influence of the defect position

To show the effect of the defect position, we chose to focus

on two simple defects: a perfect screw dislocation and a

stacking fault, both in a 30 � 30 � 30 nm copper crystal of

Wulff shape. The screw dislocation is introduced at several

positions in the crystal – 0, 1, 5 and 10 nm away from the

centre of the crystal – and the 220 reflection is used to probe

the dislocation. As illustrated in Fig. 10(a), the displacement of

the dislocation line induces a considerable effect on the

intensity distribution of the calculated diffraction pattern. As

the dislocation moves towards the emerging facets of the

crystal, the distribution of intensity in reciprocal space

becomes highly anisotropic until the ring-shaped pattern

vanishes when the dislocation reaches one edge of the crystal.

The same results could be obtained for an edge dislocation

line in both its perfect and its relaxed states (not shown here).

Another very important consideration is the unstable

character of dislocations that are not introduced close to the

centre of the crystallite. According to our calculations in the

reference crystallite, for a perfect dislocation introduced more

than 3 nm away from the centre, the Shockley partials always

leave the crystallite during relaxation. One can then assume

that the probability of probing dissociated dislocations far

away from the crystallite centre in experimental crystals is

very low. This strengthens the relevance of our study since

most of the calculations are performed with dislocations

introduced at the centre of the crystallite.

As seen in x3.3, a stacking fault introduced at the centre of

the reference crystal leads to a splitting of the central spot and

intense fringes along the normal to the (111) stacking fault

plane, with a doubling of spacing between fringes. When the

stacking fault is placed at the centre of the crystal, the two

parts of the object that interfere are equal, yielding a

symmetric distribution of intensity in the fringes along the

[111] direction (see Figs. 10b and 10c). A stacking fault off the

crystal centre splits the volume into two unequal parts and

yields an asymmetric distribution of intensity along the [111]

axis. Fig. 10(b) indeed shows that a stacking fault splitting the

crystal into two volumes such that V1 = 4V2 yields an asym-

metry of the [111] fringe intensity distribution, which is further

increased when the stacking fault is moved towards an edge of
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Figure 10
(a) Effect of the position of a perfect screw dislocation in a 30 � 30 � 30 nm copper crystal in a Wulff geometry for g || b (g = 220). In the vicinity of the
crystal centre the intensity distribution is altered, and as the dislocation moves towards an edge of the crystal its characteristic signature completely
vanishes. (b) Effect of the position of a stacking fault in a 30 � 30 � 30 nm copper crystal in a Wulff geometry for g = 111. The stacking fault position
strongly affects the fringe intensity and period, and the intensity and splitting of the Bragg reflection. (c) Intensity along [111] for different positions of
the stacking fault in the crystallite. The selected area of the reciprocal space is kept to the same value in all figures and is equal to 0.045 � 0.0675 Å�1.



the crystal (V1 = 8V2). The intensity at the exact Bragg posi-

tion can be evaluated and, according to equation (6), as the

stacking fault moves away from the centre, the interference

becomes less destructive and the Bragg position becomes a

peak of intensity again, like for the perfect crystal.

This section confirms that the defect position has a very

strong effect on the calculated CXD patterns. This effect

increases with the distance between the defect and the centre

of the illuminated crystal. In the vicinity of the centre, the

intensity distribution is strongly altered, but a given defect can

clearly be identified from its

signature on the diffraction

pattern. However, close to an

edge of the crystal, the char-

acteristic signature of a given

defect vanishes, and our ability to

identify the defect from its

signature in reciprocal space

becomes questionable.

4. Application to a complex
case: indentation of a gold
nanocrystal

The study of model systems is

very useful to understand and

interpret the signature induced

by a single defect and to demon-

strate the influence of the selec-

tion of the diffraction vector on

CXD patterns. However, inter-

pretations of the pattern can also

be deduced for more complex

and realistic configurations of

defects, such as the one obtained

during plastic indentation of a

crystallite. More details con-

cerning the dislocation mechan-

isms during nanoindentation are

given by Mordehai, Kazakevich et

al. (2011). In the present section,

only a few key stages of the

indentation process and the

corresponding CXD patterns in

reciprocal space are detailed.

Molecular dynamics simulations

with the large-scale atomic/mole-

cular massively parallel simulator

(LAMMPS; Plimpton, 1995) and

an Au EAM potential (Grochola

et al., 2005) are used to simulate

the indentation of a 12.1 nm gold

nanoparticle on a sapphire

substrate (Mordehai, Lee et al.,

2011; Mordehai, Kazakevich et

al., 2011).

The Winterbottom construc-

tion (Winterbottom, 1967) is

employed, considering the

surface energies of the Au

potential and the interface energy

to initialize the particle config-
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Figure 11
(a) Simulation of the indentation of a 12.1 nm high gold nanoparticle by a cube-corner indenter. (b), (c)
Atomistic configuration at the initial state and corresponding CXD pattern (see text for more details) The
dislocations are shown in grey. (d), (e) Gold nanoparticle after 650 000 indentation steps (t = 3.25 ns) and
calculated CXD pattern. ( f ), (g) Gold nanoparticle after 850 000 indentation steps (t = 4.25 ns) and
calculated CXD pattern. (h), (i) Gold nanoparticle at t = 5 ns and corresponding CXD pattern. ( j), (k) Gold
nanoparticle at the final stages of indentation (t = 6 ns) and corresponding CXD pattern. The selected area
of the reciprocal space is kept to the same value in all figures and is equal to 0.08 � 0.12 Å�1.



uration (see Fig. 11b). The indenter in the simulation is

lowered at a constant velocity and the integration step is 5 fs.

To avoid the complexity of the lattice mismatch between the

particle and indenter/substrate, the indenter and substrate are

assumed to be much harder than the nanocrystal and are

frozen into their perfect crystal locations (Mordehai, Kaza-

kevich et al., 2011). The effect of the residual strain induced by

the substrate is thus not taken into account in this model.

Figs. 11(a) and 11(c) show the gold particle in its initial state

and the corresponding CXD pattern around the Bragg posi-

tion g = 111, parallel to its upper facet. These are realistic

diffraction conditions. Given the smaller size of the particle

compared to the reference crystallite (12.1 nm versus 30 nm),

the calculation of the three-dimensional CXD pattern is done

on a larger volume of the reciprocal space: 0.8 � 0.8 �

1.2 Å�1. Additionally, the dynamic range is kept to 4.15

decades, but the maximum of intensity is decreased by a factor

of 100 (ten times fewer atoms in the particle). Since the crystal

is still in its pristine state, the diffraction pattern looks very

clean, with a maximum intensity at Bragg positions and rather

intense fringes along [111] due to the relatively large size of its

(111) facet.

Fig. 11(d) illustrates the atomistic configuration and its

corresponding CXD pattern after 650 000 steps of indentation

(t = 3.25 ns). At this stage of the indentation process,

nucleation and glide of multiple dislocations have already

occurred, leaving short slip steps on the {111} and {100} facets.

A dislocation half-loop with Burgers vector of type b = 1
2h110i

dissociated into partials in one of its {111} slip planes can be

seen at the centre of the volume. When looking at the CXD

pattern, this defect induces a strong and characteristic signa-

ture with intense fringes along [111] due to the stacking fault,

and a splitting related to the phase jump induced by the

dislocation half-loop. One can notice that the period of the

defect fringes is approximately twice the period of the facet

fringes. As stated in previous sections, this is a good indication

of the defect location at the centre of the volume. Addition-

ally, since the upper (111) facet is compressed, the period of

the fringes along this direction slightly increases.

After 850 000 steps (t = 4.25 ns) (Fig. 11f), the dislocations

have left multiple slip steps on the crystal facets, and multiple

dislocation half-loops are found in the crystal. The largest loop

is dissociated into partials in the (111) and (111) planes, with a

Burgers vector along the intersection between these two

planes, i.e. 1
2[101]. Correspondingly, the CXD pattern displays

intense fringes along the [111] (Fig. 11g) and [111] (not shown)

directions. The period of the fringes along [111] roughly equals

four times that of the facet fringes. One can guess that this is

due to the decomposition of two

dislocations in the (111) slip plane.

Similarly to the previous step, we can

observe the Bragg peak splitting into

two spots, probably because of the

phase jump induced by the main

dislocation half-loop.

After deeper indentation, around

106 steps (t = 5 ns), no more disloca-

tions can be found remaining in the

crystallite (Fig. 11h). Consequently, the

calculated CXD pattern displays a

single and clean spot at the Bragg

position, and stacking fault fringes

along [111] and [111] have completely

vanished. One can notice that the

period of the fringes along [111]

increased since the crystal underwent

further compression.

At the final stages of the simulated

indentation process (t = 6 ns), the

crystal hosts multiple dislocation loops

which decompose into partials in three

out of the four available {111} slip

planes (Fig. 11j). The diffraction

pattern becomes very difficult to

interpret owing to the interplay of

multiple defects, and the characteristic

signatures such as a splitting or intense

fringes along one of the h111i direc-

tions cannot be identified. At this

stage, the diffraction pattern is well

‘speckled’ and a statistical interpreta-
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Figure 12
(a) Gold nanoparticle after 650 000 indentation steps. A dislocation half-loop with b of type 1

2h110i
can be observed. (b)–(e) Calculated CXD patterns for four different 111-type diffraction vectors. The
selected area of the reciprocal space is kept to the same value in all figures and is equal to 0.08 �
0.12 Å�1.



tion could relay the identification of individual defects as

suggested by Favre-Nicolin et al. (2010) and Jacques et al.

(2013).

We now come back to an earlier stage of the indentation (t =

3.25 ns), when a single dislocation half-loop can be found in

the particle (Fig. 12). Our goal is to determine the Burgers

vector of this loop using the extinction conditions detailed in

previous sections. Since this dislocation half-loop is a mixed

dislocation, there are no conditions where g �u is exactly zero

everywhere (Hirth & Lothe, 1968). However, one can assume

that the condition g �b is sufficient to hide most of the dislo-

cation signature in the dislocation pattern. The Burgers vector

of the dislocation half-loop is of 1
2h110i type. Consequently,

two of the h111i diffraction vectors must be perpendicular to b.

When looking at the calculated CXD patterns for four of the

eight 111-type diffraction vectors, one can notice that the

signature of the defect is only visible for g = 111 and g = 111,

whereas no signature can be found for g = 111 and g = 111 (see

Fig. 12). Both diffraction vectors fulfil the extinction criterion

and there is only one possible Burgers vector perpendicular to

these two directions: b = 1
2[011]. This demonstrates the possi-

bility to identify both the Burgers vector and the slip plane of a

dislocation by the appropriate selection of two, or at most

three, diffraction vectors. More generally, this study proves

that the technique is adapted to the interpretation of CXD

patterns from realistic structures. On the other hand, as shown

by the atomistic configuration from the late stages of inden-

tation, the interpretation of CXD patterns from complex

structures with multiple defects remains highly challenging

owing to the interplay between multiple defects on the

corresponding CXD pattern.

5. Discussion

The results above show that all typical defects of f.c.c. crystals

induce strong distortions of the CXD patterns at most Bragg

reflections. This holds both for dislocations, which induce a

long-distance strain field, and for stacking faults, which are

nearly strain-free defects. The case of the stacking fault illus-

trates that coherent X-ray diffraction is, properly speaking,

sensitive to the atomic displacement field and not just the

elastic strain: in this case it extends over a semi-infinite

volume, hence the localized signature at the Bragg peaks.

Even better, each defect has a characteristic signature on

particular Bragg peaks, such that it can in principle be

unambiguously identified from the measurement of one or

several reflections. For instance, the characteristic CXD

pattern of a perfect screw dislocation at a Bragg reflection not

perpendicular to the Burgers vector leaves no ambiguity on

the nature of the defect and its Burgers vector. Similarly,

characteristic fringes at reflections with h � k � l 6¼ 3n indi-

cate the presence of a stacking fault and reveal its orientation.

While these two cases are quite straightforward, the identifi-

cation can be much more delicate for defects that display

complex diffraction patterns such as Frank or prismatic loops.

For the latter it appears clearly that several reflections are

needed in order to guess what kind of defect the system hosts.

For instance, a relaxed Frank loop can be efficiently identified

by using two reflections parallel to a partial stair rod and a

partial Shockley. Similarly to what has been observed from the

elastic diffuse scattering of dislocation loops, the interstitial or

vacancy character of a Frank loop (or the intrinsic or extrinsic

character of a stacking fault) can also be identified using

coherent X-ray diffraction.

For both screw and edge dislocations, the technique can also

be used to unambiguously evidence the dissociation into

Shockley partials with two very clear and identifiable effects:

elongation and splitting of the Bragg peak along b and

doubling of the fringe period in the direction perpendicular to

the dissociation plane (xx3.1 and 3.2). The dissociation of the

dislocation is best shown using reflections of high indices, and

preferably perpendicular to the Burgers vectors. One can infer

that, more generally, such measurement is sensitive to the core

structure of the dislocation, since it influences the spatial shift

between two sub-volumes of the crystal.

Moreover, even reflections that do not show any distortion

can be very useful in establishing the characteristic features of

a crystal defect. A wise use of invisibility criteria allows the

determination of a dislocation Burgers vector and dissociation

plane using only a couple of well chosen reflections. This holds

in principle for any kind of single defects that can be

encountered in f.c.c. materials.

On the basis of these results, we propose an experimental

strategy to identify and characterize a single defect in an f.c.c.

crystal.

The first step would be to measure several 111-type

reflections in order to distinguish between dislocations and

stacking faults/Frank loops: if the defect is a stacking fault or a

Frank loop, the defect signature should vanish for only one

pair (g, �g) of these reflections and be visible for every other

111 reflection, whereas the signature will be invisible for two

pairs (g, �g) if the defect is a dislocation. In the first case, a

Frank loop is easily distinguished from the stacking faults by

the strong distortion at the Bragg position. In the case of

dislocations, the Burgers vector can be determined by iden-

tifying the two pairs (g,�g) out of four for which the signature

is visible. Until this stage the character of the dislocation does

not matter. Once the Burgers vector is established, the use of a

reflection g || b will allow one to determine the character of the

dislocation. A prismatic loop is identified by simultaneous

evidence for edge and screw dislocations.

Following this procedure it is in principle possible to

determine all the characteristics of a given single defect: for a

dislocation, its type, its Burgers vector, its dissociation plane,

its dissociation length and an estimate of its position; for a

stacking fault, the faulted plane, its extrinsic or intrinsic

character (vacancy or interstitial type in the case of a Frank

dislocation loop), and a rough estimate of its position.

Regarding experimental matters, it turns out that a high

dynamical range is not needed during measurements. In the

cases presented here, a single decade of intensity is enough to

show a distortion or a splitting of the Bragg peak, and two

decades suffice to show a modification of fringes due to a
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stacking fault. The counting time can thus be significantly

reduced, making easier the live monitoring of deformation

mechanisms (in such a case, however, the choice of the Bragg

reflection for live monitoring implies that some defects remain

invisible). The direct analysis of reciprocal space is thus

complementary to real-space reconstruction, which requires

longer counting times.

An important concern regarding the experimental setup is

our ability to resolve the features induced by defects during

coherent X-ray diffraction experiments. In fact, the funda-

mental size of the finest diffraction features on CXD patterns

is determined by the size of the diffracting volume (i.e. the

sample or the beam size, depending on which is smaller). If the

experimental setup allows us to sample the reciprocal space

with a step size small enough to resolve the fringes induced by

the finite size of a perfect crystal, it is also able to resolve any

kind of defect signature in a faulted crystal of the same size,

independently of the nature and the number of defects. For

instance, the splitting distance (i.e. the distance between the

two maxima of intensity of the split Bragg peak) induced by a

dislocation is of the same order of magnitude as the fringe

period is related to the crystal size.

Additionally, direct analysis of reciprocal space relies on the

comparison between simulation and experimental data. Even

if valuable information can be already extracted from the two-

dimensional cut of the detector plane, this approach implies

that, most of the time, we must record the full three-dimen-

sional CXD pattern in order to produce the needed two-

dimensional cuts of reciprocal space. For typical CXD

experiments in Bragg geometry with a crystal whose size is

around 300 nm (Beutier et al., 2012; Watari et al., 2011), the

acquisition of a three-dimensional CXD pattern that fulfils the

oversampling conditions in the three directions of the space

requires that reciprocal space be probed with an extent of

approximately �0.5	 and steps of 0.01	 (100 points in total).

To achieve a dynamical range between four and five decades

of intensity, the usual exposure time lies between 2 and 5 s for

each point of the rocking curve, and between 200 and 500 s for

the acquisition a full three-dimensional CXD pattern.

For a direct analysis of CXD patterns we suggested that a

single decade of intensity is sufficient to show a distortion or a

splitting of the Bragg peak, while two decades are needed for

the modification of fringes due to a stacking fault. The

acquisition time can thus be reduced at least by a factor of 50

(0.1 s or even less per point). It would thus only need 4–10 s to

perform the acquisition of a full three-dimensional CXD

pattern. With only one decade of intensity, the three-dimen-

sional reconstruction of the experimental data is not likely to

provide a complete and accurate picture of the strain and

defect distributions, while the analysis of the reciprocal space

pattern can already provide some information on the latter. To

obtain the same kind of dynamical range for a 30 nm crystal

(size comparable to the molecular statics simulations), the

acquisition time has to be multiplied by 1000. However, for a

300 nm crystal a 0.1 s acquisition time provides almost three

decades of intensity. In principle, the acquisition time can be

divided by a factor of two or three if one wants to show the

perturbations in the crystal fringes, and even 20–30 to high-

light the splitting or distortion of the Bragg peak.

One could also wonder if these calculations, performed on

f.c.c. metals, are valid for other crystal structures such as

hexagonal or body-centred cubic lattices. In the latter, the

dislocation structure, its motion and its relaxation are very

different from those of f.c.c. crystals. The calculations

performed on dissociated dislocations should in principle not

be valid for such crystalline structures. However, it appears

reasonable to think that the simulations performed for the

perfect dislocations and stacking faults are still correct. These

perfect defects are described by simple geometric models; only

the Burgers vector may differ in other crystal structures. In the

case of stacking faults, it induces a different phase shift, and

hence a different contrast, but modulated streaks are still

expected, provided the planar geometry of the stacking fault is

stable. Extinction conditions different from h + k + l = 3n will

apply. Several studies on materials with the wurtzite and the

zinc-blende structures (Chamard et al., 2008; Favre-Nicolin et

al., 2010; Jacques et al., 2013) have shown that the phase jump

induced by stacking faults in these crystal structures is the

same as in f.c.c. structures (�2�/3 depending on the number of

faulted planes and the hkl indices of the reflection). In the case

of the perfect edge and screw dislocations, the displacement

fields scale with the Burgers vector, such that the contrast of

characteristic features may be different.

If this study establishes the efficiency of CXD to probe

single defects, it does not address the case of multiple defects,

which can be encountered in various experimental samples.

Very few studies have been carried out so far on multiple

defects, and they only focus on the case of stacking faults. In

such complex systems, as pointed out in xx3.3 and 4, a statis-

tical approach can be used to get relevant information about

dislocation density and distribution (Jacques et al., 2013) or

about the stacking fault sequence (Favre-Nicolin et al., 2010).

Alternatively, a wise use of the invisibility conditions can

provide very useful information about defect content and

density.

A further complication is the interaction of the defects with

residual strain in the sample, due for instance to the growth

process. Here we discarded this complication to focus on the

defects, but in many realistic cases that is a crude approx-

imation, and the calculations presented here are, for instance,

not suited to the case of interface dislocations. The study of

crystallites in an epitaxial relationship with their substrate,

resulting in inhomogeneous strain distribution with a signifi-

cant contribution of the latter on CXD patterns (Diaz et al.,

2010; Beutier et al., 2012; Mastropietro et al., 2013), could be a

further development. This would allow one to make compar-

isons with more realistic experimental cases even if disen-

tangling the contributions of interface strain and defects

appears quite challenging.

6. Conclusions

We carried out a detailed numerical analysis of the effect of

defects in f.c.c. nanocrystals on their CXD patterns in the
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vicinity of allowed Bragg reflections. Realistic atomic poten-

tials were used to equilibrate the structures. Our analysis

demonstrates the unique character of the signature induced by

a single defect and the crucial importance of the diffraction

conditions, i.e. the selection of the diffraction vector. The

relaxation of the faulted crystal structure is shown to have a

large impact on CXD patterns. From these characteristic

signatures, we suggest a procedure based on the measurement

of a few reflections to identify a defect and its characteristics

when it is known that it is alone in the structure.

We also extended the scope of this study to nanocrystals

containing a few defects by analysing the case of a gold

nanocrystal undergoing simulated indentation: we demon-

strated that the defects generated in the early stages of

indentation can in principle be identified by the study of CXD

patterns at several chosen reflections. The use of invisibility

conditions proves to be particularly efficient on such complex

systems.

Such direct analysis of the reciprocal space requires

significantly lower counting times than phase retrieval imaging

methods and is well suited to the live monitoring of the

nucleation of defects (for instance to study deformation

mechanisms during in situ loading experiments).
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