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Strained germanium grown on silicon with nonstandard surface orientations like

(011) or (111) is a promising material for various semiconductor applications, for

example complementary metal-oxide semiconductor transistors. However,

because of the large mismatch between the lattice constants of silicon and

germanium, the growth of such systems is challenged by nucleation and

propagation of threading and misfit dislocations that degrade the electrical

properties. To analyze the dislocation microstructure of Ge films on Si(011) and

Si(111), a set of reciprocal space maps and profiles measured in noncoplanar

geometry was collected. To process the data, the approach proposed by

Kaganer, Köhler, Schmidbauer, Opitz & Jenichen [Phys. Rev. B, (1997), 55,

1793–1810] has been generalized to an arbitrary surface orientation, arbitrary

dislocation line direction and noncoplanar measurement scheme.

1. Introduction

With the downscaling of today’s technology to the nanometre

level, to create silicon-based complementary metal-oxide

semiconductor (CMOS) transistors it becomes necessary to

look for alternative channel materials, strain configurations

and crystallographic orientations to realize the full potential of

the semiconductor band structure, required to obtain the

highest electron and hole mobility channels (Takagi et al.,

2008). Strained germanium appears to be one of the most

promising alternative channel materials owing to both its

intrinsically higher electron and hole mobility values and its

compatibility with existing CMOS fabrication techniques

(Dobbie et al., 2012; Myronov et al., 2014). In addition to

strain, further improvements of the device performance can be

made by using nonstandard surface orientations such as (011)

and (111) to fully exploit the properties of the Ge band

structure. High mobility electron and hole channel transistors

have already been predicted and demonstrated by several

groups using Ge substrates with different crystallographic

orientations and strain (Ritenour et al., 2007; Zimmerman et

al., 2006; Kuzum et al., 2009; Shang et al., 2003; Maikap et al.,

2007; Nishimura et al., 2010; Chui et al., 2002; Low et al., 2004).

However, because of the large mismatch between the lattice

constants of silicon and germanium, the growth of such

systems is challenged by nucleation and propagation of

threading and misfit dislocations that degrade the electrical

properties.

To characterize thin films, a variety of techniques are used,

such as transmission electron microscopy, Auger electron

spectroscopy, high-resolution X-ray diffraction (HRXRD),
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X-ray reflectometry etc. X-ray characterization techniques are

favorable owing to their nondestructive nature and good

matching of X-ray wavelength to the atomic scale of modern

semiconductor devices. HRXRD is a suitable tool for

nondestructive investigation of multilayer structures: the peak

position delivers the lattice parameters connected with

composition and strain while the peak shape is conditioned by

layer thickness and defects present in the sample, the dislo-

cations playing a decisive role in peak profile formation

(Benediktovitch, Feranchuk & Ulyanenkov, 2014).

A theoretical approach for calculation of the diffracted

X-ray intensity distribution from epitaxial layers possessing

dislocations was developed by Kaganer et al. (1997) and

successfully applied to a number of systems (Kaganer et al.,

2006b; Benediktovich et al., 2011; Kopp, Kaganer, Baidakova

et al., 2014). The peak shape is sensitive to the reflection used,

the measurement geometry, the type of dislocations, their

density and their degree of correlation. It was shown that from

a set of peaks measured for a number of reflections one can

get reliable information about the dislocation type (Kaganer et

al., 2006b). The underlaying idea is closely connected to the

method of full-profile analysis in powder diffractometry: given

a set of profiles for different reflections hkl, the fitting of the

whole set enables the determination of the defect parameters

(Ribarik & Ungar, 2010; Scardi & Leoni, 2002). The reason is

that different defect types produce peak broadening that

changes in a different way with hkl and, consequently, that

enables one to disentangle the contribution from a distinct

defect type. For example, the dependence of dislocation-

induced broadening on hkl is governed by the dislocation

contrast factor Chkl, which is specific for each dislocation type,

thus enabling one to find the dislocation type from the

measured powder profile (Leoni et al., 2007; Ungár et al.,

2001). A similar approach can be used for treatment of

diffraction data measured in HRXRD mode from films

containing dislocations. However, in this case one has to

modify significantly the underlying theory. In particular, the

dislocation contrast factor should be replaced with the dislo-

cation contrast tensor (Benediktovitch, Feranchuk & Ulya-

nenkov, 2014), and special attention should be payed to the

way that the diffraction signal is collected (Kaganer et al.,

2005). The quantities of interest can be calculated on the basis

of the approach presented by Kaganer et al. (1997). However,

for each sample normal orientation and dislocation line

direction the expressions for intensity distribution should be

derived again, accounting for specifics of the geometry. In the

current paper we propose a general formalism to treat an

arbitrary case of surface orientation and dislocation line

direction; also, peculiarities of the application to noncoplanar

measurements are discussed.

We have measured a series of reciprocal space maps

(RSMs) and profiles for a number of reflections in coplanar as

well as noncoplanar measurement geometries to get a

consistent data set for analysis of dislocation microstructure.

The noncoplanar measurement geometry was achieved by

rotations of the detector arm around two orthogonal axes

(Rigaku SmartLab diffractometer) without tilting the sample.

The developed formalism is applied to the measured data set

to obtain information about the dislocation ensemble.

2. Sample growth and measurement

2.1. Sample growth

The epitaxial Ge layers investigated here were grown on

100 mm (111)- and (110)-oriented Si substrates by reduced

pressure chemical vapor deposition in an ASM Epsilon 2000

using a GeH4 standard as a gaseous precursor diluted in H2

carrier gas. All used wafers were initially baked at 1423 K for

2 min in H2 in order to desorb any native oxide on the Si

substrates prior to epitaxial deposition. To grow the Ge layer,

a fixed GeH4 precursor flow rate and chamber pressure of

100 Torr were used (1 Torr = 133.3 Pa), in such a way that the

GeH4 partial pressure was held constant at 75 mTorr for both

low-temperature (LT) and high-temperature (HT) stages. It

was shown earlier by Shah et al. (2011) that a similar approach

is capable of producing high-quality relaxed Ge buffers on

Si(001). The growth temperatures for the LT and HT layers

were kept constant at 673 and 943 K, respectively, with no Ge

growth occurring during the ramp between these tempera-

tures, and with H2 flowing inside the chamber. The tempera-

ture ramping rate was fixed at 4.5 counts per second. Post-

growth in situ annealing was carried out on some wafers at

1103 K for 10 min in H2. Different thicknesses for the LT and

HT layers were achieved by varying the deposition times for

each layer for growth on (111) and (110). The Ge growth rates

at 673 K were determined to be approximately 0.05 nm s�1 on

(111) and 0.1 nm s�1 on (110); at 943 K these were 0.6 and

0.5 nm s�1. These growth rates are lower than the corre-

sponding values on (100) of 0.3 and 1.5 nm s�1 (Shah et al.,

2011). In the case of the (110) samples the thickness of the as-

grown Ge epilayers was �420 nm, and in the (111) samples it

was �500 nm. The thickness in each sample was controlled by

cross-sectional transmission electron microscopy (TEM).

2.2. X-ray diffraction

Room-temperature measurements were performed using

an in-plane-arm-equipped 9 kW SmartLab Rigaku diffract-

ometer with a rotating anode providing Cu K� radiation (see

Fig. 1). X-ray diffraction measurements were carried out in a

parallel-beam geometry. A patented cross-beam optics unit

was used for this purpose, which provides the parallel beam

collimated vertically. A high-resolution setup with the

combination of a four-crystal Ge monochromator in the 220

setting, a two-crystal Ge analyzer in the same setting and a

scintillation counter was used to achieve sufficient resolution

for the measurement of a set of samples.

In the case of the used diffractometer, the positions of the

source and the detector can be described by the following

instrumental angles (see Fig. 1):

(a) angle �s, which is the angle between the line connecting

the sample and X-ray source and the plane of the sample

holder;

research papers

656 Andrei Benediktovitch et al. � Characterization of dislocations in germanium layers J. Appl. Cryst. (2015). 48, 655–665



(b) angle �d, which is the angle between the axis of in-plane

arm rotation and the plane of the sample holder; in the case of

no in-plane arm rotation �d is the angle between the line

connecting the sample and detector and the plane of the

sample holder;

(c) angle 2��, which is the angle of the in-plane arm rota-

tion.

The angle 2�� is specific to the model of in-plane diffract-

ometer, and the measurement mode involving this additional

detector movement degree of freedom will be considered

below.

Sets of maps (in coplanar geometry, 2�� ¼ 0) and

scans (in noncoplanar geometry, 2�� 6¼ 0) were

measured for the two types of samples. The reci-

procal space mapping was performed by a series of

2�–! scans at various ! positions; the scintillation

counter point detector was used. For the diffract-

ometer used, the sample was not moved, the 2� angle

being �s þ �d and the ! angle being �s. In the case of

a (111)-oriented substrate, the sample was aligned in

such a way that the 513 reflection was in the

diffraction plane and the 513 and 153 RSMs were

measured. Then the sample was aligned in such a

way that the 242 reflection was in the diffraction

plane and the 242, 333 and 404 RSMs were

measured. The 333 RSM also was measured after

rotation of the sample by 90�. In the case of an Si

substrate with (011) orientation the sample was

aligned in such a way that the 133 reflection was in

the diffraction plane and the 133 and 133 RSMs were

measured; then the sample was aligned to the 026,

224 and 135 reflections and the 062, 242 and 153

RSMs were measured correspondingly.

The in-plane movement of the diffractometer arm

(the angle 2��) provides an additional degree of

freedom in exploring the reciprocal space. A

combination of �s, �d and 2�� rotations enables us to

put the transferred wavevector Q out of the

conventional diffraction plane LxLz (see Fig. 1b) and

explore the reciprocal space without sample tilting. For the

(111) substrate orientation, the sample was aligned in such a

way that the 224 reflection was in the diffraction plane LxLz.

In this case Lx k ð224Þ. The 2�–! and �d scans around the 040,

044, 133 and 242 reflections were measured. A sketch of the

incoming and the outgoing beam arrangements for the

noncoplanar profile measurement of reflection 044 is

presented in Fig. 2. For the (011) substrate orientation, the

sample was aligned in such a way that Lx k ð211Þ; the scans

around the 202, 224, 113, 133 and 026 reflections were

measured.
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Figure 2
Sketch of incoming and outgoing beam arrangement for noncoplanar profile
measurement of Ge reflection 044 on a (111)-oriented Si substrate. Red spheres
denote the positions of Si Bragg reflections and blue spheres are related to the
reflections of Ge. Green spheres limit the area with accessible points in reciprocal
space when the sample is fixed. (a) corresponds to the side view, while (b) indicates
the top view. (c) corresponds to a three-dimensional sketch of reciprocal space.

Figure 1
In-plane diffractometer. The angles are defined in the text. (a) The instrument configuration; (b) sketch of the wavevector arrangement.



3. Diffracted X-ray intensity distribution

3.1. General expressions for X-ray intensity distribution in
reciprocal space

The distribution of the diffracted (diffuse scattering)

intensity from a crystal with defects in the reciprocal space is

given by the Fourier transform of the correlation function G

(Krivoglaz, 1996; Kaganer et al., 2006b; Benediktovitch,

Feranchuk & Ulyanenkov, 2014):

IðqÞ ¼
R

d3r d3r0 exp½iq � ðr� r0Þ�Gðr; r0Þ;

Gðr; r0Þ ¼ hexpfiQ � ½uðrÞ � uðr0Þ�gi;
ð1Þ

where uðrÞ is the displacement at the site r due to randomly

distributed dislocations, Q is the scattering vector,

q ¼ Q�QðsÞ is the deviation of the scattering wavevector

from reciprocal-lattice point QðsÞ, and the average hi is

performed over the dislocation positions. In the case of an

epitaxial film QðsÞ corresponds to the pseudomorphic strained

film on the substrate.

We will focus below on almost completely relaxed films. In

this case the film’s crystalline lattice is strongly distorted.

Quantitatively, we will consider the case when �md� 1,

where �m is the misfit dislocation density and d is the film

thickness. Also, we will analyze the vicinity of the Bragg peak

where most of the scattered intensity is concentrated; quan-

titatively, we will consider the case of q ’ ðg�m=dÞ
1=2. Under

these assumptions the correlation between atomic positions

drops off quickly and the main contribution to the scattered

signal comes from closely spaced points centered far from

dislocation lines, i.e. in the crystal areas that are most weakly

distorted. In this case we can assume

uiðxjÞ � uiðx
0
jÞ ’

@ui

@xj

ðxj � x0jÞ; ð2Þ

which considerably simplifies the calculations.

To calculate the correlation function Gðr; r0Þ one has to

know the displacement fields from a single defect. Below we

will consider two types of defects: misfit dislocations and

threading dislocations. In the case of misfit dislocations the

displacement field is given in a coordinate system associated

with the direction of the dislocation line � and sample normal

N. Let us denote this system Dm and define the direction of its

axis as

Dmz k N; Dmy k �: ð3Þ

In this coordinate system the displacement field at the point

ðx; zÞ due to the dislocation line passing through the point

ð0; z0Þ is expressed as

uðDmÞ
ðx; z; z0Þ ¼ u1ðx; z� z0Þ � u1ðx; zþ z0Þ

þ usurf
ðx; zþ z0Þ; ð4Þ

where u1ðx; zÞ is the displacement field in the infinite medium

of a dislocation at the origin, the first two terms on the right-

hand side of equation (4) correspond to the dislocation itself

and the image with respect to the surface, and the third term is

the remaining surface relaxation. The explicit expressions for

all these terms and for all Burgers vector orientations are

given by, for example, Kaganer et al. (1997).

Performing the averaging over dislocation positions

following the method outlined by Krivoglaz (1996) and

Kaganer et al. (1997), and in the frame of approximation (2),

the correlation function of the displacement fields of defects

results in

Gðr; r0Þ ¼ T1ð�rÞ þ T2ð�r; zÞ; �r ¼ r� r0;

T1ð�rÞ ¼ Qih"iji�xj;

T2ð�r; zÞ ¼
1

2

�m

d
QiQkgEijklðzÞ�xj�xl;

ð5Þ

where h"iji is the tensor of mean strain due to misfit disloca-

tions, which is given by (in the Dm coordinate system)

h"ðDmÞ
ij i ¼ �m

Z
dx
@uðDmÞ

i ðx; zÞ

@xj

¼ �m

�bðDmÞ
x �bðDmÞ

y �bðDmÞ
z

0 0 0

bðDmÞ
z 0

bðDmÞ
x �

1� �

0
BB@

1
CCA: ð6Þ

Here b is the Burgers vector of the dislocation and � is the

Poisson ratio. The tensor E in equation (5) is a fourth-rank

tensor describing strain fluctuation. In analogy to the

approach used in powder X-ray diffraction, this tensor is the

elastic component of the dislocation contrast factor (Klimanek

et al., 1988; Martinez-Garcia et al., 2009). In the case of

epitaxial layers, this tensor becomes z dependent (which is not

the case for powder X-ray diffraction), its components in the

Dm coordinate system being equal to

E
ðDmÞ
ijkl ðz

ðDmÞÞ ¼

Z
dx
@uðDmÞ

j ðx; zÞ

@xj

@uðDmÞ
k ðx; zÞ

@xl

: ð7Þ

The integral over dx can be calculated analytically; the explicit

expressions are given in Appendix A. At large dislocation

densities the elastic interaction between dislocations leads to

spatial correlation between dislocation positions (Freund &

Suresh, 2004). This positional correlation within the validity of

approximation (2) leads to factor g in equation (5), which has

the meaning of the ratio of the dispersion of distances between

dislocation lines divided by the square of the average distance

[see detailed discussion by Kaganer & Sabelfeld (2011)].

The second type of defect that will be important for us is

threading dislocations running through the layer. Below, the

threading dislocations are considered to follow the direction

of the Burgers vector to maximize their screw nature

(Bolkhovityanov & Sokolov, 2012). The expressions below are

derived for screw threading dislocations; however, the tensor-

based formalism presented here is general. Let us introduce

the coordinate system Dt associated with the direction of the

threading dislocation line s: the z axis of the Dt system is

directed along s; the directions of the x and y axes can be

chosen arbitrarily in the plane normal to s:

Dtz k �; Dtx;Dty ? s: ð8Þ
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The correlation function becomes

Gðr; r0Þ ¼ T2ð�rÞ; T2ð�rÞ ¼
1
2 �sQiQkEijkl�xj�xl;

E
ðDtÞ
ijkl ¼

Z
dx dy

@uðDtÞ
i ðx; y; zÞ

@xj

@uðDtÞ
k ðx; y; zÞ

@xl

:
ð9Þ

Here �s is the threading dislocation density. To calculate the

dislocation contrast elastic tensor E one has to know the

displacement from a threading dislocation in the half-space

and to calculate the two-dimensional integral over dislocation

positions. The elastic displacement fields from an inclined

dislocation in isotropic half-space were found by Yoffe (1961);

the explicit expressions with corrected misprints are given by

Shaibani & Hazzledine (1981). For this displacement field one

can find that the displacement field derivative depends on the

coordinates like 1=zf ðx=z; y=zÞ. Hence from equation (9) it

follows that the tensor E does not depend on z, i.e. it is

constant within the layer. Besides the actual form of the

displacement field the value of tensor E depends on how the

two-dimensional integral is calculated. Since the displacement

field derivative has an asymptotic behavior like 1=r, the inte-

gral is logarithmically divergent at both lower and upper

limits. The truncation at the lower limit is done at a length

scale corresponding to the termination of the validity range of

the assumption of equation (2), while the truncation at the

upper limit is done at a length scale corresponding to the

dislocation correlation length (Kaganer & Sabelfeld, 2010;

Benediktovitch, Feranchuk & Ulyanenkov, 2014). Both length

scales are quite ill defined, but since the actual value of the

tensor E depends on them logarithmicaly their influence is

weak. Because of this fact we will neglect fine effects due to

modification of the displacement fields related to the presence

of the boundary and will use the solution for an infinite

medium. In papers by Kopp and co-workers (Kopp, Kaganer,

Baidakova et al., 2014; Kopp, Kaganer, Jenichen & Brandt,

2014) the effect of boundary terms on the X-ray diffraction

profile was accounted for using the direct assumption-free

Monte Carlo approach and it was shown to be subtle. For the

mentioned reasons we will use the displacement fields for an

infinite medium,

uðDtÞ
ðx; yÞ ¼ 0; 0;

bðDtÞ
z

2	
arctan

x

y

� �� �
; ð10Þ

which results in the following nonzero components:

E
ðDtÞ
1133 ¼ E

ðDtÞ
3311 ¼ E

ðDtÞ
2233 ¼ E

ðDtÞ
3322 ¼

bðDtÞ
z

2

4	
L;

L ’ 1
2 lnð4	2�sR

2Þ;

ð11Þ

Here the logarithmic term L that appeared as a result of

normalization is estimated according to Kaganer & Sabelfeld

(2014). R is the correlation length of dislocation positions.

3.2. Measured X-ray intensity distribution

The expressions in the previous section provide the inten-

sity distribution IðqÞ in three dimensions in reciprocal space.

To experimentally access this distribution one would need a

resolution function confined in three dimensions in reciprocal

space, which is not the case in most of the used measurement

modes. The recorded intensity and the intensity distribution in

reciprocal space are connected by the resolution function

Rðq� q0Þ:

IðqÞM ¼
R

d3q0Rðq� q0ÞIðq0Þ: ð12Þ

In commonly used measurement modes the resolution func-

tion does not provide the resolution in one or two directions.

Accounting for this fact is crucial for processing the diffraction

data. Several cases will be considered below.

With the help of the instrumental angles �s, �d, 2�� it is

convenient to get the components of the wavevectors in the

coordinate system associated with the sample stage and X-ray

source. Let us denote this laboratory coordinate system as L

and define the directions of its axes as

Lz k N; Lx k ½kin � NðN � kinÞ�; ð13Þ

where Lx is parallel to the projection of the incoming vector

on the sample surface. As one can see from equations (5) and

(6), we will have need to perform convolutions of the vector Q

defined in the L system with the tensor E defined in the Dm or

Dt system. To do this one has to transform both quantities to

the same coordinate system. This can be easily done for the

particular cases described by Kaganer et al. (1997) and Kopp,

Kaganer, Baidakova et al. (2014), but for a general case one

would need a universal recipe. In order to provide it, let us

consider the crystallographic coordinate system C:

Cx k ½100�; Cy k ½010�; Cz k ½001�: ð14Þ

Here a cubic system has been considered for simplicity. The

vectors N and s are needed to define the Dm/Dt system. The

direction of the incoming beam kin � NðN � kinÞ is known in

the C system and is usually expressed in Miller indexes. The

matrix TCD
ij that transforms the components from the C system

to the D system is easily obtained: its rows are the components

of vectors s	 N, s, N written in the C system. In a similar way

one can obtain the elements of TCL
ij . The needed matrix TDL

ij is

obtained as

TDL ¼ TCLðTCDÞ
�1: ð15Þ

3.2.1. Reciprocal space mapping. Let us consider a triple

crystal arrangement with a monochromator and an analyzer

and the coplanar arrangement with 2�� ¼ 0. We assume that

the resolution function in the diffraction plane is much

narrower than the peak width due to the dislocation broad-

ening, but in the direction normal to the diffraction the beam

is not well conditioned and the resolution function is much

wider than the peak. In this case equation (12) transforms to

integration of IðqÞ in the qðLÞy direction. Performing this inte-

gration in the expression (1) one gets the � function in yðLÞ, and

for the measured intensity distribution IðqÞM one obtains
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IðqÞM ¼ IðqðLÞx ; qðLÞz Þ

¼
R R1
�1

d�xðLÞ d�zðLÞ expðiqðLÞ
 �x
ðLÞ

 Þ

Rd
0

dz Gð�x; zÞ;

Gð�x; zÞ ¼ T1ð�xÞ þ T2ð�x; zÞ;

T1ð�xÞ ¼ �mQðLÞ� h"
ðLÞ
�
i�x

ðLÞ

 ;

T2ð�x; zÞ ¼ 1
2 �QðLÞ� Q

ðLÞ
� E�
��ðzÞ

ðLÞ�xðLÞ
 �x
ðLÞ
� ;

�; �; 
; � ¼ fx; zg:

ð16Þ

Here � stands for g�m=d for the misfit dislocations and �s for

threading dislocations. The term T2 can be written in the form

T2ð�x; zÞ ¼ 1
2 �Q2w
�ðzÞ�x

ðLÞ

 �x

ðLÞ
� ;

w
�ðzÞ ¼ G
ðLÞ
��E�
��ðzÞ

ðLÞ;

G
ðLÞ
�� ¼ hðLÞ� h

ðLÞ
� ; hðLÞ� ¼ QðLÞ� =Q:

ð17Þ

Here a 2 	 2 reflection-dependent matrix w
�ðzÞ determines

the shape of the peak. It has two contributions: the elastic due

to the tensor E and the geometric due to the tensor G, which

describes the dependence on the used reflection. Comparing

to the similar expressions used in the powder diffraction case

(Klimanek et al., 1988; Martinez-Garcia et al., 2009; Ungár et

al., 2001; Scardi & Leoni, 2002) one can see that w
�ðzÞ is the

analog of the dislocation contrast factor, but it has two

significant distinctions: (i) it is not a factor but a 2 	 2 matrix

and (ii) in the case of misfit dislocations it is z dependent

owing to the effect of the boundary.

3.2.2. Noncoplanar out-of-plane scans. The in-plane

degree of freedom of a detector described by the angle 2�� is

favorable for the analysis of thin films (Ofuji et al., 2002;

Yoshida et al., 2007), for texture analysis (Nagao & Kagami,

2011), for residual stress gradient investigation (Bene-

diktovitch, Ulyanenkova, Keckes & Ulyanenkov, 2014) and

for other applications. In the case of the epitaxial films studied

here, the in-plane arm movement enables us to explore reci-

procal space without sample rotation. Now we consider a

measurement performed with a monochromator and an

analyzer at 2�� 6¼ 0. We will assume that compared to the peak

width there is a large divergence of the source in the hori-

zontal direction and a large acceptance of the detector in the

2�� direction. In this case the measured signal is given by the

integral of intensity in reciprocal space over the plane normal

to the vector:

n ¼
@Q

@’s

	
@Q

@2��

�����
����� ¼ f� sin �d; 0; cos �dg

ðLÞ: ð18Þ

Here the components in the L coordinate system were

calculated on the basis of the expressions for the scattering

vector Q given by Benediktovitch, Ulyanenkova & Ulya-

nenkov (2014) and Benediktovitch, Ulyanenkova, Keckes &

Ulyanenkov (2014). ’s is the angle between the vector kin and

plane LxLz (see Fig. 1); it describes the divergence of the

source in the horizontal direction. The integration over this

plane results in

IðqnÞM ¼ Iðq � nÞ ¼
R1
�1

d�x
Rd
0

dz expðiq � n�xÞGð�x; zÞ;

Gð�xÞ ¼ T1ð�xÞ þ T2ð�x; zÞ;

T1ð�xÞ ¼ �mQih"ijinj�x;

T2ð�x; zÞ ¼ 1
2 �Q2CðzÞ�x2; CðzÞ ¼ G

ðLÞ
ijklEijklðzÞ

ðLÞ;

Gijkl ¼ hinjhknl:

ð19Þ

Here the quantity CðzÞ is again an analog of the dislocation

contrast factor. As one can see from equations (17) and (19),

the influence of the measurement mode on the measured

intensity distribution is encapsulated by the geometric tensor

G. Just for the illustration of this method of description let us

consider several more measurement modes in terms of the

geometric tensor G.

3.2.3. Coplanar double-crystal scans. In the case of the

absence of an analyzer the measured intensity is integrated

over the Ewald sphere, which can be approximated as a plane

normal to the outgoing wavevector kout (Kaganer et al., 2006b,

2005). In this case for the intensity distribution one can use

equation (19) with the vector n replaced by

nðoutÞ ¼ kout=k0 ¼ fcos �d; 0; sin �dg
ðLÞ

ð20Þ

and the geometrical tensor

Gijkl ¼ hin
ðoutÞ
j hkn

ðoutÞ
l : ð21Þ

3.2.4. Powder diffraction. In the powder case, the intensity

distribution provided by equation (1) corresponds to the

intensity from a single grain, and the measured signal comes

from grains with the different orientations. Because of this one

has to integrate the intensity in reciprocal space over the plane

normal to the transferred wavevector Q (Kaganer et al., 2005;

Benediktovitch, Feranchuk & Ulyanenkov, 2014). Hence for

the geometrical tensor one obtains (Klimanek et al., 1988)

Gijkl ¼ hihjhkhl: ð22Þ

The elastic part E of the dislocation contrast factor depends on

the dislocation type. By measuring various reflections and/or

changing the measurement mode one will get the different

geometric tensor G and hence the values of different combi-

nations of the elements of the elastic tensor E. This way of

obtaining information about the dislocation type was

successfully demonstrated for a number of polycrystalline

samples (Ungar, 2004; Ungár, 2001; Leoni et al., 2007). Below

we will try to adopt this approach to the characterization of

the dislocation structure in Ge epitaxial layers.

4. Data processing and analysis

With the help of equations (16)–(19) one can simulate the

measured intensity distribution. We will consider the area

close to the peak, where the approximation (2) holds. The

results of calculations after equations (16)–(19) and experi-

mental data show that the shape of the RSM is close to a two-
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dimensional Gaussian, and the shape of the profile is close to a

Gaussian curve as long as the deviations from the peak center

are of the order of q ’ ðg�m=dÞ
1=2 (see Figs. 3 and 4 for

examples of measured data; other data look similar). At larger

deviations from the peak center the shape transforms to a

power law (Kaganer et al., 2006a). However, we will not use

this low-intensity region in further analysis. Some asymmetry

in the measured profile not predicted by the current formalism

may be due to other defect types causing the peak broadening.

Within the considered approach the shape of all RSMs and

profiles is determined by a small number of parameters,

namely g�m and �s. To process the data we propose to use a

simple and illustrative approach close to a modification of the

Williamson–Hall plot, which is intensively used in micro-

structure analysis of powder and polycrystalline samples

(Ungár, 2001) [Shalimov et al. (2007) take a similar approach

for application to heteroepitaxial film analysis]. The basis of

the approach is to analyze the peak width dependence on the

reflection. To assign a peak width to the data we will describe

the profile by a single parameter w, which is the half-width at

the 1=e level, and in the case of the RSM three parameters a, b,

 were used to describe the elliptic isointensity contour at the

1=e level (see Fig. 3).

4.1. Ge/Si(111)

For the Ge layer on the (111)-oriented Si substrate we have

considered the dislocation configuration shown in Fig. 5. Three

{111} slip planes are considered to be equally populated with,

in total, six types of a
2 h110i Burgers vector orientation

(Nguyen, 2012). Assuming that all six misfit dislocation types

have an equal dislocation density �m and are independent of

each other, with the help of equation (6) transformed from the

Dm to the L coordinate system we obtain for the average

deformation

"ðLÞij ¼ a�mdiag½�ð3=8Þ1=2;�ð3=8Þ1=2; 61=2�=2ð1� �Þ�: ð23Þ

From the peak positions on the RSMs one can find that the Ge

layer is completely relaxed. In order to compensate the

mismatch between the Ge layer and Si substrate from equa-

tion (23), the necessary density of misfit dislocations is found

research papers

J. Appl. Cryst. (2015). 48, 655–665 Andrei Benediktovitch et al. � Characterization of dislocations in germanium layers 661

Figure 3
An example of a measured RSM of the 242 reflection, characterized by parameters a, b,  (left), and results of theoretical calculations (right). The
dashed green line is the isointensity contour at the 1=e level, while the red solid line corresponds to fitting by an ellipse with the parameters a, b,  . The
intensity between the isocontours changes by a factor of 21=2.

Figure 4
Scan of the 133 reflection converted to qjj ¼ q � n units. Red line: results
of theoretical calculations; blue line: experimental data; thin dashed red
line: approximation by Gaussian profile.

Figure 5
Dislocation configuration in Ge/Si(111) used for calculations.



as �60 ¼ 0:13 nm�1. At such values of the dislocation density

the coherent scattering is almost completely suppressed, and

hence the observed diffraction signal is of diffuse origin,

corresponding to the formalism presented above. The peak

broadening due to dislocations is much higher than that due to

the finite film thickness, and for this reason no thickness

fringes are observed. The broadening due to the instrumental

function effect was estimated by the substrate peak broad-

ening, which transpired to be much narrower than the

observed peaks and was omitted in the calculations.

The expression for the quantity �Eijkl in the case of the

considered dislocation system becomes

�EijklðzÞ
ðLÞ
¼ g60

�m

d

X6

�¼1

TLDi0 j0k0 l0

60;�ijkl
Ei0 j0k0 l0 ðzÞ

ðDmÞ
m;60

þ �s

X6

�¼1

TLDi0 j0k0 l0

s;�ijkl
E
ðDtÞ
i0j0k0 l0s

: ð24Þ

Here g60 is a parameter for the positional correlation of misfit

60� dislocations, the index � denotes the dislocation type,

TLDi0 j0k0 l0

60;�ijkl
is a combination of four transformation matrices

calculated for each misfit dislocation type �,

TLDi0 j0k0 l0

60;�ijkl
¼ TLD

60;�ii0
TLD

60;�jj0
TLD

60;�kk0
TLD

60;�ll0
; ð25Þ

and TLD
s;� is the corresponding quantity for threading screw

dislocations. The parameters a, b,  , w for the measured RSMs

and profiles were calculated for the parameter

fm=s ¼ g60ð�m=dÞ=�s in the range 0–1, which is enough to find

the parameters a, b,  , w for any dislocation densities by

simple scaling following from equation (24). The fitting of a, b,

w found from the measured data resulted in 1=g60 ¼ 44,

�sL ¼ 3:6	 108 cm�2. Since equation (11) and subsequent

equations only contain the product �sL one cannot find �s

without the knowledge of R. However, the dependence on R is

logarithmic and hence has only a weak influence on the result.

We will further assume a typical value of R according to

Kaganer & Sabelfeld (2014) and take L ¼ 1. The misfit

dislocations are strongly positionally correlated, which is

expected for such a thick layer with a high mismatch. The

density of threading dislocations qualitatively agrees with the

value 6	 108 cm�2 obtained by Nguyen (2012) by TEM for a

similar sample.

Fig. 6 plots the experimentally measured peak width para-

meters (aexp; bexp;wexp) versus calculated ones (ath; bth;wth)

corresponding to the value of fm=s found from the fit and the

value of g60�m=d ¼ 1. This plot can be considered as a modi-

fied Williamson–Hall plot (Ungár, 2001) adapted for thin-film

analysis. In the ideal case all points should fall on the same

line; at the given fm=s the slope of this line gives the absolute

value of �s or g60�m=d. The intersection of this line with the

ordinate axis gives the broadening due to the crystallite size

and instrumental effects. In our case this contribution to the

broadening is negligible owing to the large film thickness,

which supports the assumptions made above.

4.2. Ge/Si(011)

A similar approach was applied for characterization of the

Ge layer on the (011)-oriented Si substrate. The peak posi-

tions showed that this layer was also completely relaxed.

However, the 60� dislocations are able to provide the relaxa-

tion only in one direction (Elfving et al., 2006). For relaxation

in the orthogonal direction we considered 90� dislocations.

The resulting dislocation configuration is shown in Fig. 7. For

the considered set of the four 60� misfit dislocations with the

Burgers vector a
2 h110i on {111} slip planes, a 90� dislocation

and four threading dislocations that are considered to follow

the direction of the Burgers vector, we obtain for an average

deformation

"ðLÞij ¼ a�60diag½�2; 0; 2�=ð1� �Þ�

þ a�90diag½0;�1=21=2; 21=2�=ð1� �Þ�: ð26Þ

Here the setting Lx k ½100� is considered. In order to

compensate the mismatch between the Ge layer and Si
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Figure 6
The experimentally measured peak width parameters versus calculated
ones for parameters obtained by fitting (see discussion in text). Blue
squares correspond to the value of parameter a, red triangles to b and
black circles to w. Vertical lines join the points corresponding to
measurements done at the same hkl. In the case of noncoplanar
measurements the joined points correspond to the results of ! and 2�–!
scans; in the case of RSMs they correspond to measurements in ‘+’ (large
incidence and small exit angles) and ‘�’ (small incidence and large exit
angles) geometries that almost coincide.

Figure 7
Dislocation configuration in Ge/Si(011) used for calculations.



substrate in all directions, the necessary density of the misfit

dislocations is found from equation (26) as �60 ¼ 0:038 nm�1

and �90 ¼ 0:11 nm�1.

The expression for the quantity �Eijkl in the case of the

considered dislocation system becomes

�EijklðzÞ
ðLÞ
¼ g60

�60

d

X4

�¼1

TLDi0 j0k0 l0

60;�ijkl
Ei0j0k0l0 ðzÞ

ðDmÞ
m;60

þ g90

�90

d
TLDi0 j0k0 l0

90ijkl
Ei0j0k0 l0 ðzÞ

ðDmÞ
m;90

þ �s

X4

�¼1

TLDi0 j0k0 l0

s;�ijkl
E
ðDtÞ
i0 j0k0 l0 s

; ð27Þ

where g60 is a parameter for the positional correlation for the

misfit 60� dislocations and g90 the equivalent for the 90� ones.

The parameters a, b,  , w for the measured RSMs and the

profiles were calculated for the parameters fm60=s ¼

g60ð�60=dÞ=�s, fm90=s ¼ g90ð�90=dÞ=�s in the range defined by

inequality 0< fm60=s þ fm90=s < 1, which is enough to find the

parameters a, b,  , w for any dislocation densities by simple

scaling following from equation (27). The fitting of a, b, w

found from the measured data resulted in 1=g60 ¼ 28,

1=g90 ¼ 20, �s < 106 cm�2. One can see that in this case the

misfit dislocations are also strongly positionally correlated,

which is expected for such a thick layer with a high mismatch.

The density of the threading dislocations is underestimated.

One of the reasons may be that we did not include the

broadening due to the stacking faults (Huy Nguyen et al.,

2013). The incorporation of stacking faults into the current

formalism will be the topic of future investigations.

The analog of the modified Williamson–Hall plot demon-

strated in Fig. 8 shows that, similar to the Ge/Si(111) case, the

contribution to the broadening due to finite film thickness is

negligible.

5. Conclusions

An approach to calculate the intensity distribution in reci-

procal space in the vicinity of the Bragg peak due to arbitrary

systems of straight misfit and threading dislocations at arbi-

trary sample normal orientation is formulated in a universal

way, all necessary expressions being explicitly described. It is

shown that the measured peak width is determined by the

product of two tensors E and G, the first being determined by

the strain fields produced by the defects and the second being

dependent on the measurement mode only. Several examples

of measurement modes are discussed in terms of the geome-

trical tensor G; the corresponding values of G are given in

equations (17), (19), (21) and (22). The approach was applied

for processing sets of RSMs and profiles measured in nonco-

planar geometry for Ge/Si(111) and Ge/Si(011) layers. The

measured intensity distributions were well described by

Gaussians, which enabled us to use a small number of para-

meters associated with the shape and treat them in a manner

similar to the modified Williamson–Hall plot. The misfit

dislocations were found to be strongly positionally correlated,

and the density of threading dislocations for the Ge/Si(111)

layers were in qualitative agreement with TEM observations

(Huy Nguyen et al., 2013).

APPENDIX A
The tensor Eijkl is a symmetric over permutation of the pair

of indexes: Eijkl ¼ Eklij. The nonzero components are given

below:

E1111 ¼
1

32	ð�� 1Þ2ðz� 1Þðzþ 1Þ5
ð�8b2

x � 24zb2
x � 48z2b2

x

� 24z3b2
x � z4b2

x þ 7z5b2
x þ 9z6b2

x þ 7z7b2
x þ 2z8b2

x

þ 16�b2
x þ 48�zb2

x þ 88�z2b2
x þ 64�z3b2

x � 4�z4b2
x

� 16�z5b2
x � 4�z6b2

x � 8�2b2
x � 24�2zb2

x � 40�2z2b2
x

� 40�2z3b2
x � 16�2z4b2

x � 8b2
z þ 8zb2

z þ 16z2b2
z

þ 8z3b2
z � 25z4b2

z � 29z5b2
z � z6b2

z þ 11z7b2
z þ 4z8b2

z

þ 16�b2
z � 16�zb2

z � 56�z2b2
z þ 60�z4b2

z þ 48�z5b2
z

þ 12�z6b2
z � 8�2b2

z þ 8�2zb2
z þ 40�2z2b2

z � 8�2z3b2
z

� 80�2z4b2
z � 64�2z5b2

z � 16�2z6b2
zÞ; ð28Þ

E1113 ¼ bxbz

z4

ð�� 1Þ2ðz2 � 1Þ
� 8

� �.
16	; ð29Þ

E1121 ¼
�1

16	ð�� 1Þðz� 1Þðzþ 1Þ3
bxby½4�þ z12�þ z6�

þ zðzþ 2Þð�2�þ zþ 2Þ � 5� 12� 4�; ð30Þ

E1123 ¼
zbybz½4�þ z�2�� zðzþ 2Þð6�þ z� 3Þ þ 2� 4�

16	ð�� 1Þðz� 1Þðzþ 1Þ3
;

ð31Þ
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Figure 8
The experimentally measured peak width parameters versus calculated
ones for parameters obtained by fitting. The same notation as in Fig. 6 is
used.



E1131 ¼
bxbz½�8ð�� 1Þ2 þ z4 þ 4ð�� 1Þð2�� 1Þz2�

16	ð�� 1Þ2ðz2 � 1Þ
; ð32Þ

E1133 ¼
1

32	ð�� 1Þ2ðz� 1Þðzþ 1Þ5
ð4z2b2

x � 8z3b2
x þ 3z4b2

x

þ z5b2
x � 7z6b2

x � 7z7b2
x � 2z8b2

x þ 8�b2
x þ 24�zb2

x

þ 40�z2b2
x þ 40�z3b2

x þ 16�z4b2
x � 8�2b2

x � 24�2zb2
x

� 40�2z2b2
x � 40�2z3b2

x � 16�2z4b2
x þ 12z2b2

z � 8z3b2
z

� 5z4b2
z þ 5z5b2

z � 5z6b2
z � 11z7b2

z � 4z8b2
z þ 8�b2

z

� 8�zb2
z � 40�z2b2

z þ 8�z3b2
z þ 80�z4b2

z þ 64�z5b2
z

þ 16�z6b2
z � 8�2b2

z þ 8�2zb2
z þ 40�2z2b2

z � 8�2z3b2
z

� 80�2z4b2
z � 64�2z5b2

z � 16�2z6b2
zÞ; ð33Þ

E1313 ¼
1

32	ð�� 1Þ2ðz� 1Þðzþ 1Þ5
ð�8b2

x � 16zb2
x � 56z2b2

x

� 60z3b2
x � 33z4b2

x � 15z5b2
x � 11z6b2

x � 7z7b2
x

� 2z8b2
x þ 16�b2

x þ 40�zb2
x þ 88�z2b2

x þ 104�z3b2
x

þ 52�z4b2
x þ 16�z5b2

x þ 4�z6b2
x � 8�2b2

x � 24�2zb2
x

� 40�2z2b2
x � 40�2z3b2

x � 16�2z4b2
x � 40b2

z � 80zb2
z

� 88z2b2
z � 12z3b2

z þ 75z4b2
z þ 69z5b2

z þ 11z6b2
z

� 11z7b2
z � 4z8b2

z þ 80�b2
z þ 200�zb2

z þ 184�z2b2
z

þ 8�z3b2
z � 140�z4b2

z � 112�z5b2
z � 28�z6b2

z � 40�2b2
z

� 120�2zb2
z � 120�2z2b2

z � 8�2z3b2
z þ 80�2z4b2

z

þ 64�2z5b2
z þ 16�2z6b2

zÞ; ð34Þ

E1321 ¼
1

16	ð�� 1Þðz� 1Þðzþ 1Þ3
bybz½12�þ z20�þ z2�

� zðzþ 2Þð6�þ z� 6Þ þ 1� 16� 12�; ð35Þ

E1323 ¼
zbxby½�4�þ z�6�þ zðzþ 2Þð�2�þ zþ 3Þ þ 4þ 4�

16	ð�� 1Þðz� 1Þðzþ 1Þ3
;

ð34Þ

E1331 ¼
1

32	ð�� 1Þ2ðz� 1Þðzþ 1Þ5
ð8b2

x þ 24zb2
x þ 32z2b2

x

þ 44z3b2
x þ 19z4b2

x þ z5b2
x � 7z6b2

x � 7z7b2
x � 2z8b2

x

� 16�b2
x � 48�zb2

x � 80�z2b2
x � 80�z3b2

x � 32�z4b2
x

þ 8�2b2
x þ 24�2zb2

x þ 40�2z2b2
x þ 40�2z3b2

x þ 16�2z4b2
x

þ 40b2
z þ 120zb2

z þ 96z2b2
z � 4z3b2

z � 65z4b2
z � 43z5b2

z

� 17z6b2
z � 11z7b2

z � 4z8b2
z � 80�b2

z � 240�zb2
z

� 240�z2b2
z � 16�z3b2

z þ 160�z4b2
z þ 128�z5b2

z

þ 32�z6b2
z þ 40�2b2

z þ 120�2zb2
z þ 120�2z2b2

z

þ 8�2z3b2
z � 80�2z4b2

z � 64�2z5b2
z � 16�2z6b2

zÞ; ð37Þ

E1333 ¼ �
bxbz½�8ð�� 1Þ�þ z4 þ 2ð4�2 � 6�þ 1Þz2�

16	ð�� 1Þ2ðz2 � 1Þ
; ð38Þ

E2121 ¼
ðz2 � 2Þb2

y

4	ðz2 � 1Þ
; ð39Þ

E2131 ¼
�1

16	ð�� 1Þðz� 1Þðzþ 1Þ3
bybz½12�þ z20�þ z2�

þ zðzþ 2Þð�6�þ zþ 6Þ � 5� 24� 12�; ð40Þ

E2133 ¼
bxbyfz½z

4 þ 2z3 þ 2�ðzþ 2Þðz2 � 3Þ þ z� � 4�g

16	ð�� 1Þðz� 1Þðzþ 1Þ3
;

ð41Þ

E2323 ¼
z2b2

y

4	� 4	z2
; ð42Þ

E2331 ¼
zbxby½4�þ z6�þ zðzþ 2Þð2�þ z� 1Þ � 8� 4�

16	ð�� 1Þðz� 1Þðzþ 1Þ3
;

ð43Þ

E2333 ¼
zbybz½4�þ zzðzþ 2Þð�6�þ zþ 3Þ � 2��

16	ð�� 1Þðz� 1Þðzþ 1Þ3
; ð44Þ

E3131 ¼
1

32	ð�� 1Þ2ðz� 1Þðzþ 1Þ5
ð�8b2

x � 32zb2
x � 40z2b2

x

� 12z3b2
x þ 7z4b2

x þ 17z5b2
x � 3z6b2

x � 7z7b2
x � 2z8b2

x

þ 16�b2
x þ 56�zb2

x þ 72�z2b2
x þ 56�z3b2

x þ 12�z4b2
x

� 16�z5b2
x � 4�z6b2

x � 8�2b2
x � 24�2zb2

x � 40�2z2b2
x

� 40�2z3b2
x � 16�2z4b2

x � 40b2
z � 160zb2

z � 200z2b2
z

� 28z3b2
z þ 115z4b2

z þ 101z5b2
z þ 19z6b2

z � 11z7b2
z

� 4z8b2
z þ 80�b2

z þ 280�zb2
z þ 296�z2b2

z þ 24�z3b2
z

� 180�z4b2
z � 144�z5b2

z � 36�z6b2
z � 40�2b2

z

� 120�2zb2
z � 120�2z2b2

z � 8�2z3b2
z þ 80�2z4b2

z

þ 64�2z5b2
z þ 16�2z6b2

zÞ; ð45Þ

E3133 ¼ �
bxbz½8ð�� 1Þ�þ z4 � 2ð1� 2�Þ2z2�

16	ð�� 1Þ2ðz2 � 1Þ
; ð46Þ

E3333 ¼
1

32	ð�� 1Þ2ðz� 1Þðzþ 1Þ5
ð�21z4b2

x � 9z5b2
x

þ 5z6b2
x þ 7z7b2

x þ 2z8b2
x � 8�z2b2

x þ 16�z3b2
x

þ 36�z4b2
x þ 16�z5b2

x þ 4�z6b2
x � 8�2b2

x � 24�2zb2
x

� 40�2z2b2
x � 40�2z3b2

x � 16�2z4b2
x � 45z4b2

z

� 45z5b2
z � 5z6b2

z þ 11z7b2
z þ 4z8b2

z � 24�z2b2
z

þ 16�z3b2
z þ 100�z4b2

z þ 80�z5b2
z þ 20�z6b2

z

� 8�2b2
z þ 8�2zb2

z þ 40�2z2b2
z � 8�2z3b2

z � 80�2z4b2
z

� 64�2z5b2
z � 16�2z6b2

zÞ: ð47Þ

Here � is the Poisson ration, bx, by, bz are the components of

the Burgers vector, and all quantities are given in the Dm

coordinate system. Its origin is taken at the free surface. The

value of z in the above expressions is dimensionless and equal

to the ratio zðDmÞ=d, where d is the film thickness; hence z ¼ 1

research papers

664 Andrei Benediktovitch et al. � Characterization of dislocations in germanium layers J. Appl. Cryst. (2015). 48, 655–665



corresponds to the interface where misfit dislocations are

lying.
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