
cif applications

J. Appl. Cryst. (2016). 49, 285–291 http://dx.doi.org/10.1107/S1600576715021883 285

Received 21 August 2015

Accepted 16 November 2015

Edited by A. J. Allen, National Institute of

Standards and Technology, Gaithersburg, USA

Keywords: CIF; CIF 2.0; computer programs.

Supporting information: this article has

supporting information at journals.iucr.org/j

A portable general-purpose application
programming interface for CIF 2.0

John C. Bollinger*

Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA.

*Correspondence e-mail: john.bollinger@stjude.org

The CIF API is an application programming interface and accompanying

reference implementation for reading and writing CIFs and manipulating CIF

data, with support for all versions of CIF through CIF 2.0. It features full support

for Unicode in data block and save frame codes, data names, and data values;

flexible character encoding; CIF 2.0 List and Table data types; CIF version auto-

detection; event-based parsing; and arbitrary-precision numeric values. The

interface and implementation are written in portable C, and they have been

successfully built and tested on Linux, OS X and Windows. The CIF API is open-

source software, available for use under the GNU Lesser General Public

License.

1. Introduction

Since its introduction in 1991, the Crystallographic Informa-

tion File (CIF; Hall et al., 1991, 2005) has become a well

established format for data exchange and archiving in crys-

tallography. CIF and applications built upon it now support a

global ontology-based Crystallographic Information Frame-

work for data exchange and processing (also CIF; Hall &

McMahon, 2005). Over that time, however, conventions,

capabilities and expectations for electronic data have evolved.

The constraints on CIF and its parent format, STAR (Hall,

1991), were unremarkable when they were first introduced,

but a quarter-century later, science requires richer, more

flexible data formats than those constraints readily permit.

These requirements are addressed in a new version of STAR

(Spadaccini & Hall, 2012a) that takes Unicode as its character

repertoire, modifies and extends the CIF’s quoting rules, and

provides new list and associative array data types. These

capabilities underpin a new STAR dictionary definition

language, DDLm (Spaddaccini & Hall, 2012b), that supports

associating programmatic behaviours (‘methods’) with data

definitions, among other advances. These features are being

introduced into CIF (both senses) as well, initially in the form

of DDLm-based data dictionaries and a new version of the

CIF format (CIF 2.0; Bernstein, et. al., 2016).

Its name notwithstanding, CIF technology is not inherently

specific to crystallography. Nevertheless, although CIF has

flourished in crystallography, neither it nor STAR has

achieved much penetration into other disciplines. There are

undoubtedly many reasons for the lack of CIF uptake outside

the discipline of its genesis, but one of them is software

developer disinterest and even resistance to providing CIF

support in their software. Anecdotal evidence collected by the

IUCr’s Committee on the Maintenance of the CIF Standard

(COMCIFS) revealed that a commonly cited barrier to

programmers both in and out of crystallography integrating

ISSN 1600-5767

2016 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576715021883&domain=pdf&date_stamp=2016-02-01

CIF support into their software was the lack of a standard

application programming interface (API) to assist them in

reading and writing CIF data. This barrier is only heightened

by divergence of CIF 2.0 from CIF 1.1, which is not a welcome

characteristic even to developers who already support CIF.

Although there are excellent libraries in various computer

languages for handling CIF 1.1 data (Hall & Bernstein, 1996;

Westbrook et al., 1997; Hester, 2006; Lin, 2010; Gildea et al.,

2011), there are few for CIF 2.0, and their language coverage is

much less.

Wanting to reduce the barrier to incorporating CIF support

into software generally, and especially wanting to foster

support for CIF 2.0, in 2011 COMCIFS decided to choose or

create an API for CIF. This author was invited to lead the

ensuing discussion, which was carried out on the IUCr’s public

web forum (IUCr, 2011). The requirements that emerged from

that effort (see below) were not all satisfied by any one

existing CIF support library known to any of the participants.

Therefore the author undertook development of a detailed

interface and reference implementation of just such a library:

the CIF API.

2. Requirements and design considerations

As an initial matter, there can be some disagreement about

exactly what an ‘API’ comprises, as the term is used in at least

two senses: (1) in a strict sense of the word ‘interface’, limiting

an API to data types, function signatures and constants

exposed for use by client applications; and (2) in an inclusive

sense that additionally incorporates implementations of the

interface functions. An API in the former sense is of little

practical value without at least one implementation, but that

sense of API is distinguished by affording the possibility of

multiple independent implementations. The distinction

between API and implementation was maintained throughout

the collaborative specification process, and the CIF API

provides a detailed programmatic interface in the former

sense. As discussed in more detail below, however, this is

paired with a reference implementation to validate the API

design and make it useful in practice.

Having defined what ‘API’ meant for the purposes of this

work, an essential first task in selecting or creating an API for

CIF 2.0 was to establish acceptance requirements. Both

requirements for functionality and constraints on imple-

mentation were identified, as described below.

2.1. Functional requirements and non-requirements

A central requirement and impetus for the CIF API is full

support for the CIF 2.0 specifications. The API must provide

for inputting, managing and outputting character data,

potentially drawing from the full range of Unicode. It must

handle the new compound data types. Its parser must recog-

nize and handle the new and revised quoting mechanisms for

character data, and its built-in output facilities must format

character data according to CIF 2.0 requirements.

Furthermore, the API’s usefulness would be unduly

circumscribed if it supported only CIF 2.0. Inasmuch as CIF is

in part an archival format, CIF 1.1 (and older) documents can

be expected to persist indefinitely, and it is desirable to have a

single system that can handle those as well as CIF 2.0 docu-

ments. In the most general terms, then, the API must support

inputting and parsing CIF text from external sources; it must

support outputting logical CIF structure and content to

external sinks as well formed CIF text; and between source, if

any, and sink, if any, and in memory where applicable, the API

must support all valid inquiries and modifications of logical

CIF structure and data.

On the other hand, the objective was a CIF API, not an API

specific to any given CIF dictionary or application. In parti-

cular, even though part of the motivation for CIF 2.0 itself was

to support DDLm, the CIF API is not specific to DDLm or to

any other DDL or dictionary. This is in no way intended to

discount the value of CIF dictionaries or of validating instance

documents against such dictionaries; it simply reflects the

chosen purpose and scope of the project. It is anticipated that

the CIF API will readily support higher-level libraries and

applications that provide for validation, dictionary-specific

functions and data structures, and the like, but these are not

inherently necessary to use the CIF API with any particular

CIF data.

2.2. Implementation constraints

Inasmuch as the project was intended to answer a call for a

consistent, broadly usable API, it was a project objective that

the API should support programs written in multiple

languages without being implemented independently in each

target language. That is, the interface should take a single form

that readily can be bound to other programming languages.

Similarly, it was an objective that the API should support

applications written for the widest possible array of computing

platforms. The combination of these requirements was

distilled to a simpler one: the API definition and imple-

mentation must be written in portable C, compatible with both

the C90 and the C99 standard (International Standards

Organization, 1990, 1999).

Additionally, it was recognized that there are at least two

distinct modes in which applications may want to consume

CIF: (1) a mode based on constructing and manipulating an

internal object model of a whole CIF, analogous to XML

DOM (W3C, 1998), and (2) a lightweight, event-driven mode,

analogous to SAX (XML-DEV, 1998). The former is the more

conventional form for CIF support libraries, but the latter is

important for handling large CIFs and for working under strict

performance or memory usage constraints. Instead of separate

efforts to support these alternatives, it was decided that the

API must provide for both.

Regardless of usage mode, it is an unfortunate fact that a

non-trivial fraction of real-world CIFs contain syntax errors.

Moreover, even the most careful application programmers

occasionally commit errors. For robustness and ease of use,

therefore, it was an objective that to the greatest extent

cif applications

286 John C. Bollinger � A general-purpose API for CIF 2.0 J. Appl. Cryst. (2016). 49, 285–291

possible the API must provide for error recovery and infor-

mative error reporting, especially in the context of parsing

CIFs. Furthermore, to assist application developers in

avoiding programming errors, it was a requirement that the

API be thoroughly documented, especially with respect to

preconditions and postconditions of all interface functions,

and to the significance of all public data structures.

3. High-level design

The centrepiece of the API is an object model for CIF data

implementing a variation on a characterization of a CIF data

model by Hester (2011) (see Fig. 1). Such object models are

not inherently novel, but a distinguishing feature of this one,

reflected in the CIF API, is that it does not make any special

provision for ‘scalar’ data – that is, data that are presented in

CIF outside any loop construct. Instead, it requires scalars to

be modelled via one or more single-packet loops, which

simplifies both the model and the API. Within that framework,

however, the CIF API preserves the presentational distinction

between looped and scalar data by using up to one special

loop object per data block or save frame to hold items

intended for presentation in scalar form. The parser records

scalar data in those special loops, the data manipulation

functions ensure that they never contain more than one

packet, and the formatter outputs them in scalar format.

Client code can access these as loops, if desired, but the

provided per-item data manipulation functions make that

optional. Indeed, to a large extent they allow the distinction

between scalar data and data presented in single-packet loops

to be ignored altogether where it is not of interest.

The API provides a representation for each object in the

model: whole CIFs, data blocks and save frames, loops

(encompassing the data model’s domains of data names), loop

packets, and values. These data types are opaque to applica-

tion programmers, so that instances must be created,

manipulated and destroyed via API functions. Furthermore,

within this framework, data values of all types are presented to

and accepted from client applications in a consistent form, so

that for many purposes neither the API nor client applications

need to be aware of the CIF data type of the data represented

by any given value object.

Providing opaque data types to applications clarifies how

those applications are permitted to obtain and manipulate

instances, and furthermore fosters application binary

compatibility with respect to updates to the API library. As

long as applications rely only on documented API features,

they will not be at risk of presenting data to API functions that

are incorrectly formed for the API version in use, and they will

sustain little risk of inadvertently corrupting CIF data. More

generally, opaque data structures are an aspect of a generally

object-oriented API design, in plain C. Almost every API

function accepts a pointer to an opaque data structure as its

first argument and can be construed as a method of the

referenced data type of that argument. Of the few exceptions

to that form, almost all can be characterized as object creation

methods (i.e. constructors) accepting a double pointer by

which to return a pointer to the new object.

Nearly all CIF API functions return a result code that

communicates the success of the function or else the nature of

its failure. All functions draw on a central set of function

return codes, though there are few functions whose set of

possible return values comprises more than a handful of these

codes. Side effects visible to the caller are performed via

function arguments, for example by writing a new value to the

referent of a pointer argument.

The CIF API directly incorporates the basic Unicode

character data type, UChar, of the International Components

for Unicode (ICU) project (http://site.icu-project.org/).

Although this could be criticized for exposure of imple-

mentation details, neither C90 nor C99 provides a standard

data type that adequately fills this role, so the only viable

alternative to UChar would have been a type defined by the

CIF API itself. Direct use of UChar has the advantage,

however, of affording applications a convenient entry to

working with Unicode data obtained from or intended for the

CIF API, in that the full ICU library, on which the reference

implementation depends anyway, can be brought to bear

without any additional data conversion or type casting.

4. Notable features

Certain features of the CIF API and its reference imple-

mentation are worthy of special attention. Some of them are

cif applications

J. Appl. Cryst. (2016). 49, 285–291 John C. Bollinger � A general-purpose API for CIF 2.0 287

Figure 1
A UML representation of the high-level data model on which the CIF
API design is based. The term ‘domain’ refers to the set of data names for
which a loop contains data.

driven directly by the requirements discussed above; others

emerged from the process of designing and implementing the

API details.

4.1. Flexible parsing

The CIF API’s built-in parser automatically identifies and

handles both standard CIF 1.1 and standard CIF 2.0, distin-

guishing between them on the basis of their initial CIF-version

comment, if any. Such a comment is required by CIF 2.0, so its

absence is normally taken as an indication that the input is in

CIF 1.1 format. The absence of a version comment in a file

otherwise complying with CIF 2.0 can be overcome via a

parser option. Options are also available to enable parsing

pre-v1.1 CIFs that contain control characters not permitted in

CIF 1.1 and above, albeit without flagging violations of the

much smaller line-length limit that originally applied to CIFs.

The character encoding of the input is automatically

detected in many cases, and an appropriate default is chosen in

most other cases. For cases where automatic choice of

encoding is unreliable or known to fail, however, the encoding

to be used can be specified to the parser. In practice, this is an

issue primarily for CIF 1.1, for which the character encoding

specifications are intentionally vague and machine dependent.

Well formed CIF 2.0 input, on the other hand, is always

encoded according to UTF-8. Nevertheless, the parser can

handle CIF 2.0 text encoded according to other schemes, too,

automatically in some cases and by explicit instruction in the

rest.

Many real-world CIFs contain syntax errors, often as a

result of human mistakes committed while editing CIFs by

hand. The CIF API’s parser can often recover from such errors

and extract some or even all of the valid data from affected

CIFs. This behaviour is disabled by default, but can easily be

enabled for all detectable errors. With somewhat more effort,

a client program can arrange to be informed of all parse errors

via a callback function, so as to choose for itself which ones

justify aborting the parse or to perform any wanted book-

keeping.

4.2. Event-based parsing

The CIF API’s default parsing mode constructs an object

model of the input CIF data and, upon completion of the

parse, provides it to the client application for inquiry and

modification. Building and storing such a model has significant

computational and resource overhead, however, which may be

unwarranted or even unsupportable for some applications and

environments. As an alternative, the CIF API’s parser

provides for the client application to instead be notified via

callback functions about significant events occurring during a

parse, such as the start or end of a data block or of a loop, or

the parsing of a data item. An application relying on such

callbacks can avoid unwanted overhead associated with

building and storing an object model, instead extracting the

data of interest directly during the parse and disabling

construction of an object model.

Object model building and event-based parsing are not

mutually exclusive, however. The callback system is still active

when an object model is being built, and it can be used to

influence which CIF structures are included in the model –

selecting only a specific data block, for example, or skipping

save frames that may be present in the input. It can also be

used to implement validation procedures that can or must be

performed at parse time, without the context of a whole CIF.

For instance, it can be used to raise a validation error in the

event that a single loop construct contains data from multiple

categories (though the CIF API itself has only a very weak

concept of categories), and it can be used to validate data

types against those permitted for their associated data names.

Additionally, although the CIF API focuses on a semantic

representation of CIF data, as opposed to a syntactic one,

event callbacks can be registered with the parser that provide

a syntax-level view of the input CIF. Such callbacks provide

access to semantically void syntactic details such as comments,

insignificant spaces and line breaks between syntactic units,

and placement of keywords relative to those. The program

cif_linguist (x5.5) uses these to preserve comments and

formatting as much as possible when it transforms a CIF.

4.3. Robust comprehensive data handling

The CIF API provides comprehensive support for all data

expressible in CIF format. In particular, it fully handles CIF

2.0’s new features for expressing data, such as Unicode char-

acter data and CIF 2.0’s List and Table data types, including

nesting to any depth. Even within the area also covered by

applications and libraries oriented toward CIF 1.1, however, it

exhibits a few unusual capabilities.

Because every version of CIF so far released permits data

values of character type to be expressed unquoted in CIF data

files (subject to some restrictions), it is ambiguous whether a

value that has the form of a number in fact represents a

number or whether it instead represents character data. The

difference is important because numeric data are subject to

transformations that are inappropriate for character data.

Some CIF libraries and applications have approached this

problem heuristically, as early CIF specifications indicated was

appropriate (Hall et al., 1991) and according to published CIF

1.1 convention (Hall et al., 2005): if a value is presented in a

CIF delimited only by whitespace, and it can be parsed

according to a given numeric syntax, then it is interpreted as a

number. In practice, however, for almost every purpose, the

interpretation of data items must be guided by external data

definitions. Although data definitions are outside its scope, the

CIF API takes an approach that can accommodate both styles:

it provides a form for data values that are known to represent

numbers, but it relies on the client application to control which

values take that form. In particular, numeric appearing values

parsed from a CIF are initially handled as strings of characters,

but any value in that form is automatically coerced to numeric

form (if possible) when it is operated upon by an API function

that requires it to represent a numeric data value. In any

event, the numeric form always retains the exact text origin-

cif applications

288 John C. Bollinger � A general-purpose API for CIF 2.0 J. Appl. Cryst. (2016). 49, 285–291

ally specified for the value, so that can be recovered even after

a coercion.

Also, CIF, being for the most part a text format, places no

limits on the range or precision of numeric values expressed in

instance documents. To the extent that applications want to

extract numeric data from CIFs, this presents a potential

problem: it is unclear which numeric format, if any, among

those supported by the host environment is appropriate for

handling a given datum. Moreover, even having chosen a

numeric format, it is not always the case that the standard

library functions can be relied upon to convert between text

and numeric representation without loss of precision, even

above and beyond any that may be a necessary consequence

of the conversion. Thankfully, such issues are rarely of great

import, as usually CIF data are consumed by systems having

representational capabilities similar to those of the system by

which the data were produced. Nevertheless, the CIF API

makes as few assumptions as possible about the capabilities of

the host environment. Although it cannot completely solve the

numeric representation and text/number conversion

problems, the reference implementation avoids them intern-

ally by storing numeric values in an arbitrary-precision

floating point format. It provides its own conversions between

that format and text, and between that format and one of the

host’s numeric formats. The former ensures that data read via

the CIF API can later be rewritten exactly, with no loss of

precision. The latter is not necessarily lossless for all data, but

it makes use of the full precision available from the target

format.

The existence of CIF conventions that treat some values

differently from others based on whether they are whitespace

delimited establishes de facto that CIF in general distinguishes

whitespace-delimited values from other values. In principle,

therefore, a future new convention or a data dictionary could

specify different interpretations for other values depending on

whether they are presented with delimiters. CIF 2.0 neither

clarifies nor narrows that distinction. For complete generality,

then, a CIF library must treat whether values are quoted or

not as an inherent property, not merely a property of a

particular external representation. The CIF API does this, and

moreover provides additional validation and data type coer-

cions around changes to that property, where appropriate. The

built-in CIF formatter also respects that property to the extent

possible: values flagged as unquoted will be formatted without

any form of quotation if CIF syntax allows it, and values

flagged as quoted will always be formatted in one of the

permitted quoted forms.

On the other hand, the CIF API does not track what style of

quotes is used for any given quoted value. In view of the fact

that changes to values or to CIF syntax version may necessi-

tate differing quotation style, the CIF API must always analyse

each quoted value on output to determine what form of

quotation can be used for it. The function employed for this

purpose is directly accessible to client programs. Even when

values and CIF syntax version do not change, the built-in CIF

output routine may not exactly reproduce the quoting style of

input values.

4.4. SQLite storage engine

The reference implementation of CIF API version 0.4 relies

on a CIF storage engine implemented on top of an SQLite

database (https://www.sqlite.org/index.html). The imple-

mentation relies on declarative referential integrity and on

database transactionality to help it maintain the integrity of

CIF data under its care, even in the event of application errors.

Using a relational database for storage allows significant

portions of the API implementation to be written at a higher

level than otherwise would be possible, and having SQLite

behind the scenes also sets the stage for future extensions

revolving around direct access to the backing database.

4.5. Test suite and example programs

The reference implementation comes with an extensive test

suite and several example programs. The test suite has proven

invaluable during development, both for catching regressions

arising from changes and updates, and for detecting environ-

ment-specific problems during testing outside the primary

development environment. Although most of the example

programs are too specialized to serve other than as examples

or functional tests, one is a CIF 2.0 syntax checker that some

may find independently useful.

5. Development directions

It is intended that the API itself (strict sense) be stable for an

extended time, in that future releases will maintain backwards

compatibility. There is nevertheless opportunity for extensions

and for companion software, some of which are now discussed.

5.1. SQLite serialization format

The API’s use of SQLite for temporary storage manage-

ment opens an intriguing opportunity for future development:

providing for the SQLite database file corresponding to a CIF

to be retained persistently and later reopened. Such a data-

base file would then constitute an SQLite serialization of CIF

data, with the property that it could be opened and ready for

use very quickly, without parsing, regardless of the volume of

data within. SQLite data files are highly portable, being

independent of machine details such as native word size and

byte order, so such files would be suitable for exchange. This

alternative might be of particular interest for speeding the

handling of large libraries of CIF-based reference data or of

large individual CIF data sets such as CIF dictionaries.

5.2. Alternative storage engine

The potential new uses of the SQLite storage engine

notwithstanding, profiling and comparative tests show that

recording data in SQLite accounts for substantially all of the

built-in parser’s run time. Although CIF API performance

compares favourably with that of other parsers (see

supporting information), an optional alternative storage

engine is under consideration for a future CIF API imple-

mentation, which would exchange some of the non-essential

cif applications

J. Appl. Cryst. (2016). 49, 285–291 John C. Bollinger � A general-purpose API for CIF 2.0 289

advantages of the SQLite engine for a speedier, purely

memory-based approach. Inasmuch as the API design inten-

tionally hides storage details from client applications, it should

be possible for applications to select between storage engines

without widespread code changes.

5.3. Comment handling

The current version of the CIF API focuses on a semantic

representation of CIF, and therefore makes only minimal

provision for CIF comments, which are semantically void.

Other than passing them to a registered callback function, the

parser ignores them. There is no mechanism for associating

comments with data in the object model, and therefore the

built-in formatter does not print any. Mechanisms for

recording and outputting comments are under consideration

for a future version of the API, but this presents a design

challenge because CIF format does not inherently make any

association between comments and nearby data.

5.4. Validation modules

Although the CIF API itself does not provide specific

support for any DDL, it is capable of supporting any DDL.

Inasmuch as CIF validation is an important capability for

some applications, the author is considering CIF API

companion modules providing for validation against DDL2,

DDLm and/or DDL1 dictionaries.

5.5. Program cif_linguist

An experimental program, cif_linguist, accompanies the

CIF API and is built upon it. This program performs transla-

tion between several dialects of CIF, including from CIF 1.1 to

CIF 2.0 and vice versa, and a future version will also translate

CIF data to STAR 2.0 format and to and from CIFXML (Day

et. al., 2011). Cif_linguist avoids CIF syntax that is unique to

CIF 1.1, so, but for the initial ‘magic code’, UTF-8-encoded

CIF 1.1 output of this program is well formed CIF 2.0 as well.

In particular, cif_linguist can translate from general CIF 1.1

(or earlier) format to this CIF 2.0-friendly dialect of CIF 1.1,

which can be useful for environments where both formats

must be supported, or that engage in a transition from CIF 1.1

to CIF 2.0 data and infrastructure. Further development of

this program to support these additional data formats, to

better handle comments and formatting, and to be better

supported by automated tests is a project priority.

6. Availability

The CIF API reference implementation has been built and

successfully tested on Linux (CentOS 6, Debian 7), OS X 10.8

and Windows 7. Substantial effort was devoted during devel-

opment to avoiding unspecified and implementation-defined

behaviours in both interface and implementation, and the ease

with which the code – originally developed on Linux – was

ported both to Windows and to Mac tends to support the

success of those efforts. There is every reason to expect that

little, if any, adaptation will be required to make the API and

implementation operational in any other environment that

can support its dependencies on SQLite and ICU.

The CIF API and implementation are open-source soft-

ware, offered for use under the terms of the GNU Lesser

General Public License version 3 (Free Software Foundation,

2007). This permits the API to be used and modified by

anyone, including in conjunction with programs whose own

source is closed. Although the author hopes that software in

general and crystallographic software in particular will be

open source, the CIF API is intended to be a viable tool for

everyone, regardless of their posture on free or open-source

software.

The full source distribution of the CIF API and imple-

mentation is available from the author. The distribution

includes source code, build system, documentation, test suite,

example programs, and program cif_linguist. The current

distribution sources can also be downloaded from

COMCIFS’s GitHub site (http://github.com/COMCIFS/cif_

api/), and the documentation for the current version can be

accessed online at http://comcifs.github.io/cif_api/.

7. Summary and conclusions

The CIF API provides a highly functional, flexible and

portable software infrastructure for reading and writing CIFs

and managing CIF-based data. It constitutes a ready-built

mechanism for adapting to and using CIF 2.0, while not

requiring abandonment of CIF 1.1 or separate support for the

two CIF versions. The CIF API supports all major desktop

operating systems, and it is licensed in a manner that is

compatible with use in any software project.

Acknowledgements

The author wishes to thank Herbert J. Bernstein and James R.

Hester for discussion and suggestions leading to the require-

ments for the CIF API. The author also thanks the attendees

of the IUCr’s 2013 Crystallographic Information and Data

Management workshop for commentary and discussion that

influenced the direction of the CIF API design.

References

Bernstein, H. J., Bollinger, J. C., Brown, I. D., Gražulis, S., Hester,
J. R., McMahon, B., Spadaccini, N., Westbrook, J. D. & Westrip, S. P.
(2016). J. Appl. Cryst. 49, 277–284.

Day, N. E., Murray-Rust, P. & Tyrrell, S. M. (2011). J. Appl. Cryst. 44,
628–634.

Free Software Foundation (2007). GNU Lesser General Public
License, http://www.gnu.org/licenses/lgpl.html.

Gildea, R. J., Bourhis, L. J., Dolomanov, O. V., Grosse-Kunstleve,
R. W., Puschmann, H., Adams, P. D. & Howard, J. A. K. (2011). J.
Appl. Cryst. 44, 1259–1263.

Hall, S. R. (1991). J. Chem. Inf. Model. 31, 326–333.
Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655–

685.
Hall, S. R. & Bernstein, H. J. (1996). J. Appl. Cryst. 29, 598–603.
Hall, S. R. & McMahon, B. (2005). Editors. International Tables for

Crystallography, Vol. G, Definition and Exchange of Crystal-
lographic Data. Dordrecht: Springer.

cif applications

290 John C. Bollinger � A general-purpose API for CIF 2.0 J. Appl. Cryst. (2016). 49, 285–291

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB8

Hall, S. R., Westbrook, J. D., Spadaccini, N., Brown, I. D., Bernstein,
H. J. & McMahon, B. (2005). International Tables for Crystal-
lography, Vol. G, Definition and Exchange of Crystallographic
Data, edited by S. R. Hall & B. McMahon, pp. 25–36. Dordrecht:
Springer.

Hester, J. R. (2006). J. Appl. Cryst. 39, 621–625.
Hester, J. R. (2011). Personal communication.
International Standards Organization (1990). ISO/IEC 9899:1990 –

Information Technology – Programming Language C. Interna-
tional Standards Organization, Geneva, Switzerland.

International Standards Organization (1999). ISO/IEC 9899:1999 –
Programming Languages – C. International Standards Organiza-
tion, Geneva, Switzerland.

IUCr (2011). CIF Application Programming Interface Forum, http://
forums.iucr.org/viewforum.php?f=27.

Lin, Y. (2010). J. Appl. Cryst. 43, 916–919.
Spadaccini, N. & Hall, S. R. (2012a). J. Chem. Inf. Model. 52, 1901–

1906.
Spadaccini, N. & Hall, S. R. (2012b). J. Chem. Inf. Model. 52, 1907–

1916.
W3C (1998). Document Object Model (DOM) Level 1 Specification,

http://www.w3.org/TR/1998/Rec-DOM-Level-1-19981001/.
Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). J. Appl.

Cryst. 30, 79–83.
XML-DEV (1998). Simple API for XML, http://lists.xml.org/archives/

xml-dev/199805/msg00226.html.

cif applications

J. Appl. Cryst. (2016). 49, 285–291 John C. Bollinger � A general-purpose API for CIF 2.0 291

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5270&bbid=BB22

