
cif applications

292 http://dx.doi.org/10.1107/S1600576715022396 J. Appl. Cryst. (2016). 49, 292–301

Received 3 September 2015

Accepted 23 November 2015

Edited by Th. Proffen, Oak Ridge National

Laboratory, USA

Keywords: CIF parsers; Perl; Crystallography

Open Database.

Supporting information: this article has

supporting information at journals.iucr.org/j

COD::CIF::Parser: an error-correcting CIF parser
for the Perl language

Andrius Merkys,a* Antanas Vaitkus,a Justas Butkus,b Mykolas Okulič-Kazarinas,a

Visvaldas Kairysa and Saulius Gražulisa,c

aVilnius University Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania, bTime.ly Network Inc., 2nd

Floor, 607 Front Street, Nelson, British Columbia, Canada V1L 4B6, and cVilnius University Faculty of Mathematics and

Informatics, Naugarduko 24, LT-03225 Vilnius, Lithuania. *Correspondence e-mail: andrius.merkys@gmail.com

A syntax-correcting CIF parser, COD::CIF::Parser, is presented that can parse

CIF 1.1 files and accurately report the position and the nature of the discovered

syntactic problems. In addition, the parser is able to automatically fix the most

common and the most obvious syntactic deficiencies of the input files. Bindings

for Perl, C and Python programming environments are available. Based on

COD::CIF::Parser, the cod-tools package for manipulating the CIFs in the

Crystallography Open Database (COD) has been developed. The cod-tools

package has been successfully used for continuous updates of the data in the

automated COD data deposition pipeline, and to check the validity of COD data

against the IUCr data validation guidelines. The performance, capabilities and

applications of different parsers are compared.

1. Introduction

Over the quarter century of its existence, the Crystallographic

Information Framework (CIF, also Crystallographic Infor-

mation File; Hall et al., 1991) – a standard format for reporting

and storing data pertaining to crystal structures – has been

widely adopted as a standard for supplementary material by

the International Union of Crystallography (IUCr) (Brown &

McMahon, 2002) and has been used by the majority of crys-

tallographic journals as well as structural databases [Inorganic

Crystal Structure Database (http://www2.fiz-karlsruhe.de/

icsd_home.html; Belsky et al., 2002), Cambridge Structural

Database (http://www.ccdc.cam.ac.uk/products/csd/; Groom &

Allen, 2014), CRYSTMET (http://www.tothcanada.com/databases.

htm; Le Page & Rodgers, 2005) and Crystallography Open

Database (COD; http://www.crystallography.net/; Gražulis et

al., 2012)]. New CIF dictionaries have been developed with

the aim of unambiguously defining ontologies in order to

uniformly present data in various fields of crystallography,

with notable examples including macromolecular crystal-

lography (Fitzgerald et al., 2006), powder diffraction (Toby et

al., 2003) and electron density studies (Mallinson & Brown,

2006). We assume that the main reasons for the CIF format’s

popularity are the use of human-readable text, a relatively

simple syntax, extensibility, a continued support by the IUCr

and an increasing availability of software for CIF processing.

A wide variety of software tools have been developed for

reading, writing, validating, manipulating and visualizing CIFs

(McMahon, 2006a). The unprecedented development in the

field of in silico simulation of materials sparked the emergence

of high-level libraries for materials analysis, such as AiiDA

(Pizzi et al., 2016), ASE (Bahn & Jacobsen, 2002) and

pymatgen (Ong et al., 2013), which support structural data

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576715022396&domain=pdf&date_stamp=2016-02-01

input in the CIF format. Obviously, the ability to correctly

convert CIF into internal data structures (parsing) is of great

importance to all of the aforementioned software tools.

Examples of general purpose CIF parsers include vcif

(http://www.iucr.org/resources/cif/software/archived/vcif-1.2;

McMahon, 2006b) and vcif2 (also known by the name of the

executable file cif2cbf ; Todorov & Bernstein, 2008) in C, ucif

(Gildea et al., 2011) in C++, cif2cif (Hall & Bernstein, 1996) in

Fortran and PyCIFRW (Hester, 2006) in Python (van Rossum,

2003). Another noteworthy tool is the ZINC package (Stampf,

2004), which provides a set of converters from CIF to ZINC

format and allows convenient manipulation of data in a

command line environment. Finally, since the syntax of CIF

1.1 is a subset of the more general STAR 1 (Hall & Spadaccini,

1994) format, STAR parsers like STAR::Parser (Bluhm, 2000)

in Perl (Wall et al., 2000) and StarTools (Keller, 2013) in Java

are also capable of parsing CIFs.

The described parsers are more than adequate when dealing

with syntactically correct CIFs. However, some discrepancies

occasionally occur between the CIF standard and the

supplementary files of published articles. Such files cause

problems in automatic processing, for instance when they are

ingested by the COD. Minor deviations from the CIF syntax

(missing quotes, missing data block headers, duplicated data

names etc.) appeared to be relatively common and too

numerous to be fixed by human editors. It was deemed too

inefficient to demand CIF editors (who are often volunteers

working in their spare time) to remedy such technical

discrepancies between the uploaded text and the CIF syntax.

Moreover, when a syntax error is detected by a CIF parser,

whether correctable or not, it is extremely important to locate

that error as precisely as possible, and to formulate a human-

and machine-readable error message that would direct further

processing of the input file.

For these reasons we have created a syntax-correcting CIF

parser, COD::CIF::Parser, that can parse CIF 1.1 files and

accurately report the position and nature of the discovered

syntactic problems. In addition, the parser is able to auto-

matically fix the most common and the most obvious syntactic

deficiencies. Based on COD::CIF::Parser we have developed

cod-tools1 – a set of tools for manipulating the CIFs in the

COD. The cod-tools package has been successfully used for

continuous updates of the data in the automated COD data

deposition pipeline and to check the validity of the COD data

against the IUCr data validation guidelines (ftp://ftp.iucr.org/

pub/dvntests).

2. Methods

2.1. Programming tools

To present a high-level user interface while maintaining

portability, COD::CIF::Parser was implemented in Perl. We

find the Perl programming language to be ideal for CIF data

processing tasks: it has a rich set of text processing operators

and native support for enhanced regular expressions, permit-

ting concise formulation of algorithms (Wall et al., 2000). The

long history of consistent Perl development allowed us to gain

experience in using this language; the robust and fast compiler

gives good performance when compared to other interpreted

languages. There are a large number of Perl libraries in CPAN

(http://www.cpan.org/) to supplement our own developments.

Thus Perl was considered a suitable language to develop the

first CIF parser prototype, and it continues to serve as a facile

test-bed for future developments.

The main and probably the only drawback of the Perl-

implemented parser is its relatively low speed. A noticeably

faster but also portable parser can be written in lower-level

languages, C in particular. Maintaining C code, however, is

significantly more labour intensive than maintaining Perl code.

Therefore we re-implemented the parser’s inner core in the C

programming language only after the Perl parser had been

written, debugged and found stable, just to improve its

performance. The new C module was designed as a drop-in

replacement of the Perl parser module in case the perfor-

mance became an issue.

The parser of the CIF language was implemented with the

help of parser generators using bottom-up syntactic analysis

algorithms. For Perl, the Yapp tool (Desarmenien, 1998) was

used to generate the parser. For C, the parser was imple-

mented using the Bison parser generator (Donnely &

Stallman, 2015). These two tools where chosen because they

accept nearly identical input file syntax based on the well

known Yacc parser generator (Johnson, 1975; Levine, 2009).

Parser generators offer several advantages over writing

parsers ‘by hand’ (e.g. using a recursive descent method).

Since all grammar rules for a parser generator are written

concisely and explicitly in a single source file, it is easier to

update or extend the language. This is especially useful when

CIF format is further developed by the IUCr or when special

error correction extensions are introduced. An additional

benefit is the readability of the grammar files; since Yacc

grammars consist of somewhat simplified Backus–Naur Form

(BNF) syntax rules, it is easier to check the correspondence of

the implemented parser with the CIF grammar, which is

published in a BNF-like notation (Hall et al., 2006; COMCIFS,

2003).

The parser in C was implemented by porting the Yapp

grammar to a Bison input file and replacing Perl statements by

the corresponding C code. The generated C parser can be then

used to create standalone programs in C. Alternatively, the

parser in C can be bound with many other languages using, for

example, the automatic binding generator SWIG (Beazley et

al., 2015). We have produced bindings of our Bison parser for

Perl and Python. Both C and Perl language parsers adhere to

the same CIF syntax and produce identical data structures,

although they slightly differ in error reporting owing to the

employed parser generators. However, a strict syntax for

formatting messages and identical internal CIF representa-

tions make it possible to substitute the C parser for the Perl

cif applications

J. Appl. Cryst. (2016). 49, 292–301 Andrius Merkys et al. � COD::CIF::Parser 293

1 Available under the GPL2 free software license at svn://www.crystallography.
net/cod-tools/tags/v1.0, this paper refers to version 1.0 (source revision 4339),
which can be also obtained from http://www.crystallography.net/archives/2015/
software/cod-tools/cod-tools-1.0.tbz2.

parser seamlessly in programs without disrupting other

systems that use them. The architecture of COD::CIF::Parser

in both languages should make it relatively easy to port it to

more than 100 computing platforms where C and Perl

compilers are available (Hietaniemi, 2010).

2.2. Data structures

Each CIF is represented by an array of hash tables (Perl

hashes). Each of these hashes represents a single CIF data

block. The key–value pairs present in this hash are described

in Table 1. For example, when the CIF from Fig. 1 is parsed,

the parser returns the structure depicted in Fig. 2. A more

general description of a hash constructed from a CIF data

block can be found in Appendix A and in the supplementary

file po5052sup1.txt.

Numeric values are stored as strings with possible standard

uncertainties, leaving the conversion to an application. Thus,

no numeric precision is lost during the parsing. Comments in

the CIF are ignored, as they should not contain any important

machine-readable information. The same convention is

followed by PyCIFRW. The absence of language constructs for

comments in some widely used data formats, such as JSON,

additionally justifies this decision.

2.3. Error detection and correction

COD::CIF::Parser is designed to detect and report syntax

errors as well as to apply heuristics to fix the most common

ones: add missing data_ headers, resolve duplicate tags, insert

missing quotes etc. The error detection is implemented via

extended CIF grammar rules that recognize erroneous

constructions. For example, all CIF values occurring before

the header of the first data block are recognized as CIF data

values and can be ignored as a possibly malformed comment

when parsed in the error correcting mode. The full list of

recognizable errors and their treatments is provided below;

each of the heuristics can be turned on and off using corre-

sponding parser options (given in bold):

(a) Stray CIF values before the first data block – ignored

(fix_data_header).

(b) No data_ header – ignored (fix_data_header).

(c) Stray CIF values after the data block name – appended

to the data block name (fix_datablock_names).

(d) Duplicate data items – if all data items report the same

value, only one data item is retained (fix_duplicate_

tags_with_same_values). The duplicate data name error is not

corrected if two data items with the same name contain

cif applications

294 Andrius Merkys et al. � COD::CIF::Parser J. Appl. Cryst. (2016). 49, 292–301

Table 1
Key–value pairs of a hash that represents a single CIF data block as
constructed by COD::CIF::Parser.

Key Value

name Scalar. String denoting the name of a CIF data block.
tags Array. Lower-cased data names present in the CIF data block.
values Hash table. Keys are equal to the values of the tags array.

Values are arrays containing values for each data item.
types Hash table. Keys are equal to the values of the tags array.

Values are arrays containing lexically derived data types for
each data item.

precisions Hash table. Keys are equal to the values of the tags array.
Values are arrays containing standard uncertainties for
each data item.

loops Array of arrays. Each inner array corresponds to a loop from
the CIF data block and contains a list of tags present in the
loop.

inloop Hash. Keys are equal to the values of the tags array. Values
correspond to indices of the outer loops array. It is used as
an index to optimize tag-in-loop related searches.

Figure 1
An example of a CIF input for parsing.

Figure 2
An internal CIF data structure created by COD::CIF::Parser after
processing the CIF from Fig. 1.

different values, to prevent incorrect interpretation of the

input.

(e) Items with duplicate data names, where only one data

item contains a known value (i.e. a value that is not equal to a

single question mark or a single period) – only the data item

with the known value is retained (fix_duplicate_

tags_with_empty_values).

(f) More than one value for a single non-loop tag – all

values taken as quoted (fix_string_quotes).

(g) Unquoted strings starting with an opening square

bracket (‘[’) – treated as single-quoted strings (allow_

uqstring_brackets).

(h) ^Z symbols – removed (fix_ctrl_z).

(i) Other non-ASCII symbols – these are encoded as

XHTML character references (Pemberton et al., 2000)

(fix_non_ascii_symbols).

(j) Missing single or double closing quote – an appropriate

quote is inserted (fix_missing_closing_single_quote and fix_

missing_closing_double_quote).

Correction of all of the aforementioned errors can be

enabled with the fix_all option. The errors and the applied

changes are reported to the standard error channel, using both

human- and machine-readable format, as described in x2.4.

Also, the total number of errors can be requested from the

parser.

2.4. Error reporting

When an issue is detected during the processing of a file,

most programs issue a message to inform the user about the

nature of the problem and how to fix it if necessary. Usually, in

a command line environment under Unix or Windows oper-

ating systems, a command line program writes out error

messages in an informal style, intended mostly for human

readers. Our cod-tools package, however, is also meant to be

integrated into larger systems, such as the COD data deposi-

tion web server. In such systems, other programs must analyse

the output of the CIF parser, including error messages, and

take appropriate actions. We have therefore found that a strict

formal specification of the error message format is helpful.

Since program composition is common in Unix-type systems,

our solution might have broader applicability outside cod-

tools and the CIF environment.

To aid understanding of the error message format, we have

composed a formal grammar describing this format and

encoded it in the Extended BNF (EBNF) form (ISO, 1996).

This grammar is provided in Appendix B in a formatted form

and in the supplementary file po5052sup2.txt as a computer-

readable ASCII file. It can be readily used by software authors

to further develop error message formatters and analysers. We

need, however, to make sure that the presented grammar is

complete, is unambiguous and indeed describes the intended

language. To perform computer-aided verification of these

properties, we have employed an EBNF parser and analyser.

Since we could not find a free EBNF parser on-line, we have

implemented a simple BNF and EBNF parser using the

Grammatica (Cederberg, 2015) parser generator. Grammatica

was chosen because it is one of the few parser generators that

allows the grammar and the processing code to be kept in

separate files. It generates output files in Java, and therefore

the EBNF processors were written in that language. (The BNF

and EBNF parsers are available as a grammatiker package at

svn://saulius-grazulis.lt/grammatiker.)

We transform the grammar of error messages (provided in

the supplementary file po5052sup2.txt) into a Grammatica

input file, from which a Java parser can be generated. This

transformation makes sure that all grammar rules are properly

defined; further processing with Grammatica makes sure that

the grammar can be interpreted unambiguously and is suitable

for an automated parser generator. The generated parser can

then be used to check that the error messages from our soft-

ware tools conform to this definition and are parsed correctly.

The meaning of the syntactic components in error messages

should be clear from the grammar rule names. Fig. 3 lists the

top-level rules of the error message syntax. Here, the

progname is the name of the program that generated the

message. The filename is the name of the file in which the

error was detected. The file name may be augmented with the

optional line and column numbers (lineno and linepos) in

parentheses. Additional information about the error position

may follow; cod-tools package programs output the data block

name when processing CIFs. The message text (message)

contains a human-readable description of the problem. If

applicable, the message text is preceded by the problem

severity level (status):

(a) ERROR indicates an unrecoverable situation, rendering

the output of the program unusable.

(b) WARNING indicates that the output of the program can be

processed further but may contain results that were not

intended in the current situation and therefore should be

treated with additional care.

(c) NOTE provides an informative message indicating the

correct output data; such a message may be dismissed and the

processing should proceed.

Where appropriate, messages about syntax errors are

followed by an excerpt from the original file (code_line). The

error causing token is marked by a caret (‘^’) symbol.

Examples of error messages generated according to this

grammar are presented in Fig. 4.

Since certain symbols are used as delimiters of message

parts, they are not permitted in the message text or file names.

As follows from the EBNF grammar, file names, for example,

may not contain colons (‘:’) and parentheses, and message text

cif applications

J. Appl. Cryst. (2016). 49, 292–301 Andrius Merkys et al. � COD::CIF::Parser 295

Figure 3
The top-level grammar rules defining error message syntax for
COD::CIF::Parser.

may not contain colons. Since, in general, these characters may

be present in file names or in the text, we need to escape these

characters by some special sequences. Although the provided

grammar does not specify any particular escaping method, in

the cod-tools package we use the XHTML character entity

references as a compromise between the simplicity of

escaping/unescaping algorithms and human readability. Thus,

any text can be encoded in an error message without a loss of

information, with acceptable appearance for human readers,

and with the possibility to parse the error messages unam-

biguously by computer algorithms.

2.5. Writing CIFs

Since the data structure of a parsed CIF is enough to

reconstruct the initial data, development of CIF writing

procedures is straightforward. The appropriate type for a data

value can always be found: values containing spaces are

enclosed by quotes, and values that can not be expressed as

quoted strings are stored in text fields. Although there are

certain values that can not be placed even in text fields, in x2.6

we present several ways to convert CIFs into universal data

carriers. We have implemented CIF writing in a Perl module,

COD::CIF::Tags::Print, of the cod-tools package, which was

able to perform successful round-trips for its own written

CIFs: a program was able to write out a CIF that can be read

again by the COD::CIF::Parser and to produce exactly the

same data structure that had been used for writing.

2.6. Folding and prefixing

CIF 1.1 format files have a potential to be used as ‘data

containers’ for any data presented as key–value pairs, in a

manner similar to that of JSON. Such a feature would be

useful to embed input and output files of data processing

software in CIF, as is done by SHELXL2014 (Sheldrick, 2015).

However, restrictions on the character set and the line length

together with the non-nestable nature of CIF text fields (lines

inside text field must not start with a semicolon, as such a

construction is used to mark the termination of a text field)

limit this possibility. We have implemented means to bypass

these limitations in COD::CIF::Parser and COD::CIF::Tags::

Print. The non-ASCII characters are converted to XHTML

character references, as described in x2.3. The long line

folding/unfolding protocol is implemented as described in the

IUCr’s CIF working specification (Hall et al., 2006). In addi-

tion to this, nesting of CIFs in the

text fields was made possible by

prefixing/unprefixing the con-

tents of the text fields. This

feature was proposed to the

Committee for the Maintenance

of the CIF Standard (COM-

CIFS) and is planned to be

implemented in the upcoming

CIF 2.0 format (Bollinger, 2011;

Bernstein et al., 2016). However,

the prefixing algorithm, when

applied to arbitrary text values, produces valid CIF 1.1 format

files. Therefore we can treat prefixed data fields in CIF 1.1 as

an application convention, even if it is not mandated by the

CIF 1.1 standard. This extension permits us to store arbitrary

data values in CIF text fields in a way that is compatible with

the CIF 1.1 standard and is recognizable by the prefix-aware

software. If unprefixing or unfolding are not desired, either or

both functions can be turned off using parser options do_not_

unprefix_text and do_not_unfold_text in the CIF parser.

3. Results

The most prominent application of our CIF parser is the

maintenance and enhancement of the COD (Gražulis et al.,

2009). The use of error correction functionality allows several

objectives to be achieved.

On one hand, the strict mode of COD::CIF::Parser ensures

that all CIFs in the COD adhere to the CIF description

provided by the IUCr. For this purpose, the cifparse program

was written entirely in C to provide the command line inter-

face for the parser. It was then used to check every CIF stored

in the COD Subversion repository for syntactic correctness.

The cifparse program is now run in the Subversion repository

from a pre-commit hook. This way, we can be sure that files

with wrong syntax will not find their way into the COD. The

same check is performed by the COD data deposition web

site, which checks syntactic correctness prior to deposition.

Only when the CIF syntax is correct and the file is machine

readable do we perform further semantic checks.

On the other hand, when accepting files for deposition from

researchers or from published sources, such strict adherence to

the CIF format may do more harm than good. There are a

number of deviations from the CIF standard, such as missing

data headers, forgotten closing quotes or data block names

with embedded spaces. All these discrepancies can be

corrected automatically, and we argue that all human readers

will agree on what the intended message of the data file was

and what the corrections should be, if that published file can

be understood at all. Hence the error correction mode of our

COD::CIF::Parser turns out to be very useful, doing a great

deal of tedious work automatically without bothering human

users. Of course, in an interactive session all such corrections

are indicated in NOTEs (see x2.4) and presented for a COD

depositor to review, and in both automatic and interactive data

collectors these issues are registered in log files for further

cif applications

296 Andrius Merkys et al. � COD::CIF::Parser J. Appl. Cryst. (2016). 49, 292–301

Figure 4
Examples of COD::CIF::Parser diagnostic messages.

inspection. Such assessment of the NOTEs, presented in the web

deposition site or pooled in the log files, requires much less

work than manual typing of the corrections, thus significantly

reducing COD workload and cost. The employment of our

parser in the COD allowed us to increase the number of

entries there beyond 300 000 in a highly automated way and

supports the ongoing data curation activities in the COD

database. Other uses of the COD::CIF::Parser module are the

following:

(a) Format conversion – COD::CIF::Parser enables the

conversion of CIF format to other widely used lossless data

formats (i.e. JSON, as implemented in cif2json from cod-tools)

or field-specific formats (i.e. input formats of DFT codes).

(b) Crystallographic computations – COD::CIF::Parser

allows one to read CIF data into C, Perl, Python and poten-

tially Fortran programs. We have harnessed our parser in

programs that compute molecular structures from CIFs and

analyse molecule symmetry (Gražulis et al., 2015).

(c) Validation – the IUCr describes the protocol to validate

CIFs against dictionaries, and dictionaries against their

Dictionary Definition Language (DDL) dictionaries.

For the comparison of parsing behaviour of various CIF

parsers, we have performed syntactical analysis of two sets of

synthetic CIFs. The first set is the ‘trip’ test suite for vcif and

the second is a subset of our own test cases. We have chosen to

test a subset of the most popular (according to Google Search)

open-source command-line-compatible CIF parsers, cif2cif

(version 2.0.0), PyCIFRW (versions 3.6.2.1 and 4.1.1), ucif

(revision 23314), vcif (version 1.2), ZINC (version 1.12) and

our CIF parsers (version 1.0). We have also investigated the

vcif2 (version 0.9.3.1) CIF parser, but have decided to exclude

it from analysis, as it seems that the parser’s parsing time

grows quadratically with the size of the CIF text fields. Since

CIF is a subset of the STAR format and STAR parsers are able

to parse CIF, two STAR parsers, STAR::Parser (version 0.59)

and StarTools (version 0.2.0), were also included in the list of

cif applications

J. Appl. Cryst. (2016). 49, 292–301 Andrius Merkys et al. � COD::CIF::Parser 297

Figure 5
Tests of CIF and STAR parsers. Crosses (‘�’) denote detected syntax errors, slashes (‘=’) denote warnings, and dashes (‘–’) mark special cases when
programs hang for an indefinite amount of time and have to be stopped manually. In the column ‘CIF conforming’ crosses mark files that do not conform
to CIF syntax.

tested parsers. As our intent was to check the default beha-

viour of parsers, no command line options or arguments were

used, except for COD::CIF::Parser.2 The results of the analysis

are summarized in Fig. 5.

To compare the performance of parsers, 350 598 CIFs were

parsed from the COD (all entries from revision 170418,

totalling �16 G) on an unloaded computer with 31 GB of

RAM and 16 � Intel(R) Xeon(R) CPU E5-2450 v2 @

2.50 GHz, under Debian GNU/Linux 8.2 (jessie), using gcc

version 4.9.2, Perl version 5.20.2 and Python version 2.7.9.

Wall clock timings are presented in Table 2. Our tests indicate

that our C parser is among the fastest in the field, while at the

same time it recognizes most of the CIF features as mandated

by the IUCr grammar.

So far, COD::CIF::Parser only accepts CIF 1.1 format input.

Since the parser is generated from a grammar closely resem-

bling the BNF, the parser can be extended by amending its

source code in case COMCIFS implements extensions of the

CIF format. Notably, the development of the CIF 2.0 format is

under way (Bernstein et al., 2016). When the details of the CIF

2.0 standard are set, the parser can be extended, when

necessary, to accommodate this format as well. Ideally, this

should be done by adding further productions to the CIF

grammar. This would maintain backwards compatibility with

the previous CIF 1.x format and make sure that a single parser

can read both old format files from the archives and the newly

arriving extended syntax files – a feature very important for

the long-term archiving format. It turns out, however, that the

CIF 2.0 extensions are backwards incompatible with the CIF

1.x series of formats, and therefore a second grammar and a

second parser will have to be maintained. This is possible to

achieve by transforming the defining grammar of our parsers,

but the construction of the second set of parsers might add

more cost and require more effort than writing the original

parser, since the software development costs grow worse than

linearly with the system size (Boehm, 1981).

4. Discussion

To facilitate data exchange between different computer

programs and between different laboratories, an agreement on

a common data format or formats and strict adherence to the

definition of these formats is needed. Deviations cause

unnecessary delays in data processing, a need for extra human

intervention and, in the worst case, corrupt data and incorrect

results. We therefore strive to implement a CIF parser to the

letter of the IUCr CIF 1.1 documentation. Fig. 5 shows that

our parser in strict mode accepts all conforming files from the

vcif ‘trip’ suite and reports all non-conforming files. We also

carry out extra tests to check additional features of the CIF

grammar.

There is one area, however, where we decided to be slightly

less strict than the IUCr specification. In our parser, we

tolerate arbitrarily long lines, and report them only if this

check is explicitly requested. This is justified by the fact that

the programming languages we use (Perl and C) can seam-

lessly process strings of arbitrary length, and limiting line

length is in this case an extra burden. Reading long lines does

not lose or corrupt data in any way; conversely, limiting line

length and discarding trailing symbols might lead to data loss.

To our knowledge, all other modern programming systems

(e.g. Perl, Python, Java and Julia to name just a few) support

dynamic strings, and therefore programs written in these

languages should behave in a similar way. There is therefore a

drawback to rejecting an otherwise correct file just because it

has long lines, and the detection of these lines gives no benefit

unless we check our files for interaction with old style Fortran

programs. We thus decided to make our CIF reader as

permissive as possible, while of course writing out files as

strictly adhering as possible to the CIF 1.1 specification. Such a

policy guarantees that our tools are compatible with their own

output, their output is suitable for the largest number of

programs, and the tools themselves are capable of reading the

maximum number of inputs.

It is interesting to compare how different parsers behave on

various test sets of CIFs. Most CIF parsers seem to be able to

parse the correct CIFs and report the erroneous ones (Fig. 5)

from the vcif test suite. In some special cases, however, certain

parsers exhibit different behaviour; for instance, ZINC fails at

test case 2 (described as containing a null datablock), and both

PyCIFRW (version 4.1.1 only) and ucif fail at test case 5

(described as containing potential traps for lazy parsers). It

should be noted, however, that PyCIFRW 3.6.2.1 is able to

parse test case 5. The parsers cif2cif, COD::CIF::Parser,

PyCIFRW and vcif report data item names that exceed 80

characters at test case 8, with PyCIFRW even halting after

discovering an exceedingly long data item name.

Our own test cases seem to elicit even more diverse reac-

tions among CIF parsers. The NULL symbol, which is not

allowed in the CIF syntax, is reported as an error by our

parsers, PyCIFRW 3.6.2.1 and ucif; vcif reports the symbol

with a warning. The control symbol ^Z seems to be undetected

by PyCIFRW and ucif, even though it is not allowed by the

CIF syntax. The parsers cif2cif, PyCIFRW 3.6.2.1, vcif and

ZINC do not report an unquoted CIF value starting with an

opening bracket (‘[’). In addition, cif2cif, vcif and ZINC

accept values starting with a dollar sign (‘$’). These two

symbols are reserved and thus they are not allowed to start

cif applications

298 Andrius Merkys et al. � COD::CIF::Parser J. Appl. Cryst. (2016). 49, 292–301

Table 2
Total parsing time of 350 598 CIFs from the COD.

Parser Run time (min)

cif2cif 19.73
COD::CIF::Parser 3.95
COD::CIF::Parserfix 3.62
PyCIFRW-3.6.2.1 39.75
PyCIFRW-4.1.1 3062.22
ucif 5.15
vcif 2.68
ZINC 3.67

2 For COD::CIF::Parser we have explicitly used command line option
--report-long-items to turn on line and data item length checks, which
are turned off by default.

CIF data items. All CIF parsers except PyCIFRW 4.1.1 are

able to detect and report CIF loop constructions without

either tags or values, whereas STAR parsers behave differ-

ently: STAR::Parser appears to get caught in an infinite loop

and StarTools does not report them at all. CIF tags and values

following text fields without intermediate white space are

detected as errors by COD::CIF::Parser and StarTools only;

cif2cif and vcif detect only tags following text fields. ZINC

proves to be a quite robust, low-level tool, being able to

continue parsing even after running into non-ASCII symbols,

missing closing quotes and files with missing data headers.

Syntactic and semantic error detection is then left for higher-

level tools. However, ZINC gets caught in an infinite loop

after encountering a text field without a closing semicolon and

has to be stopped manually. All other parsers are able to

detect this kind of error and stop gracefully, with the exception

of cif2cif, which adds a terminating semicolon without notice.

A wrong number of CIF loop elements – more a semantic than

a syntactic error – is reported by all CIF parsers but PyCIFRW

3.6.2.1 and ZINC. Interestingly enough, these parsers employ

heuristics to remove overflowing tags or values. For the

purposes of the COD, however, such behaviour is too

dangerous since it can lead to the loss of data. Therefore

COD::CIF::Parser regards incomplete loop_ tables as fatal

errors, like vcif does.

Such diversity of parser reactions towards input files

probably reflects different needs and tasks, on one hand, and

different engineering trade-offs chosen by various authors, on

the other. For example, in the COD where the purpose is to

collect as much reliable data as possible from supplementary

data of publications and from user-provided files, the CIF

reader must be permissive; since extra-long lines do not

corrupt information in CIFs, we adhere to the limitations of

data item and line lengths when generating output, but not

when processing the input. Other situations, however, might

require different emphasis.

Finally, COD::CIF::Parser with extended CIF syntax (enti-

tled COD::CIF::Parserfix in Fig. 5) allows us to repair most of

the CIFs from the vcif test suite, as well as some erroneous

CIFs from our own test suite. Such behaviour proved very

useful in dealing with near-CIF input; our experience shows

that files of this kind are encountered even in the data from

peer-reviewed publications. Overall, the diverse behaviour of

existing CIF parsers and various needs of different applica-

tions demonstrate the utility of having several parsers avail-

able – on one hand, comparison of different parser behaviour

allows us to spot bugs in our own design; on the other hand, a

parser with the most suitable trade-offs (speed, manageability,

dependencies, compatibility with programming languages in

use) can be chosen when needed. Hitting the sweet spot of

engineering trade-offs suitable for the COD was one of the

motivations to build a CIF parser for Perl.

5. Conclusion

A CIF format parser was implemented in the Perl program-

ming language and optimized by providing a C library with

Perl and Python bindings. Our tests show that the resulting

code is one of the fastest and the most accurate CIF parsers in

the field. Comparing its output with that of other parsers was

instrumental in testing and debugging our parsers, as different

parsers exhibit different behaviour in some test cases. We must

note that such differences do not necessarily indicate errors

since different behaviour might be useful in different situa-

tions. In particular, our parser’s special error correcting mode

is necessary to ingest crystallographic data in near-CIF format

from various external sources. Thus, our parser proved useful

in managing large worldwide collections of crystallographic

data. In addition, fast performance and the possibility to call

the parser from different programs in the Perl, C and Python

languages allows one to employ it in various crystallographic

programs, and we hope that it will enable easier data exchange

between researchers. The COD::CIF::Parser parser can be

downloaded as part of the cod-tools software package (http://

www.crystallography.net/archives/2015/software/cod-tools/cod-

tools-1.0.tbz2) under the GPL2 free software license. The

package is also available as part of the supporting information

for this article.

APPENDIX A
Internal CIF data representation

The internal representation of a parsed CIF produced by

COD::CIF::Parser:

cif applications

J. Appl. Cryst. (2016). 49, 292–301 Andrius Merkys et al. � COD::CIF::Parser 299

APPENDIX B
EBNF grammar of the messages

The EBNF grammar used to format error and warning

messages of COD::CIF::Parser and the cod-tools package:

Acknowledgements

This research was funded by a grant (No. MIP-025/2013) from

the Research Council of Lithuania.

References

Bahn, S. R. & Jacobsen, K. W. (2002). Comput. Sci. Eng. 4, 56–66.
Beazley, D., Ballabio, L., Fulton, W., Gossage, M., Köppe, M., Lenz, J.,

Matus, M., Stewart, J., Yerkes, A., Yoshiki, S., Singhi, S., Delacour,
X., Betts, O. & Gang, D. Z. (2015). Simplified Wrapper and
Interface Generator, http://swig.org.

Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta
Cryst. B58, 364–369.

Bernstein, H. J., Bollinger, J. C., Brown, I. D., Gražulis, S., Hester,
J. R., McMahon, B., Spadaccini, N. & Westrip, S. P. (2016). J. Appl.
Cryst. 49, 277–284.

Bluhm, W. (2000). STAR (CIF) Parser, http://pdb.sdsc.edu/STAR/
index.html.

Boehm, B. W. (1981). Software Engineering Economics. Englewood
Cliffs: Prentice Hall.

Bollinger, J. (2011). CIF – Changes to the Specification,
http://www.iucr.org/__data/assets/pdf_file/0020/59420/cif2_syntax_
changes-jcb20110728.pdf.

Brown, I. D. & McMahon, B. (2002). Acta Cryst. B58, 317–324.
Cederberg, P. (2015). Grammatica::Parser Generator, http://

grammatica.percederberg.net/.
COMCIFS (2003). CIF 1.1 Specification, Appendix A, http://

www.iucr.org/resources/cif/spec/version1.1/cifsyntax#bnf.
Desarmenien, F. (1998). Parse::Yapp – Perl Extension for Generating

and Using LALR Parsers, http://search.cpan.org/perldoc?Parse::
Yapp.

Donnely, C. & Stallman, R. (2015). GNU Bison – The Yacc-
Compatible Parser Generator. Free Software Foundation, http://
www.gnu.org/software/bison/manual/.

Fitzgerald, P. M. D., Westbrook, J. D., Bourne, P. E., McMahon, B.,
Watenpaugh, K. D. & Berman, H. M. (2006). International Tables
for Crystallography, Vol. G, ch. 4.5, pp. 295–443, 1st online ed.
Chester: International Union of Crystallography.

Gildea, R. J., Bourhis, L. J., Dolomanov, O. V., Grosse-Kunstleve,
R. W., Puschmann, H., Adams, P. D. & Howard, J. A. K. (2011). J.
Appl. Cryst. 44, 1259–1263.

Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós,
M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A.
(2009). J. Appl. Cryst. 42, 726–729.

cif applications

300 Andrius Merkys et al. � COD::CIF::Parser J. Appl. Cryst. (2016). 49, 292–301

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB15

Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L.,
Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T. & Le Bail,
A. (2012). Nucleic Acids Res. 40, D420–D427.

Gražulis, S., Merkys, A., Vaitkus, A. & Okulič-Kazarinas, M. (2015). J.
Appl. Cryst. 48, 85–91.

Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–
671.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655–
685.

Hall, S. R. & Bernstein, H. J. (1996). J. Appl. Cryst. 29, 598–603.
Hall, S. R. & Spadaccini, N. (1994). J. Chem. Inf. Comput. Sci. 34, 505–

508.
Hall, S. R., Spadaccini, N., Brown, I. D., Bernstein, H. J., Westbrook, J.

D. & McMahon, B. (2006). International Tables for Crystal-
lography, Vol. G, ch. 2.2.7, pp. 25–36, 1st online ed. Chester:
International Union of Crystallography.

Hester, J. R. (2006). J. Appl. Cryst. 39, 621–625.
Hietaniemi, J. (2010). Perl Ports (Binary Distributions), http://

www.cpan.org/ports/.
ISO (1996). Information Technology – Syntactic Metalanguage –

Extended BNF. International Standard ISO/IEC 14977:1996(E).
International Organization for Standardization, Geneva, Switzer-
land.

Johnson, S. C. (1975). YACC: Yet Another Compiler–Compiler.
Computing Science Technical Report 32. AT&T Bell Laboratories,
Murray Hill, New Jersey.

Keller, P. A. (2013). A Lexical Analyser for STAR/CIF/mmCIF Data,
http://www.globalphasing.com/startools/StarTools_article.pdf.

Le Page, Y. & Rodgers, J. R. (2005). J. Appl. Cryst. 38, 697–705.
Levine, J. (2009). flex & bison. Sebastopol: O’Reilly.

Mallinson, P. R. & Brown, I. D. (2006). International Tables for
Crystallography, Vol. G, ch. 3.5, pp. 141–143, 1st online ed. Chester:
International Union of Crystallography.

McMahon, B. (2006a). International Tables for Crystallography,
Vol. G, ch. 5.3, pp. 499–525, 1st online ed. Chester: International
Union of Crystallography.

McMahon, B. (2006b). International Tables for Crystallography,
Vol. G, ch. 5.3.2.1, pp. 499–501, 1st online ed. Chester: International
Union of Crystallography.

Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia,
S., Gunter, D., Chevrier, V. L., Persson, K. A. & Ceder, G. (2013).
Comput. Mater. Sci. 68, 314–319.

Pemberton, S., Austin, D., Axelsson, J., Ãelik, T., Dominiak, D.,
Elenbaas, H., Epperson, B., Ishikawa, M., Matsui, S., McCarron, S.,
Navarro, A., Peruvemba, S., Relyea, R., Schnitzenbaumer, S. &
Stark, P. (2000). XHTML 1.0 The Extensible Hypertext Markup
Language (Second Edition). A reformulation of HTML 4 in XML
1.0. W3C Recommendation 26 January 2000, Revised 1 August 2002.
http://www.w3.org/TR/xhtml1/.

Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B.
(2016). Comput. Mater. Sci. 111, 218–230.

Rossum, G. van (2003). An Introduction to Python. Network Theory.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Stampf, D. R., (2004). ZINC – Galvanizing CIF to Work With UNIX,

http://www.globalphasing.com/startools/StarTools_article.pdf.
Toby, B. H., Von Dreele, R. B. & Larson, A. C. (2003). J. Appl. Cryst.

36, 1290–1294.
Todorov, G. & Bernstein, H. J. (2008). J. Appl. Cryst. 41, 808–810.
Wall, L., Christiansen, T. & Orwant, J. (2000). Programming Perl.

Sebastopol: O’Reilly.

cif applications

J. Appl. Cryst. (2016). 49, 292–301 Andrius Merkys et al. � COD::CIF::Parser 301

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5052&bbid=BB41

