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The presence of a large applied magnetic field removes the degeneracy of the

vacuum energy states for spin-up and spin-down neutrons. For polarized

neutron reflectometry, this must be included in the reference potential energy of

the Schrödinger equation that is used to calculate the expected scattering from a

magnetic layered structure. For samples with magnetization that is purely

parallel or antiparallel to the applied field which defines the quantization axis,

there is no mixing of the spin states (no spin-flip scattering) and so this

additional potential is constant throughout the scattering region. When there is

non-collinear magnetization in the sample, however, there will be significant

scattering from one spin state into the other, and the reference potentials will

differ between the incoming and outgoing wavefunctions, changing the angle

and intensities of the scattering. The theory of the scattering and recommended

experimental practices for this type of measurement are presented, as well as an

example measurement.

1. Introduction

Polarized specular neutron reflectometry measurements

require at least a small magnetic field to be applied throughout

the measurement apparatus, in order to maintain a well

defined neutron quantization axis. In addition, a larger field is

often applied at the sample position in order to manipulate the

magnetic state of the sample (Majkrzak et al., 2006). The

difference in the Zeeman energy for a spin-up versus a spin-

down neutron can lead to observable shifts in both the angle

and intensity of scattering for even modest applied fields (tens

of millitesla) when spin-flip scattering is appreciable; when the

spin-flip cross section is small compared to the non-spin-flip,

the corrections remain small.

This so-called Zeeman shift in spin-flipped reflected

neutrons was first described by Felcher et al. (1995) and has

been observed by many others (Felcher et al., 1996).

Kozhevnikov et al. (2012) presented a clear description of the

geometry of the incident and scattered beams. The reflectivity

calculation formalism including the Zeeman term was briefly

described by van de Kruijs et al. (2000), Fitzsimmon et al.

(2006) and Liu et al. (2011), but to our knowledge a detailed

description of the calculation is not available in the literature,

nor has such a calculation been incorporated into commonly

used modeling software.

These shifts are not a major concern in many experiments

(Liu et al., 2011) because the effect is significant only when

there is both a large applied field and strong spin-flip scat-

tering. At low fields the corrections are minimal, and at high

fields the magnetization tends to align parallel to the applied
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field, so there is insignificant spin-flip scattering. However,

there are important cases where accounting for the Zeeman

shift is necessary for appropriately measuring and analyzing

data. A technologically relevant example is the study of high-

anisotropy magnetic materials used in advanced data-storage

applications (Liu et al., 2011). In such cases the sample

magnetization can be non-collinear even with large applied

fields.

In this paper we will address the requirements for setting up

a measurement in a large field in the case where the spin-flip

scattering is not negligible. We present the changes that need

to be made to an existing commonly used computer algorithm

(implemented in gepore.f ; Majkrzak et al., 2006) in order to

calculate the scattering correctly, and we present recom-

mended practices for performing the measurements when

both the applied magnetic field H and the magnetization M

are large and not parallel to each other. This implies a large

magnetic anisotropy in the system. We take advantage of the

large shape anisotropy in a thin film of a soft magnetic

material in the example experiment section of this paper to

show clearly the effects we are discussing.

We must also address the meaning of the word ‘specular’. In

many texts on reflectivity the definition is given that the angle

of incidence equals the angle of reflection, or that the out-of-

plane component of the momentum of the incoming beam kz,in

is equal in magnitude to that of the outgoing reflected beam

kz,out. Here we will use a more functional definition based on

the momentum transfer Q � kin � kout. We define the

reflectivity as specular on the condition that the in-plane

momentum transfers Qx = 0 and Qy = 0, so that the momentum

transfer Q�Qzẑz (perpendicular to the surface), as is expected

when reflecting from planar layered samples.

As we will demonstrate, some of the kinetic energy along ẑz

is traded for potential energy during a spin-flip process, so the

earlier definitions do not apply in this circumstance, while Q

remains strictly out of plane.

2. Boundary conditions

Starting with the general Schrödinger equation for a neutron

with spin 1
2,

�
h- 2

2m
r

21̂1þ V̂VðrÞ � E1̂1

� �
 þðrÞ
 �ðrÞ

� �
¼ 0; ð1Þ

where  � is the spin-dependent wavefunction for the neutron,

1̂1 ¼
1 0

0 1

� �
;

r2 is the Laplacian (spatial second derivative) and the hatted

components indicate a Pauli spin matrix with z0 as the quan-

tization axis. We use the notation z0 for coordinates in the spin

quantization reference frame to distinguish it from the scat-

tering geometric reference frame where z is defined to be the

surface normal direction for the planar sample, and there is no

requirement that ẑz || z0. The potential of the particle is made

up of a scalar nuclear potential Vnuc and a magnetic potential

due to the field B:

V̂V ¼ �Nr � Bþ Vnuc1̂1; ð2Þ

where

r � B ¼
0 1

1 0

� �
Bx0 þ

0 �i

i 0

� �
By0 þ

1 0

0 �1

� �
Bz0 : ð3Þ

Here, �N = 5.0507835 � 10�27 J T�1 is the nuclear magnetic

moment.

In the ‘prepared’ spin-polarized beam, we define the

direction of the guide field to be ẑz0, so there are no off-diag-

onal elements to the potential above (because Bx0 � By0 � 0)

and the equation decouples into two linear equations for

potentials with V = Vnuc � �NBz0.

When the beam enters the fronting medium with non-

negligible B, there is no physical restriction on the direction of

B, but from an experimental design perspective we note that, if

the magnetic field in the fronting medium is not parallel to the

applied laboratory field direction ðẑz0Þ, i.e. there is a nonzero

Bx0 or By0 component to the field in this region, the wave-

function will be angularly split owing to the field-dependent

difference between kþF;x and k�F;x. The mutual coherence of the

two resulting beams will be impractical to calculate over the

macroscopic distances the beam will then travel after being

split.

This is not to be confused with the angular splitting which

occurs as the beam interacts with the horizontal layers of the

sample, which is what is usually being discussed when

describing reflectivity, and which is fully taken into account in

the calculations below.

Now, restricting ourselves to the case in which the B field in

the fronting medium is parallel to the guide field outside the

fronting medium, we can fully describe the interaction of the

neutron with the sample as in Fig. 1.

The incident neutron is ‘prepared’ in either the I+ or I� spin

state using techniques described elsewhere (Dura et al., 2006;

Majkrzak et al., 2006). Neglecting the contribution of a very

small magnetic guide field, the total energy of both states is
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Figure 1
Diagram showing the various components of the k and q vectors for a
polarized specularly reflected neutron entering a magnetic sample system
from the left-hand side. The coordinate system is also shown.



nearly the same for the same kV and is equal to the kinetic

energy:

EþV;xyz ’ E�V;xyz ’
h- 2

2m
k2

V;x þ k2
V;y þ k2

V;z

� �
: ð4Þ

We note that the problem as defined has no y dependence:

there are no interfaces along that direction (out of the page of

the figure) and so the solution for the wave equation along y is

for a plane wave exp(ikyy) with constant kinetic energy that

can be included in the total energy E. The problem can then be

treated as a two-dimensional Schrödinger equation in x and z,

with

E�V;xz ’
h- 2

2m
k2

V;x þ k2
V;z

� �
¼ E�V;xyz �

h- 2

2m
k2

V;y : ð5Þ

When the neutron enters the fronting medium at the boundary

labeled 1 in Fig. 1, the potential energy changes in a spin-

dependent way so that

EþF;xz ¼
h- 2

2m
kþF;x
� �2

þ kþF;z
� �2

þ 4� �F;N þ �F;B

� �h i
; ð6Þ

E�F;xz ¼
h- 2

2m
k�F;x
� �2

þ k�F;z
� �2

þ 4� �F;N � �F;B

� �h i
; ð7Þ

where the notation ki
F;V indicates the wavevector in the

medium (with the subscripts F and V denoting the fronting

and the vacuum, respectively) with spin state i (+ or �). The

nuclear scattering length density (SLD) of the fronting

medium �F,N depends on the isotopic composition of the

medium, while �F,B is the magnetic SLD, which can be calcu-

lated from the magnetic field in that layer by

�B ¼
2�nmnjBj

4�h- 2 ’ B� 2:31605� 10�6 Å
�2

T�1: ð8Þ

Here �n and mn are the magnetic moment and mass of a

neutron, respectively, and B is the magnitude of the magnetic

field in the fronting medium (in tesla).

Since the magnetic field inside the vertical boundary is

parallel to (though possibly much bigger than) the field

outside, the (+) or (�) spin state inside the vertical boundary

matches the prepared state. Also, by symmetry kz must be

preserved across the vertical boundary labeled 1, between the

vacuum and the fronting medium, so kV,z = kF,z. Since EþV;xz =

EþF;xz as well, this means that

kþF;x
� �2

¼ kV;x

� �2
� 4� �F;N þ �F;B

� �
;

k�F;x
� �2

¼ kV;x

� �2
� 4� �F;N � �F;B

� �
;

ð9Þ

which changes the angle of the neutron beam inside the

fronting medium (this is refraction, as indicated by the shor-

tened kx on the right-hand side of boundary 1 in Fig. 1). The

energy trade in kx is reversed when the neutron exits the

fronting at the boundary labeled 3; the kV,x on the right is the

same as that on the left. This is not in general true for kV,z, as

we will see.

Now we consider the next set of boundaries in the problem,

namely the horizontal interfaces of the sample under investi-

gation. The first of these is the top interface labeled 2, between

the fronting and the sample. When the neutron interacts with

this structure, it is possible to have a spin-flip event, so we

introduce a second indicator r (for reflected) in the notation

ki;r
F for the spin state of the outgoing neutron (still in the

fronting medium). We retain the indicator i for the incident

neutron spin state because this determines the energy in the

fronting, as described above.

We are considering the standard specular reflectometry case

where the sample under investigation is homogenous in plane.

Thus, while kz was conserved across boundary 1, now kx is

conserved across boundaries such as 2, so

kþ;�F;x ¼ kþ;þF;x ¼ kþF;x;

k�;þF;x ¼ k�;�F;x ¼ k�F;x;
ð10Þ

and because the total energy of the neutron is conserved

during elastic scattering, we can write

Eþ;�F;xz ¼
h- 2

2m
kþ;�F;x

� �2
þ kþ;�F;z

� �2
þ 4� �F;N � �F;B

� �h i
¼ EþF;xz: ð11Þ

Subtracting this from equation (6) gives

kþ;�F;z

� �2
¼ kþF;z
� �2

þ 8��F;B: ð12Þ

In a similar fashion for the (�) state, we can obtain

k�;þF;z

� �2
¼ k�F;z
� �2

� 8��F;B; ð13Þ

while the non-spin-flipped neutrons are not shifted:

kþ;þF;z

� �2
¼ kþF;z
� �2

;

k�;�F;z

� �2
¼ k�F;z
� �2

:
ð14Þ

At the next boundary, labeled 3, where the neutrons exit the

fronting material and go back into the laboratory environment

(vacuum), kz is again conserved by symmetry, as it was at

boundary 1, so the shift in the spin-flipped kz is carried across

this boundary (ki;r
V;z = ki;r

F;z for all i, r).

The difference between kþ;�V;z and kþ;þV;z leads to a different

propagation direction for the spin-flipped neutron; this

measurable angular shift is referred to as Zeeman splitting.

There are values of k�F;z for which ðk�F;zÞ
2 < 8��F,B and

therefore the calculated momentum squared for the spin-

flipped reflection ðk�;þF;z Þ
2 is negative, so that k�;þF;z becomes

purely imaginary. The calculated amplitude for this reflection

is valid at the interface, but this is an evanescent wave that

decays as it moves away from the sample. The value of the

measured reflectivity corresponds to the amplitude at the

detector and is thus effectively zero in this case.

2.1. Details of magnetic field geometry

In the above discussion, the transition from vacuum with

zero applied field to a high-field region (also with a possibly

nonzero nuclear SLD) was described as a sharp boundary

perpendicular to the sample plane (along x). In that case, the

momentum along z is unchanged by the transition, kF,z = kV,z,

and energy conservation leads only to a change in kx: ðkþF;xÞ
2 +

4�(�F,N + �F,B) = k2
V;x.
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In real laboratory environments the magnetic field transi-

tion is not as abrupt as what is shown in Fig. 1, and the

direction is not perfectly defined, though typically the applied

magnetic field is realized in a small volume centered on the

sample and the field gradient experienced by the probe

neutron is, to first order, radial with respect to the sample.

Since for any gradient in the potential the momentum

components perpendicular to the gradient direction are

conserved throughout the interaction with the potential, the

abruptness of the transition is irrelevant and only the direction

is important.

So, compared to a more realistic radial magnetic potential

gradient parallel to the neutron momentum, we expect that, by

using our simplified rectangular boundary conditions (where

the sharp gradient at that boundary is along x̂x and is nearly but

not quite parallel to kin), we introduce an error in the calcu-

lated ðk�F;zÞ
2 proportional to sin2�, where � is the angle between

the normal to the rectangular boundary and kin. Because of

the right angle between that boundary and the film surface, the

result is that � coincides with the incident angle �in of the

neutron on the film surface.

At the small angles (�in < 6�) commonly seen for the inci-

dent angle during a reflectometry measurement, this results in

a maximum correction to ðk�F;zÞ
2 from the model proposed

above of the order of 1% of �4��B (with the opposite

correction made to E�F;z). At the even smaller angles (�in ’

0.5�) near the critical edge where these shifts might affect the

modeling, the correction is just 0.01% of the magnetic SLD.

For this reason, in many cases it is a reasonable approximation

that all of the kinetic energy shift in the fronting region prior

to the sample is along the x direction, as defined by the sample

coordinate system in Fig. 1.

3. Calculation of the spin-dependent reflectivity

3.1. One-dimensional Schrödinger equation

Again considering the region between boundaries 1 and 3 as

above, we can calculate the reflectivity of the horizontally

layered structure there by reducing the Schrödinger equation

to a single spatial dimension z and solving with the boundary

conditions laid out above. Since the potential is constant as a

function of x in this region (as it is for y everywhere), and

V(r) = V(z), the one-dimensional spin-dependent Schrödinger

equation for the neutron is then (Majkrzak et al., 2006)

�
h- 2

2m

@2

@z2
1̂1þ V̂VðzÞ � Ei

F;z1̂1

� �
 i;þðzÞ

 i;�ðzÞ

� �
¼ 0; ð15Þ

where

V̂VðzÞ ¼
VþþðzÞ Vþ�ðzÞ

V�þðzÞ V��ðzÞ

� �

¼
4�h- 2

2m

�N þ �Bz0 �Bx0 � i�By0

�Bx0 þ i�By0 �N � �Bz0

 !
ðzÞ; ð16Þ

and we fold the constant kinetic energy along x into E as we

did for y before:

Ei
F;z ¼ Ei

F;xz �
h- 2

2m
k2

F;x: ð17Þ

Ei
F;z depends on the spin state of the incident neutron as well

as on the potential in the fronting medium, as

E�F;z ¼
h- 2

2m
4� �F;N � �F;B

� �
þ kV;z

� �2
h i

: ð18Þ

A set of solutions to equation 15 is laid out in the paper by

Majkrzak et al. (2006), as (except now keeping track of the

polarization i of the incident state)

 i;þ
ðzÞ ¼

P4

j¼1

Ci
j exp Si

jz
� �

;

 i;�ðzÞ ¼
P4

j¼1

�jC
i
j exp Si

jz
� �

;

ð19Þ

where

Si
1 ¼ 4� �N þ �Bð Þ �

2m

h- 2
Ei

F;z

� �1=2

;

Si
2 ¼ � Si

1;

Si
3 ¼ 4� �N � �Bð Þ �

2m

h- 2 Ei
F;z

� �1=2

;

Si
4 ¼ � Si

3;

ð20Þ

and

�1 ¼�2 ¼
Bþ Bx0 þ iBy0 � Bz0

Bþ Bx0 � iBy0 þ Bz0
;

�3 ¼�4 ¼
�Bþ Bx0 þ iBy0 � Bz0

�Bþ Bx0 � iBy0 þ Bz0
;

ð21Þ

and the terms Ci
j are the complex coefficients of the four

components.

Within the fronting medium F the propagation constants S

are simply equal to the incident wave value ikF,z, since the

potentials � cancel between equations (18) and (20) for the

incident beams I+, I�.

When the external magnetic potential is negligible, the E in

the above equations is the same for both incident beam

polarizations but, in general, EþF;z 6¼ E�F;z for a sufficiently

large field. Because of this, if we measure the reflectivity at the

same kV,z for both the I+ and I� states, we have to distinguish

between polarization states for the incoming beam.

This distinction based on the Zeeman energy of the neutron

in the fronting medium is the basis for a small but critical

change to the existing computer code for calculating reflec-

tivity (see gepore.f ; Majkrzak et al., 2006). There the term

proportional to E is set to Q2/4� 4��F,N (for Q� 2kV,z), which

accounts for only the kinetic and nuclear potential energy in

the fronting medium; this gives the correct answer for any case

except when the Zeeman term is appreciable, so we will use

ð2m=h- 2
ÞE�F;z instead, which includes the kinetic, nuclear and

magnetic energies in the fronting medium appropriate for the

relevant incident spin state.

Also in the previous code, equation (21) for the ratio of  �

to  + components is replaced with
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�1 ¼�2 ¼ exp i�Mð Þ;

�3 ¼�4 ¼ � exp i�Mð Þ;
ð22Þ

where �M is the in-plane (x, y) angle, with the underlying

implicit assumptions that the contribution to B from Happlied is

negligible and that the net Bz (out of the sample plane) is zero.

These assumptions are quite reasonable for low values of H

even when there is a large perpendicular magnetization,

because for thin-film samples the demagnetization field |HD| =

HDz ’ �Mz almost completely cancels the contribution of the

net perpendicular component Mz to Bz [because B = �0(M +

Happlied + HD + � � �)]. [Of course, the demagnetizing field does

not exactly cancel the magnetic field along z, and there is a

non-zero B field at large distances from the sample (measur-

able with a magnetometer) which is proportional to the

volume integral of M. In the thin-film geometry, the surface to

volume ratio goes to infinity, and this is why there is effectively

zero B? at the surface.]

Now that we are including the effects of an arbitrary

external field, however, we must include Bz ’ Hz and return

the more general equation (21) for �.

Since the applied field along z and the associated potential

are constant across the sample volume, this does not lead to

any additional scattering, which in the continuum limit

happens only at discontinuities in the potential. Still, it must

be included since it affects (or rather, effects) the relative

phase of spin-flipped versus non-spin-flipped portions of the

neutron wavefunction, which changes the measured reflec-

tivity.

3.2. Reparametrization of w and reflectivity derivation

In the more general equation (21), the values of �1 or �3

become unbounded when B approaches a direction perfectly

parallel or antiparallel to the spin quantization direction ẑz0.

This situation of course always occurs in the fronting (and

backing) medium, since there the field direction defines the

quantization direction, ẑz0 � B̂BF. While the equations are

analytically correct when one takes the appropriate limits,

floating-point computation errors are introduced when

multiplying and dividing arbitrarily large numbers in a

computer.

Since the � values in equation (19) serve only to describe

the ratio between the components of  + and  �, and because

�1 = �2 and �3 = �4, we can rearrange that equation as

 i;þ
ðzÞ ¼Di

1 exp Si
1z

� �
þDi

2 exp Si
2z

� �
þ �Di

3 exp Si
3z

� �
þ �Di

4 exp Si
4z

� �
;

 i;�
ðzÞ ¼ �Di

1 exp Si
1z

� �
þ �Di

2 exp Si
2z

� �
þDi

3 exp Si
3z

� �
þDi

4 exp Si
4z

� �
;

ð23Þ

and, relating these constants to our previous parametrization,

we obtain

� ¼�1;

� ¼ 1=�3;

D1 ¼C1;

D2 ¼C2;

D3 ¼C3=�;

D4 ¼C4=�:

ð24Þ

This solution to the Schrödinger equation is valid within any

layer of the material, so we can calculate the reflectivity by

using the boundary conditions to stitch together solutions

from adjacent layers. At any interface, the value of the

wavefunction and its first derivative [ ,  0] must be contin-

uous across that boundary. We can write the wavefunction in

terms of the Di
j coefficients in that layer (for either incident

spin state i):

 i;þðzÞ

 i;�ðzÞ

 0i;þðzÞ
 0i;�ðzÞ

2
664

3
775 ¼ 	ðzÞ

Di
1

Di
2

Di
3

Di
4

0
BB@

1
CCA; ð25Þ

where from equation (23)

	ðzÞ ¼

1 1 � �

� � 1 1

S1 �S1 � ��

�S1 ��S1 S3 �S3

0
BBB@

1
CCCA

�

exp S1zð Þ 0 0 0

0 exp �S1zð Þ 0 0

0 0 exp S3zð Þ 0

0 0 0 exp �S3zð Þ

2
6664

3
7775

¼

1 1 � �

� � 1 1

S1 �S1 � ��

�S1 ��S1 S3 �S3

0
BBB@

1
CCCA exp Szð Þ � I½ 	:

ð26Þ

Here �, � and S are specific to the layer l and incident spin

state i being calculated. At the boundary between layers l and

l + 1 (we will define the boundary position z � Zl here), we

have  l =  l+1 and  0l =  0lþ1, so that

	l Zlð Þ

D1;l

D2;l

D3;l

D4;l

0
BB@

1
CCA ¼ 	lþ1 Zlð Þ

D1;lþ1

D2;lþ1

D3;lþ1

D4;lþ1

0
BB@

1
CCA: ð27Þ

Thus to get {Dl+1} from {Dl}, we invert 	l+1 and

	�1
lþ1 Zlð Þ	l Zlð Þ

D1;l

D2;l

D3;l

D4;l

0
BB@

1
CCA ¼

D1;lþ1

D2;lþ1

D3;lþ1

D4;lþ1

0
BB@

1
CCA; ð28Þ

where the formula for 	�1 can be calculated to be
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	�1ðzÞ ¼
1

2ð1� ��Þ
exp �Szð Þ � I½ 	

1 �� 1
S1

��
S1

1 �� �1
S1

�
S1

�� 1 ��
S3

1
S3

�� 1 �
S3

�1
S3

0
BBB@

1
CCCA:
ð29Þ

Since � and � never have the same complex phase, the

denominator of equation (29) is never zero. Then for a

structure with N layers, the coefficients of the transmitted

wave fDi
j;Ng are related to the coefficients in the incident

medium fDi
j;0g by

Di
1;N

Di
2;N

Di
3;N

Di
4;N

0
BBBB@

1
CCCCA ¼

Y1

N

	i
n

� ��1
Zn�1ð Þ	i

n�1 Zn�1ð Þ

Di
1;0

Di
2;0

Di
3;0

Di
4;0

0
BBBB@

1
CCCCA

¼Bi

Di
1;0

Di
2;0

Di
3;0

Di
4;0

0
BBBB@

1
CCCCA; ð30Þ

where the pairs of 	�1
n ðZn�1Þ	n�1ðZn�1Þ are 4 � 4 matrices.

Note that the matrices differ for the different incident spin

states, and so we have to calculate the matrix products B+ and

B� separately. The remaining boundary conditions are met by

identifying the coefficients in the fronting medium for the two

polarized incident states I+ and I�,

D1;0

D2;0

D3;0

D4;0

0
BB@

1
CCA
þ

¼

Iþ

rþ;þ

0

rþ;�

0
BB@

1
CCA and

D1;0

D2;0

D3;0

D4;0

0
BB@

1
CCA
�

¼

0

r�;þ

I�

r�;�

0
BB@

1
CCA; ð31Þ

and the coefficients in the backing medium,

D1;N

D2;N

D3;N

D4;N

0
BB@

1
CCA
þ

¼

tþ;þ

0

tþ;�

0

0
BB@

1
CCA and

D1;N

D2;N

D3;N

D4;N

0
BB@

1
CCA
�

¼

t�;þ

0

t�;�

0

0
BB@

1
CCA: ð32Þ

Note that D2,N and D4,N are zero because of the boundary

condition that the upward-traveling wave coefficient in the

backing medium is zero (only downward-traveling waves

corresponding to transmission are physical in our experi-

mental setup).

For the I+ incident state, I� � 0 and vice versa, so we can

calculate the ratios r+,+
� r+/I+, r+,�

� r�/I+ etc. from the B

matrix product of equation (30) by using the zeros in D2,N,

D4,N, which gives two equations with two unknowns (r+, r�) if

we take the incident intensity to be unity. This gives for the

different cross sections

rþ;þ ¼
Bþ24Bþ41 � Bþ21Bþ44

Bþ44Bþ22 � Bþ24Bþ42

;

rþ;� ¼
Bþ21Bþ42 � Bþ41Bþ22

Bþ44Bþ22 � Bþ24Bþ42

;

r�;þ ¼
B�24B�43 � B�23B�44

B�44B�22 � B�24B�42

;

r�;� ¼
B�23B�42 � B�43B�22

B�44B�22 � B�24B�42

:

ð33Þ

As can been seen in equation (26) above, the new constants �
and � have real physical significance as the mixing terms

between  + and  � in a given layer, and for any Bz0 
 0 the

constants � and � are found inside the unit circle in the

complex plane, i.e. |�, �| � 1. In the fronting and backing

media, they are both identically zero.

For a layer perfectly antiparallel to ẑz0, � and � will still be

unbounded, but we further note that the numbering of the

roots in equation (20) is arbitrary, so for every layer where

Bz0 < 0 we perform this switch for the matrix corresponding to

that layer: S01 ! S3, S03 ! S1, � 0 ! 1/� and �0 ! 1/�. The new

�0 and � 0 again have a magnitude less than or equal to one, and

we can carry on with the calculation. This has no effect on the

calculated reflectivity and the matrices are now all well

conditioned (the magnitude of the matrix elements is always

less than or equal to one). However, if the calculated values of

Dj are to be used to reconstruct the full wavefunction within

that layer (say, for a distorted-wave Born approximation

calculation) one has to be aware of the switch that was made,

so that the multiplier Dj is correctly associated with the

propagation vector S0j instead of Sj. As in the parallel case, for

perfectly antiparallel B the mixing terms are exactly zero.

It is interesting that, in this new parametrization, the

degenerate case where the magnetization is always aligned

parallel or antiparallel to the applied H reduces very obviously

to two uncoupled equations for the propagation of  + and  �,

since the mixing terms in every layer are zero.

Since the spin of the incoming beam is never flipped in this

case, the reference energy (including a Zeeman term) for the

reflected neutron in the fronting medium will match the

energy of the incident neutron for both possible incident spin

states, and it can be subtracted from all the equations with no

effect as an arbitrary energy offset. Thus, a Zeeman correction

to the expected reflectivity will only be needed when there is

non-collinear magnetization of the layers, but when this

correction has to be made it will alter all the cross sections,

including the non-spin-flip reflectivity (because of cross terms

in the calculation between spin-flip and non-spin-flip reflec-

tivity).

3.3. Parametrization of k and E

The wave propagation constants S in equation (20) are

dependent only on the fixed potentials �B and �N for that

layer, and an energy term which depends on the spin state and

kz of the incident neutron. If the reflectivity is solved for a

given E, this corresponds to a set of kþF;z 6¼ k�F;z:
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k�F;z ¼
2m

h- 2
E� 4� �F;N � �F;B

� �� �1=2

: ð34Þ

While this saves roughly a factor of two in computation time

by mapping a single energy to the corresponding k for the two

incident spin states, it does not match the way a reflectometry

experiment is typically carried out at a reactor-based beam-

line, where all four spin-dependent cross sections are

measured for a single incident wavevector. A more natural

instrument coordinate system is based on the incident and

reflected angles (�in, �out), which map onto (kin, kout), and so

we calculate the reflectivity twice for each value of kin, once

for each spin state and the corresponding value of Ei
F;z.

4. Measurement setup

4.1. Sample and detector angles

While a shift in the reference potential had a large effect on

the calculated reflectivities above, it is the angular shift (i.e.

�out � �in) in the spin-flipped reflected beam that most affects

the instrument setup for this type of measurement.

From the shift in kz in equations (12) and (13), we can

calculate the outgoing angle of the reflected beam by

�out ¼ arctan kzðoutÞ=kx

� 	
: ð35Þ

From equation (35), it is easy to see that the angular shift of

the spin-flipped reflected beam changes during the measure-

ment, so a position-sensitive neutron detector will clearly

facilitate experiments when the Zeeman effect is significant.

However, some existing reactor-based polarized neutron

reflectivity beamlines use pencil detectors. These have their

own advantage of a very high detection efficiency, but an

unconventional experimental procedure is required to take

care of the Zeeman effect. Below, we detail the experimental

setup using a pencil detector when the Zeeman effect is

significant. For the four possible spin cross sections, three

different values of kz(out) (and therefore of detector angle) are

found for a single kz(in) in the specular condition [kx(in) =

kx(out)]; one spin-flipped state is shifted higher and the other is

shifted lower, while the two non-spin-flip processes give kz(in) =

kz(out), so that �in = �out. One could just as well choose a fixed

�out and kz(out), and calculate the three possible values of kz(in)

for specular scattering, but for this discussion we will use kz(in)

as the fixed quantity.

Since the polarization efficiency of the measurement system

typically depends on the instrument geometry, for each of the

three �out corresponding to a specularly reflected beam, all

four spin cross sections have to be measured in order to

extract an efficiency-corrected reflectivity for that angle. Only

one of the corrected reflectivities out of the four will be used

from the measurements at Zeeman-shifted angles ��þout and

�þ�out , while two reflectivities can be extracted from the non-

spin-flip �þþout = ���out = �in. Overall, this increases the

measurement time by a factor of three compared with an

experiment without Zeeman corrections.

5. Example measurement
5.1. In-plane magnetic sample

In order to realize a large moment non-collinear with the

field, a sample of a very magnetically soft material (Ni–Fe

alloy) was grown on a single-crystal Si substrate and capped

with a layer of Pd to prevent oxidation (as shown in Fig. 2).

For the principal polarized neutron reflectometry

measurement of this study, an external magnetic field was

applied for a measurement at a small angle to the film surface

normal, as seen in Fig. 2. The demagnetizing field (shape

anisotropy) of the film acts to keep the magnetization in plane,

and for appropriate choices of field strength and angle this

dominates over the torque from the applied field, so that the

magnetization remains largely in plane. At the same time, the

small in-plane component of the field Hx is enough to align the

layer into a single domain, pointing mostly along x.

This arrangement provides an ideal test of the equations,

since there is both a large moment M ? H providing spin-flip

scattering, and simultaneously a large H field which causes

Zeeman splitting of the spin-flipped neutrons.

Using a vibrating-sample magnetometer measurement, we

verified that the test sample is indeed magnetically soft with a

saturation field in the hard (out-of-plane) direction of about

0.5 T, and at 0.244 T (the applied field for the neutron

measurements) the out-of-plane loop is linear with field,

suggesting a coherent rotation. This verifies that it is a

magnetically soft film with the expected shape anisotropy and

no significant domain formation under the neutron measure-

ment conditions.

A supplementary reflectometry measurement of the same

sample was done in an in-plane saturating field in order to

obtain a good value of the saturation magnetization of the soft

magnetic layer. The scattering results from this measurement

(not shown) are easily fitted to standard models of polarized

neutron reflectometry without Zeeman corrections and indi-

cate a saturation internal B field of 0.551 T (M =

439.53 kA m�1). This is below the expected value for an Ni–Fe

alloy, which may result from the incorporation of oxygen in

the film due to a poor vacuum during the deposition process.

Nevertheless, for the purposes of this investigation, all that is
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Figure 2
A sketch of the test sample, showing a side view of the layer structure of
Pd (200 Å) on an Ni–Fe alloy (600 Å) on an Si substrate. The sample
lateral size is 25 � 25 mm. The external applied field is slightly tilted with
respect to the surface normal.



required is a magnetically soft film, and the exact magnetiza-

tion is irrelevant.

5.2. Results

The reflectivity measurements were undertaken at the

Polarized Beam Reflectometer instrument (PBR) at the NIST

Center for Neutron Research, with a supermirror spin polar-

izer and analyzer and current-coil Mezei-type spin flippers for

the incident and reflected beams. In an applied field �0Ha =

244 mT at an angle as shown in Fig. 2, for a series of kz(in), all

four spin cross sections were measured at each of the three

outgoing angles corresponding to ðkþ�z;F Þ, ðk
þ�
z;F Þ and ðkþþz;F ; k��z;F Þ.

The data for each of those outgoing angles were corrected for

polarization and the relevant cross sections were extracted.

In Fig. 3 we show best fits to the data performed using the

freely available Refl1D software package (Kirby et al., 2012;

Kienzle et al., 2015), but without making corrections for the

Zeeman effect. The symbols represent data points with error

bars, and the lines represent the best fits possible.

We compare these with fits performed using a modification

of the software, which includes the changes to the theory

described in the first part of this manuscript. Both the data and

the fits are presented in Fig. 4.

In the uncorrected fits in Fig. 3, we can clearly see that the

splitting between the non-spin-flip scattering at low kz(in) is

grossly underestimated in the best-fitting model. In this region

the error bars are small, owing to the strong scattering, and

this is what leads to the large minimum 	2 value of 25.0 for

these fits. An enlargement of this region for comparing

corrected versus uncorrected fits is shown in Fig. 5.

By contrast, the Zeeman-corrected fits are very good, with a

	2 value of 3.7. The visible deviations of the spin-flip data from

the fits at very low kz(in) are likely to be due to issues with the

polarization correction (the correction is of the same magni-

tude as the spin-flip data there), and this does not significantly

affect the rest of the fit. In the enlarged plot in Fig. 5(b), these

fits clearly reproduce the data near the critical edge. The best

fits to the data correspond to a magnetic SLD in the Ni–Fe

layer of �B = 1.12 � 10�6 Å�2 and thus Mx = 385 kA m�1.

The SLD profiles (nuclear and magnetic) resulting from the

uncorrected fits in Fig. 3 are shown in Fig. 6 as dotted lines,

while the SLD profiles from the corrected fits in Fig. 4 are

shown as solid lines. The difference between the profiles is

most significant in the region of the capping layer, where the
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Figure 3
The reflectivity of the test sample and the best fit without including the
effects of the Zeeman energy. The data are shown as open symbols, with
error bars corresponding to �1
 according to the counting statistics and
the resolution function of the instrument. The fits are shown as solid lines
(the reduced 	2 for these fits is 25.0). The data were parametrized and
fitted according to kz(in).

Figure 5
Enlargements of the reflectivity fits near the critical edge. (a)
Enlargement corresponding to the fits without Zeeman corrections in
Fig. 3. (b) Enlargement corresponding to the corrected fits in Fig. 4. A
clear improvement in the quality of the fits is seen. Symbols and lines
have the same meanings in this plot as in the originals.

Figure 4
The reflectivity of the test sample, in all four cross sections, including fits.
The data are shown as open symbols, with error bars corresponding to
�1
 according to the counting statistics and the resolution function of the
instrument. The fits are shown as solid lines (the reduced 	2 for these fits
is 3.7). The data were parametrized and fitted according to kz(in).



uncorrected fit gives an unphysically low value of the nuclear

SLD of the Pd capping layer (2.7 � 10�6 Å�2 rather than the

expected value of 4.1 � 10�6 Å�2), and an unrealistically low

roughness for the top interface, which one would expect to

have a similar roughness to that of the interface immediately

below.

The out-of-plane component of M for a system with uniaxial

anisotropy arising from the demagnetization field is expected

to be linearly dependent (when rotating coherently across the

entire sample) on an applied out-of-plane field, reaching its

saturation value at Hk = MS (where MS is the saturation

magnetization). In our case, Mz ’ (Ha/Hk)MS = (0.244/

0.551)MS, and since Mz = MScos’ and Mx = MS sin’, we can

extract an expected value for the in-plane magnetization Mx’

394 kA m�1, which agrees well with the fitted value of

385 kA m�1.

The most striking feature of the scattering in Fig. 4 is the

large splitting between the non-spin-flip reflectivities R++ and

R�� at low kz(in), but which disappears at higher kz. This is a

signature of the Zeeman effect, which will be most

pronounced when the Zeeman energy is comparable to the

kinetic energy along the scattering direction.

The best indication that this splitting is a result of the

Zeeman effect is to compare with data fitted to a model with

no Zeeman energy included; these are the curves shown in

Fig. 3.

In Figs. 4 and 3 there is an apparent horizontal shift between

the two spin-flip reflectivities. This is entirely due to the choice

of plotting these data as a function of 2kz(in). If we had chosen

to plot the data versus the total momentum transfer Q, the

features would be mostly aligned, but the advantage of plot-

ting the data the way we have is that the scattering sum rules

are more apparent; for an incident beam I� at low angles

where the scattering is strong, we can clearly see the non-spin-

flip reflectivity R�� has a dip when R�+ has a peak (a similar

correspondence is seen between R++ and R+�).

6. Conclusions

We have described a procedure for measuring polarized

neutron reflectivity in high fields, including important changes

to the modeling and instrument configuration due to Zeeman

shifts in the energy and angle of spin-flip scattered neutrons.

These considerations will be important for the characteriza-

tion of thin films with a large magnetic anisotropy, which are a

component of a growing number of technologically relevant

systems.

A data-modeling package with the necessary modifications

for this type of measurement has been demonstrated to

provide accurate quantitative fits of a test system, and this

software is now readily available to the research community

(Kienzle, 2015). The deviations from non-Zeeman-corrected

polarized specular neutron modeling are most pronounced

where the spin-flip scattering is most intense.
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Figure 6
Scattering length density (SLD) profile corresponding to the fits shown in
Fig. 4 (solid line) and Fig. 3 (dashed line). �N and �M refer to the nuclear
and magnetic SLDs, respectively, in blue and green. For reference, the
profiles are overlaid on a color-coded diagram of the sample structure as
shown in Fig. 2.
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