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The method of angular- and wavelength-dispersive (e.g. two-dimensional)

Rietveld refinement is a new and emerging tool for the analysis of neutron

diffraction data measured at time-of-flight instruments with large area detectors.

Following the approach for one-dimensional refinements (using either scattering

angle or time of flight), the first step at each beam time cycle is the calibration of

the instrument including the determination of instrumental contributions to the

peak shape variation to be expected for diffraction patterns measured by the

users. The aim of this work is to provide the users with calibration files and – for

the later Rietveld refinement of the measured data – with an instrumental

resolution file (IRF). This article will elaborate on the necessary steps to

generate such an IRF for the angular- and wavelength-dispersive case,

exemplified for the POWGEN instrument. A dataset measured on a standard

diamond sample is used to extract the profile function in the two-dimensional

case. It is found that the variation of reflection width with 2� and � can be

expressed by the standard equation used for evaluating the instrumental

resolution, which yields a substantially more fundamental approach to the

parameterization of the instrumental contribution to the peak shape.

Geometrical considerations of the POWGEN instrument and sample effects

lead to values for ��, �t and �L that yield a very good match to the extracted

FWHM values. In a final step the refinement results are compared with the one-

dimensional, i.e. diffraction-focused, case.

1. Introduction

Since its invention in the late 1960s the Rietveld method

(Rietveld, 1969) has been widely used for the investigation of

structural and – using neutron powder diffraction – even

magnetic properties of powdered polycrystalline samples. One

of the prerequisites for the analytical description of total

integrated intensities by a least-squares fit of the full diffrac-

tion profile is the appropriate description of the individual

peak shapes. When the Rietveld method was first introduced

mainly Gaussian distributions were considered, but over time

more and more complex peak shapes have been added to the

pool of usable peak profiles, culminating in highly sophisti-

cated peak shape functions such as pseudo-Voigt with back-to-

back-exponentials (Von Dreele et al., 1982) as used at modern

time-of-flight (TOF) diffractometers.

When trying to properly describe the peak shape, it

immediately becomes apparent that a plethora of different
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effects are contributing. These can be divided into instru-

mental effects arising from the neutron source as well as the

layout of the instrument – causing a change in instrumental

resolution with the scattering variables – and the intrinsically

more interesting sample effects (e.g. crystal structure, particle

size, micro-strain or texture effects). In general, a so-called

instrumental resolution file (IRF) is provided to the user of a

modern TOF instrument, comprising the basic parameters for

a description of the source/instrument contribution to the

measured peak shapes. These parameters should remain fixed

during the refinement procedure such that deviations from the

observed peak shape have to be addressed by additional

sample-dependent terms.

Modern powder diffractometers with large area detectors at

advanced neutron spallation sources typically operate in TOF

mode, initially resulting in angular- and energy-dispersive

datasets. The current approach at existing TOF instruments is

to reduce, transform and integrate the accumulated data to the

well known one-dimensional diffraction patterns (Schäfer et

al., 1992; http://www.mantidproject.org) that can be routinely

treated using standard Rietveld refinement packages (Bruker,

2005; Toby & Von Dreele, 2013; Larson & Von Dreele, 1994;

Lutterotti et al., 1999; Rodriguez-Carvajal, 1993; Petřı́ček et

al., 2014). This procedure has the advantage of providing

readily refinable diffraction datasets that are relatively small

in size and thus allow for quick calculation times. A significant

amount of the originally available information is lost,

however, and cannot be exploited. Furthermore, regions of

varying resolution are integrated for single reflections, which

can ultimately lead to a complex variation of the peak shape in

a single diffraction pattern.

It would therefore be highly favorable to avoid these data-

treatment steps and use the neutron diffraction data in its

original two-dimensional (i.e. intensity as a function of 2� and

TOF/�) form. Up to now, only very few scientific publications

could be found that are at least related to this important topic

(Schäfer et al., 1992; Wang et al., 2004).

In order to improve the data analysis capabilities for

powder diffraction, we have recently devised (Jacobs et al.,

2015) an alternative approach using the diffraction data in

their pristine form and implementing a two-dimensional

description of the peak shape variation. In this study we build

upon the foundations laid out in the quoted paper and not

only refine but also advance our approach. This is achieved by

closely examining the dataset of a standard diamond sample

measured at the POWGEN instrument, which serves as one

suitable reference for the instrument resolution function (Huq

et al., 2010). POWGEN is a medium- to high-resolution

instrument featuring a large area detector designed and built

to optimally match the angular resolution ��cot� to the

almost constant relative time resolution �t=t (Huq et al.,

2010), resulting in an almost constant �d/d within the total

frame of a measurement. Thus, at first glance, the POWGEN

instrument might not seem to be the best choice for such an

investigation, but we will show that even for an instrument

optimized for constant resolution one may gain a significant

benefit in the characterization of the instrumental resolution

by the multi-dimensional approach, mainly because, in addi-

tion to the width, the shape also changes with 2� and �.

Additionally, most other time-of-flight powder diffractometers

have less homogeneous resolution functions: see for example

the instruments WISH, POLARIS, HRPD at ISIS and Super-

HRPD at JPARC. Currently, the valid approaches in data

analysis are more or less workarounds, which either ignore

most of the data and focus on the region of interest (e.g.

backscattering for high resolution) or group data according to

different detector banks for a multi-pattern Rietveld refine-

ment process. The ability to deal with varying resolution

functions also allows for a simpler and more cost-effective

detector design, as seen for future instruments such as

POWTEX (Conrad et al., 2008; Houben et al., 2012) and

DREAM (Schweika et al., 2016). In general, all these instru-

ments will hugely benefit from the two-dimensional approach.

The ultimate goal will thus be to illustrate the necessary

steps for a full parameterization of the instrumental resolution

function and, on this basis, provide an IRF for the angular- and

wavelength-dispersive case.

2. Neutron powder diffraction data

A standard diamond sample (see Table 1 for crystallographic

data) was measured on the POWGEN instrument (SNS, Oak

Ridge National Laboratory) for 6.5 h at room temperature

using the instrument setup according to bank 1 (�Center =

0.533 Å). This measurement was carried out by the instrument

team of POWGEN and the data were kindly given to us by

Ashfia Huq, lead scientist at POWGEN. The total number of

neutron events in this measurement was approximately 150

million in a 2� range between 17.5 and 150� and a � range

between close to 0 and 1.101 Å. For correction and normal-

ization purposes, measurements of a vanadium sample and the

empty sample can were provided, with each dataset containing

approximately 72 million and 3.7 million neutron events,

respectively. The diamond, vanadium and background data-

sets were treated as reported previously (Jacobs et al., 2015).

Owing to the high ratio between coherent and incoherent

scattering cross sections of carbon (5.55:0.001 b; 1 b = 100 fm2;

Dianoux & Lander, 2003) only a small portion of the neutrons

add to the background, while the majority of the detected

neutrons contribute to the reflections. Hence, the signal-to-

noise ratio in this dataset is (slightly) better than that in the

CuNCN sample used in our previous study, which was also

measured at POWGEN for approximately 7.5 h.
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Table 1
Crystallographic data of diamond.

Diamond (Bragg & Bragg, 1913)

Lattice parameter (Å) a = 3.55
Space group Fd3m (No. 227)
Formula units Z = 8
Atomic sites C (8a) 0 | 0 | 0
Temperature (K) T = 293



3. Parameterization of the instrument (instrumental
resolution function)

For a full two-dimensional parameterization of the instru-

mental resolution function of POWGEN and, ultimately, to

derive an instrumental resolution file, we used a high-neutron-

count dataset measured on a standard diamond sample. This

standard sample is normally used to derive the calibration file,

for example the d offsets for each detector pixel. The accurate

determination of d offsets necessitates a rather high overall

neutron count, which also benefits the angular- and wave-

length-dispersive refinement approach. As has already been

pointed out (Jacobs et al., 2015) the first step towards a full

parameterization of the instrumental resolution and thus a full

description of the reflection shape variation consists of

extracting the shape-defining parameters out of a measured

dataset taken from a ‘standard’ sample. Thereby one assumes

the final diffraction pattern – and to an even greater extent the

profile shape of each reflection – to be almost free of sample

effects. As has been shown before (Jacobs et al., 2015) the best

approach to extract these parameters is to use slices of small

data intervals �d? which are distributed around the ortho-

normal curve given by

d? ¼ �2
� 2�2

K ln cos �
� �1=2

; ð1Þ

where � is the wavelength and � denotes the Bragg angle.

Here, we have chosen the (arbitrary) constant �2
K = 1 Å2,

which defines specific and appropriate orthogonal coordinates

d and d?.. Three of these orthonormal curves together with the

three-dimensional representation of the dataset are depicted

in Fig. 1. The data points in the interval {d? 2 R | 0.73 � d? �

0.77 Å}, corresponding to the leftmost slice in Fig. 1, are

plotted in Fig. 2 (upper part), together with three highlighted

reflections (lower part). Typically, the peak profile for refining

diffraction patterns obtained at the POWGEN instrument is

approximated using a pseudo-Voigt function with back-to-

back exponentials (pV-b2b). The same notation was used to fit

the reflections shown in the lower part of Fig. 2 (green dashed

line). In addition, each peak was also fitted using a standard

pseudo-Voigt (pV) function (red solid line). By comparing

both fit results it becomes apparent that using the standard pV

notation yields comparable results for the full width at half-

maximum (FWHM), while even simplifying the refinement

owing to the absence of the rise-and-decay parameters of the

back-to-back exponentials. The d value, in contrast, is
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Figure 1
Three-dimensional plot of the neutron powder diffraction pattern of
diamond. Opaque surfaces represent the intensity distribution along the
orthonormal cuts at d? = 0.75, 1.12 and 1.68 Å.

Figure 2
Orthogonal cut with data points in the range 0.73 < d? < 0.77 Å (upper part). Comparison of the fits using either a pseudo-Voigt with back-to-back
exponentials (red solid line) or a standard pseudo-Voigt function (green dashed line) for reflections 111 (3), 311 (2) and 642 (1).



different for the two peak shapes; the pV function with back-

to-back exponentials usually shifts to lower d values as was

already elaborated on by Von Dreele et al. (1982). For the

determination of the peak width we can therefore safely resort

to the use of a standard pseudo-Voigt peak profile such that

only two parameters, the FWHM (denoted as H herein) and

the Lorentzian mixing parameter (�), must be extracted from

a sufficiently large number of points in the diffraction pattern.

The alternative description using the Thompson–Cox–Hast-

ings (Thompson et al., 1987) notation (e.g. unique FWHM

parameters for the Gaussian and Lorentzian components) in

principle opens up a somewhat more physically meaningful

handling of the profile in the one-dimensional case. This is

because sample-related effects can be more strictly assigned to

either the Gaussian or the Lorentzian part, depending on their

own type of distribution. For the present study we will

nevertheless resort to a parameterization of the complete

FWHM as a function of the scattering angle and the wave-

length.

When using d? slices the analysis of the reflection shape is

done by applying an individual FWHM but a common � value

to each reflection contained in a single d? slice. Fitting of the

pV function to the data points of a single reflection is done

using the intensity I as a function of d spacing:

Iðd� dhklÞ ¼ S �Lðd� dhklÞ þ 1� �ð ÞGðd� dhklÞ
� �

; ð2Þ

where L(d � dhkl) is the Lorentzian part given by

Lðd� dhklÞ ¼
2

�H 1þ 4ðd� dhklÞ
2=H2

� � ð3Þ

and G(d � dhkl) is the Gaussian part,

Gðd� dhklÞ ¼
2

H

ln 2

�

� �1=2

exp �
4 ln 2 ðd� dhklÞ

2

H2

� 	
: ð4Þ

In these equations S is a scaling factor, � is the Lorentzian

mixing parameter, H denotes the FWHM of the reflection hkl,

d is the d value of each data point and dhkl is the central d

value of the reflection around which the intensity is calculated.

This has the distinct advantage that no additional parameters

are needed to convert time of flight to d spacing as is

commonly needed for today’s refinement programs.

When evaluating the results of the extracted H values for

the datasets binned in 2� and �, it becomes apparent that the

bin size of either has an immediate impact. In Table 2 we

provide a comparison of H values for reflections at d = 0.477,

1.076 and 2.059 Å using data points in a slice with {d? 2 R |

0.73 � d? � 0.77 Å} and different bin sizes. Apparently, the

FWHM strongly depends on the chosen bin size and varies

significantly with the slope of the Bragg curves for each

reflection. Reflections at higher d values (steeper reflections;

to the left) are highly influenced by too broad a binning in 2�
(FWHM increases by �300%), while the binning of � is only

of minor importance. For lower d values (flat slope; horizontal

to the right) the binning of � has the highest impact (increase

of�200% in FWHM), whereas the 2� binning has only a small

influence. Reflections at medium d values are influenced by

both bin sizes and show an increase of FWHM of �300%.

Fig. 3 shows this by comparing different binning schemes for
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Table 2
Comparison of H values for selected reflections extracted from datasets
obtained with different bin sizes for 2� and � using data points in the
interval 0.73 � d? < 0.77 Å.

Binning d = 2.059 Å d = 1.076 Å d = 0.477 Å

�2� (�) �� (Å)
No. /
FWHM

�d (Å)
� 10�2

No. /
FWHM

�d (Å)
� 10�2

No. /
FWHM

�d (Å)
� 10�2

0.05 0.0005 253 1.28 (8) 201 0.37 (2) 112 0.067 (7)

0.1 0.001 51.2 1.44 (1) 52.9 0.42 (3) 28.4 0.09 (2)
0.2 0.001 25.3 2.0 (2) 26.7 0.56 (4) 14.1 0.10 (3)
0.4 0.001 13.2 3.6 (6) 12.8 1.0 (2) 7.74 0.11 (3)

0.1 0.002 25.8 1.5 (2) 26.8 0.47 (5) 14.7 0.15 (3)
0.2 0.002 12.7 2.0 (2) 13.5 0.58 (9) 7.43 0.14 (4)
0.4 0.002 6.84 3.6 (9) 6.66 1.0 (2) 4.07 0.14 (5)

0.1 0.004 13.6 1.7 (3) 13.3 0.6 (1) 7.62 –
0.2 0.004 6.69 2.1 (4) 6.78 0.7 (1) 4.04 –
0.4 0.004 3.46 3.7 (9) 3.43 1.1 (3) 2.09 –

Figure 3
Influence of bin sizes on the FWHM (and overall shape) of the reflections 111 (left), 311 (middle) and 642 (right), considering data points around a
central d? value of 0.75 Å. Solid lines are just a guide to the eye.



the three reflections. Apart from the FWHM, it becomes

obvious that with larger bin sizes the pV function is not an

adequate description of the intensity distribution anymore,

but the peak shapes become more and more ‘top hat’ like (see

Fig. 3, right). If the binning is too coarse, the peak shape is

clearly dominated by binning effects, which should be avoided.

Additionally, the density of data points is smaller for larger bin

values so that especially at low d spacing there are an insuf-

ficient number of data points describing each reflection. On

this account the d? range for selecting the data points for each

binning method shown in Fig. 3 had to be individually adjusted

for each reflection to give at least ten contributing data points

per FWHM. Note that we will introduce a mechanism to

ensure that this bin size requirement per FWHM is globally

met for the entire pattern. For the moment, let us assume that

the change of the FWHM is not affected by the bin sizes, i.e.

the number of points/FWHM is sufficient.

Fortunately, there is an alternative to the 2� and � binning

approach that allows an easier treatment of the resolution

change. As was already laid out in our previous paper, it is

better to use d and d? as new coordinates which span an

orthogonal coordinate system where all reflections are

represented by straight lines (see Fig. 4), while the orthogonal

cut of the reflection is a horizontal line. This can be done

simply by using equation (1) and the Bragg equation

d ¼
�

2 sin �
ð5Þ

to convert the 2� and � values of each detected neutron event

to d and d? and binning all neutron events in this tailor-made

coordinate system. Owing to the constant monitoring of the

two independent variables, an easy transformation between

the two coordinate systems is always possible, including during

the refinement. Replacing � in equation (1) by arcsinð�=2dÞ

and solving the equation for � leads to the following equation:

� ¼ 4d2
� �2

K!
4d2
� �2

K ln �2
K=4d2

� �
� d2

?

�2
K

� 	
 �1=2

: ð6Þ

Herein ! is the Wright omega function (Wright, 1959; Corless

& Jeffrey, 2002), which is defined in terms of the Lambert W

function (Lambert, 1758; Corless et al., 1996). Accessing

different coordinate systems during the refinement will allow

for corrections as regards extinction, absorption and other

effects (Sabine et al., 1988) on the intensity data in their

natural dependency. Furthermore, this in principle also allows

us to reuse or even combine existing parameterizations in 2�
and/or � with a d/d? binning.

For a first approach the binning in d can be done (as is

usual) using a quasi-logarithmic binning scheme for

POWGEN with bin boundaries calculated by

diþ1 ¼ dið1þ�Þ: ð7Þ

For the standard data reduction procedure at the POWGEN

instrument a default value of � = 0.0008 is chosen. We

therefore used values in the same range for the datasets

analyzed in this study, whereas for d? we chose a linear

binning scheme. To check if the bin size in d? and especially in

d has a major impact on the extracted H values and the shape

of the reflections, we investigated final datasets with a linear

binning in d? giving 40, 80 and 200 d? slices as well as loga-

rithmic binning in d using � = 0.0004, 0.0008 and 0.0016,

respectively. The data range of each dataset was limited to

0.25 � d � 0.97 Å and 0.17 � d? � 1.91 Å. A comparison of

the resulting H values for the same reflections used earlier

employing a slice at d? = 0.75 Å is given in Table 3. It is

obvious that the FWHM is considerably less influenced by the

bin sizes of d and d?, even for a very large value of � = 0.0016.

If compared with the results of the 2� and � binning, only the

smallest bin sizes of �2� = 0.05� and �� = 0.0005 Å conform

to the results of the d and d? binning. Nevertheless, the

number of data points per FWHM changes for each reflection,

with the one at the lowest d value having significantly fewer

data points per FWHM than the reflections at higher d values.

Thus, a new resolution-adapted binning scheme is presented,

where for each d? bin the d bin limits are calculated according

to

diþ1 ¼ di þ
Hðdi; d?; jÞ

�Div

: ð8Þ

Here, H(di, d?, j) is the FWHM calculated using the central

value of the jth d? bin and the upper d limit of the previous d

bin. �Div is simply a divisor that represents the desired
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Figure 4
Two-dimensional (left) and quasi-two-dimensional (right) representation of the neutron powder diffraction data of diamond binned in d and d? using bin
sizes of � = 0.0008 and �d? = 0.00872 Å.



number of data points per FWHM. Using this binning scheme,

a homogeneous distribution of data points can be achieved,

which yields between five and ten data points per FWHM for

each reflection, as has been suggested by McCusker et al.

(1999). The resulting FWHMs of this binning scheme are

summarized in Table 4. Using the resolution-adapted binning

scheme, the number of data points per FWHM is constant

throughout, with no significant influence on the FWHM.

Hence, it seems highly recommendable to use the resolution-

adapted d and d? binning scheme for analyzing angular- and

wavelength-dispersive datasets. In the following we therefore

concentrate on the dataset using 40 d? slices and approxi-

mately ten data points per FWHM as this is an excellent

compromise between computational effort, good counting

statistics and reasonable data-point density. The one-dimen-

sional approach is the limiting case for a single d? bin.

Once any influence on the peak profile stemming from the

binning scheme can be excluded, one may derive an analytical

description for the distribution of H values. Ideally, one should

try to mirror the underlying physical principles contributing to

the intensity distribution of the reflections. Typically, the

resolution and thus the FWHM of each reflection is approxi-

mated using the following equation:

�d ¼ H ¼ d �� cot �ð Þ
2
þ

�t

t

� �2

þ
�L

L

� �2
" #1=2

: ð9Þ

Herein ��, �t and �L are the uncertainties in scattering

angle, TOF and total flight path, respectively. � denotes the

scattering angle, t is the time of flight and L is the total flight

path from the source to the detector. To derive meaningful

values for all three contributions one needs to take a closer

look at the instrument, sample and source properties.

The angular resolution is given by the layout of the detector

(��Detector), the divergence of the neutron beam (��Divergence),

and the sample size and shape (��Sample):

�� ¼ ��2
Detector þ��2

Sample þ��2
Divergence

� �1=2
: ð10Þ

Since POWGEN’s detectors are mainly arranged around an

azimuthal angle of ’ = 0, we are mainly concerned with the in-

plane probability distribution of the neutrons scattered from

the sample. The uncertainty in scattering angle caused by the

detector is therefore given by the horizontal extent (= width)

of each detector pixel (wDetec) and the distance L2 of the

detector pixel from the sample (‘secondary flight path’):

�2�Detector ¼ arctan wDetec=L2ð Þ: ð11Þ

wDetec of each detector pixel is the FWHM of a continuous

uniform distribution with size equal to the horizontal extent of

the detector pixel. For a detector pixel width of 5 mm the

uniform distribution width is calculated to be wDetec =

3.39 mm.

The same considerations can be applied for the contribution

due to sample geometry and size. We only consider a hori-

zontal cut through the otherwise cylindrical sample normally

used for diffraction measurements. This leaves us with a

circular cross section for which the FWHM of a Gaussian

distribution is calculated as wSample = 4.33 mm for a sample

with a diameter of d = 6 mm.

The uncertainty caused by the divergence is mainly

governed by the horizontal divergence. Monte Carlo simula-

tions of the neutron guide system employing the program

package VITESS (Wechsler et al., 2000; Lieutenant et al., 2014)

suggest that the horizontal divergence of �2�Divergence = 0.11� =

1.92 � 10�3 rad shows almost no dependence on the wave-

length.

Finally, POWGEN’s detector panels are arranged around

the sample following an equi-angular spiral with

L2 ¼ L2A exp ð�L2B 2�Þ; ð12Þ

where L2 is the radial distance and 2� is the scattering angle in

radians. L2A and L2B are arbitrary constants describing the

size and the curvature of the spiral, respectively. In accordance

with previous data (Huq et al., 2010), initial design values of

L2A = 4.7 m and L2B = 0.1 rad�1 were chosen. A fit using

equation (12) to the real distances of the detector pixels as

extracted from the detector information provided with each

dataset yields L2A = 4.64 m and L2B = 0.24 rad�1.

Thus, the complete angular resolution is estimated as
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Table 4
Comparison of H values for selected reflections extracted from datasets
obtained using the resolution-adapted binning scheme for a d? slice at
d? = 0.75 Å.

Binning d = 2.059 Å d = 1.076 Å d = 0.477 Å

No. of
d? slices �Div

No. /
FWHM

�d (Å)
� 10�2

No. /
FWHM

�d (Å)
� 10�2

No. /
FWHM

�d (Å)
� 10�2

80 5 5.23 1.27 (3) 5.04 0.38 (2) 4.85 0.07 (1)
40 5 5.30 1.26 (3) 5.09 0.372 (8) 4.89 0.07 (1)
20 5 5.16 1.31 (3) 4.98 0.39 (1) 4.81 0.07 (1)
10 5 5.43 1.27 (2) 5.22 0.37 (1) 4.97 0.07 (1)
80 10 10.3 1.26 (3) 10.3 0.38 (1) 9.98 0.070 (7)
40 10 10.4 1.26 (2) 10.1 0.369 (7) 10.0 0.070 (7)
20 10 10.1 1.30 (2) 9.90 0.383 (8) 9.83 0.072 (7)
10 10 10.6 1.26 (2) 10.2 0.362 (6) 9.70 0.066 (6)

Table 3
Comparison of H values for selected reflections extracted from datasets
obtained using different bin sizes for d and d? for a d? slice at d? =
0.75 Å.

Binning d = 2.059 Å d = 1.076 Å d = 0.477 Å

No. of
d? slices �

No. /
FWHM

�d (Å)
� 10�2

No. /
FWHM

�d (Å)
� 10�2

No. /
FWHM

�d (Å)
� 10�2

200 0.0004 15.1 1.24 (5) 8.83 0.37 (1) 5.32 0.07 (1)
80 0.0004 15.1 1.28 (3) 8.83 0.377 (8) 5.32 0.07 (1)
40 0.0004 15.1 1.26 (2) 8.83 0.369 (7) 5.32 0.07 (1)

200 0.0008 7.72 1.24 (6) 4.55 0.37 (1) 2.78 0.07 (2)
80 0.0008 7.72 1.28 (5) 4.55 0.38 (1) 2.78 0.07 (2)
40 0.0008 7.72 1.26 (2) 4.55 0.38 (1) 2.78 0.07 (2)

200 0.0016 3.98 1.2 (1) 2.42 0.39 (2) 1.30 0.06 (3)
80 0.0016 3.98 1.30 (5) 2.42 0.40 (2) 1.30 0.07 (2)
40 0.0016 3.98 1.27 (3) 2.42 0.39 (2) 1.30 0.07 (3)



�2� ¼


�
arctan

wDetec

L2

� �2

þ arctan
wSample

L2

� �2

þ �2�Divergence

� �2

	�1=2

: ð13Þ

The time uncertainty and pulse duration is essentially deter-

mined by the characteristics of the poisoned decoupled

moderator, and in a first approximation is proportional to the

neutron wavelength. With an estimate of �t = 10 ms and a total

time of flight of t = 16.05 ms for a flight path length of L =

63.5 m and for a wavelength of � = 1.0 Å, one obtains

�t

t
¼

10 ms

16050 ms
¼ 6:23� 10�4: ð14Þ

The uncertainty in length �L with respect to the neutron

guide, the sample and the detector has been calculated by

VITESS simulations. By estimating the total flight path L as

the mean traveling distance of 63.5 m and setting �L = 2 mm

(FWHM), equation (12) becomes

�L

L
¼

0:002 m

L2 þ 60 m
’

0:002 m

63:5 m
¼ 3:15� 10�5: ð15Þ

The final instrumental resolution emerges by inserting equa-

tions (13), (14) and (15) into equation (10). A summary of all

parameters contributing to the calculation of H together with

their initial values is given in Table 5. Additionally, in the left

part of Fig. 5 the extracted H values are shown together with

the hyper-surface of the analytical model. Even though none

of the parameters deduced above were refined, there is

already an excellent agreement of the FWHM values with an

overall R2 = 0.957. For refining the analytical function three

parameters (u1, u2 and u3) as multipliers to the ��, �t and �L

values can be used, but it is unsurprising that especially u2 and

u3 exhibit a strong correlation as �t and �L have rather

similar contributions to the instrumental resolution. It seems

therefore convenient to just keep u1 and rather add an addi-

tional resolution term �add, which comprises all unknown

additional contributions:

�d ¼ H ¼ d u1 �� cot �ð Þ
2
þ

�t

t

� �2

þ
�L

L

� �2

þ�2
add

" #1=2

:

ð16Þ

Refining these two parameters yields u1 = 0.886 (5) and �add =

0.00135 (3), with an even better overall R2 of 0.987. This

parameterization has two main advantages:

(1) The behavior of the FWHM for all reflections observed

in the angular- and wavelength-dispersive diffraction pattern

is based on well defined physical and geometrical properties of

the instrument and the sample.

(2) With deviations from instrumental resolution, proper-

ties of the sample can be revealed. For example, micro-strain

and/or size effects can be analyzed by an additional contri-

bution to the FWHM.

To further stabilize the parameterization, all reflections in a

single d? slice were refined using the same � value. The

extracted values indicate an increase with larger d? values,

illustrating the different contributions of the resolution terms

in different parts of the two-dimensional pattern. A linear fit

approximation

�ðd?Þ ¼ �1d? þ �2; ð17Þ

with the data shown in the right part of Fig. 5, yields initial

values of �1 = 0.2028 Å�1 and �2 = 0.05559.
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Table 5
Parameters for the instrumental resolution function and the Lorentzian
mixing parameter together with their initial values.

Parameter Initial value

wDetec (m) 3.39 � 10�3

wSample (m) 4.33 � 10�3

�2�Divergence 0.11� = 1.92 � 10�3 rad
�t=t 6.23 � 10�4

�L (m) 2.00 � 10�3

L2A (m) 4.64
L2B (rad�1) 0.24
�1 (Å�1) 0.2028
�2 0.05559

Figure 5
(Left) Extracted FWHM values (colored circles) for the neutron powder diffraction dataset of diamond using binning sizes of 80 d? slices and �Div = 10.
The transparent surface depicts the deduced analytical function. (Right) Extracted values for the Lorentzian mixing parameter � together with a linear
fit. Error bars denote the 95% confidence interval.



The last step is to apply the approach laid out in the

preceding sections to the entire diffraction pattern – and thus

perform a Rietveld refinement. As has already been pointed

out (Jacobs et al., 2015), at the current stage all structural parts

contributing to the intensity calculation are handled by

supplying the h, k, l, M and F2 values derived from the

conventional (one-dimensional) Rietveld refinement using the

FullProf program package (Rodriguez-Carvajal, 1997) to the

fitting routines written in MATLAB (http://www.mathworks.

com). The results of this refinement are summarized in Table 6

and shown in Fig. 6. As is evident from Fig. 6 the calculated

pattern is in very good agreement with the experimental one,

with an overall R2 of 0.993 and a profile R value of RP = 9.99.

Compared to the one-dimensional case, the RP value is slightly

larger owing to the somewhat enhanced noise in the two-

dimensional pattern. The lattice parameter a derived from the

two-dimensional refinement is slightly higher than that from

the standard Rietveld refinement using FullProf. This is

expected as in the two-dimensional case only a standard

pseudo-Voigt function was used, whereas in the one-dimen-

sional case the pV function with back-to-back exponentials

was employed.

Given the results from the final refinement of the complete

diffraction pattern, we may now compile a two-dimensional

instrumental resolution file as is provided by all modern TOF

instruments assuming that the measured sample, apart from its

volume, has no influence on the peak profile. An example of

such an IRF input for GSAS is presented in Fig. 7. The format

shown is based on the most recent GSAS parameter file

provided on the POWGEN home page for cycle 2014-B

(PGHR_60-2014B.prm). Using a two-dimensional version of

the pV function with back-to-back exponentials (profile

function 7) some important keywords were changed. First,

‘HTYPE’ was changed from ‘PNTR’ to ‘PN2R’ to indicate a

two-dimensional refinement of powder neutron data. Second,

‘PRCF’ for the profile function type was changed from 3 (one-

dimensional, pV-b2b) to 7 (two-dimensional, pV-b2b). Func-

tion 6 will use a two-dimensional pV function. Additional

parameters are appended to the standard IRF using the
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Table 6
Results of the two-dimensional pattern fitting using MATLAB for the
experimental data of diamond (POWGEN) and comparison with the
standard one-dimensional refinement using FullProf.

Two-dimensional FullProf

No. of parameters 5 7
No. of data points �154000 4730
No. of reflections 96 95
Calculation time (s)† �210 �30
Lattice parameter (Å) 3.56788 (7) 3.56745 (4)
Background Manually subtracted and smoothed
Biso 0.261 (3) 0.115 (8)
S 0.00369 (2) Not comparable
u1 0.895 (3)
�add 0.00120 (1)
Rp 9.99 9.6

† ASUS K73S Notebook with Intel Core i5-2410M (2 Cores @ 2.3 GHz) and 6 GB of
RAM.

Figure 6
Measured (top), fitted (middle, R2 = 0.993) and differential (bottom)
diffraction patterns of diamond data from POWGEN with 40 d? slices
and �Div = 10. The color bar denotes the intensity as a percentage of the
largest intensity peak in the experimental diffraction pattern. Reflections
have been drawn broader than they really are to enhance the overall
clarity.

Figure 7
An example of an IRF for the POWGEN instrument, based on GSAS
input format. Newly added parameters are shown in green.



sections for PRCF17, PRCF18 and PRCF19. Those lines hold

the parameters introduced above. Of course, this file is a

rather simplified version of such an input file for the two-

dimensional approach as it is not yet available in any of the

distributed software packages. It will thus have to be changed

according to the needs of the respective refinement software.

From a more general perspective, we also mention that the

d–d? binning is perfectly suited for nonlinear multi-bank

approaches, which have been used to analyze data from

POLARIS and GEM (Williams et al., 1997; Hull et al., 1992),

as each d? slice can be regarded as a single pattern that can be

fed into current refinement programs. Nevertheless, even in

this case the parameters describing the peak profile of each

slice have to be linked according to the two-dimensional

approach laid out in this work. The limiting case of a single d?
bin is, in fact, the standard ‘diffraction focusing’ approach

currently applied by almost every TOF instrument. We

reiterate that by reducing the number of d? slices the original

information content as well as the pristine instrumental

resolution is lost. As has been shown above, however, refining

angular- and wavelength-dispersive data is possible without

prior data reduction according to the two-dimensional

approach presented here.

4. Conclusion and outlook

We have elaborated on the Rietveld refinement of angular-

and wavelength-dispersive datasets with special attention to

the binning scheme, which has a huge impact on the reliability

and interpretability of diffraction patterns. We chose a stan-

dard diamond sample obtained from the POWGEN instru-

ment to determine a two-dimensional instrument resolution

function using a fundamental description and values. We

extended our approach of using the d–d? coordinate system

by also including the transformations back to 2�/� or any other

coordinates allowing us to most efficiently describe an

instrumental or sample behavior. For the description of the

profile function, i.e. the FWHM and shape parameterization,

the d–d? system is a good choice. This naturally follows from

the definition of d?, which is the solution of a differential

equation requiring orthogonal cuts to be exactly perpendi-

cular to all reflections. This is not the case in other possible

coordinate systems like d, 2� or Q, 2�. This finding allows a

much easier data representation and binning procedure.

In particular, regarding the binning we have chosen a

logarithmic binning in d spacing and a linear binning in d?,

and we compare it with the previously chosen 2� and �
binning. The advantage of the d–d? coordinate system can be

further exploited by using a resolution-derived and thus

varying d and d? binning to achieve an optimized data-point

distribution with minimal sacrifice of information.

Although the future POWTEX instrument (which features

a large detector coverage and cost-efficient detector design) as

well as the DREAM instrument at the ESS will greatly benefit

from the two-dimensional approach, we have demonstrated a

major gain regarding the right description of the instrumental

resolution even for the POWGEN instrument. This is espe-

cially true as the instrumental contributions are now based on

instrumental design parameters and sample geometry,

reflecting real properties of the experimental setup. Addi-

tional contributions from the sample can now be addressed

more efficiently and attributed to the different terms of the

resolution function according to their origin type. In response

to similar procedures at existing instruments, we have also

derived an instrumental profile function for POWGEN which

may be provided to the user in the form of an instrumental

resolution file.

In addition, the new approach will give experienced TOF

users the opportunity to check the data quality more thor-

oughly. Furthermore, we believe that the novel approach

allows more freedom to utilize less complex detector

arrangements. For example, the geometry chosen for the

POWTEX instrument is cylindrical, with its axis in the beam

direction, adapting to the Debye–Scherrer cones. However,

the proposed approach should be of general interest for

powder diffraction instruments at pulsed neutron sources.

With the introduction of two-dimensional profile functions

and their specifications given in an instrumental resolution file,

future work will aim at providing a better incorporation of

sample effects (e.g. preferred orientation, absorption and so

on). Finally, we aim to implement the multi-dimensional

refinement procedure into common Rietveld program suites

in order to offer all necessary data-treatment possibilities to

the users. This new development is open for joint activities

with program authors of existing user software, and we

welcome current considerations towards an implementation

into GSAS-II (Toby & Von Dreele, 2013). Finally, it is worth

noting that for future users a benchmarking of the new

methods has to be carried out on refined sample parameters

like bond distances or atomic displacement parameters. In

order to have a fair comparison, an implementation in a

regular software package is what one should aim for.
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