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Diffraction in multilayers in the presence of interfacial roughness is studied

theoretically, the roughness being considered as a transition layer. Exact (within

the framework of the two-beam dynamical diffraction theory) differential

equations for field amplitudes in a crystalline structure with varying properties

along its surface normal are obtained. An iterative scheme for approximate

solution of the equations is developed. The presented approach to interfacial

roughness is incorporated into the recursion matrix formalism in a way that

obviates possible numerical problems. Fitting of the experimental rocking curve

is performed in order to test the possibility of reconstructing the roughness value

from a diffraction scan. The developed algorithm works substantially faster than

the traditional approach to dealing with a transition layer (dividing it into a finite

number of thin lamellae). Calculations by the proposed approach are only two

to three times longer than calculations for corresponding structures with ideally

sharp interfaces.

1. Introduction

The phenomenon of interfacial roughness in multilayers has

been shown to have an influence on the functioning of elec-

tronic devices (e.g. see Zolotoyabko, 1998; Bolognesi et al.,

1992; Ming et al., 1993; People & People, 1986; People et al.,

1984; Glaser et al., 1990). Therefore it is important to have a

means to estimate this nonideality of interfaces. In the case of

grazing incidence in X-ray reflection (XRR), when most of the

reflected power is produced by surface layers, interfacial

roughness considerably affects measured XRR scans and has

been extensively studied by this technique (e.g. see Feranchuk,

Feranchuk et al., 2003; de Boer, 1994, 1995, 1996; Feranchuk et

al., 2007; Sinha et al., 1988; Feranchuk, Minkevich & Ulya-

nenkov, 2003; Benediktovitch et al., 2014; Pietsch et al., 2013).

In X-ray diffraction (XRD), just like in XRR, grazing-

incidence geometry is sensitive to interfacial roughness (see

Stepanov & Köhler, 1994). One may expect that in conven-

tional geometries, for example �–2� scans, the roughness effect

will be subtle. This is true in many cases; however, sometimes

scans are sensitive to interfacial roughness even in conven-

tional geometries, for example for superlattices consisting of

thin layers (Fullerton et al., 1992). This is why we consider

interfacial roughness in conventional XRD geometry in this

paper.

It is possible to treat interfacial roughness as a transition

layer (see Stepanov & Köhler, 1994) by dividing it into many

thin lamellae. However, this approach turns out to be very

time consuming. Therefore, we decided to speed up the

process by performing analytical calculations for transition
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layers and incorporation of interfacial roughness into the

recursion matrix formalism (RMF) (see Stepanov et al., 1998).

We will show that it is possible to introduce only one addi-

tional matrix for each layer, describing the roughness of this

layer. This boosts the speed of calculation, which is important

for fitting of experimental curves (Ulyanenkov & Sobolewski,

2005).

This paper is organized in the following way. In x2, basic

notations for the two-wave dynamical diffraction theory

(DDT) in multilayered structures are introduced, which allow

the transition layer to be treated as many thin lamellae

(traditional numerical approach; see Stepanov & Köhler,

1994). In x3, several types of transition layers are analyzed and

one of them is selected for further consideration. In x4, we

obtain differential equations for field amplitudes in contin-

uous transition layers by assuming that the thickness of each

lamella tends to zero. A natural ansatz for solution of the

equations is proposed and a useful approximate solution is

found. In the framework of this approach, it is shown that the

effect of interfacial roughness can be described by an addi-

tional matrix in the RMF approach. x5 provides numerical

examples and illustrates the fitting of one experimental

rocking curve.

2. Summary of two-beam DDT in multilayered samples

The structure considered in this section is presented in Fig. 1.

In order to describe a transition layer by this structure one has

to choose a change of Fourier components of susceptibility �0,

�g, ��g from layer to layer, such that the phase of oscillation of

electron density does not encounter any jumps in the interface

between neighboring layers. One can check by direct substi-

tution that the following expression for the susceptibility in

the jth layer is in agreement with the last requirement

(Stepanov et al., 1998):

�ð j Þ ¼�ð j Þ0 þ �
ð j Þ
g exp½igð j Þ � ðr� r

ð j Þ
0 Þ þ i’ð j Þ�

þ �ð j Þ�g exp½�igð j Þ � ðr� r
ð j Þ
0 Þ � i’ð j Þ�; ð1Þ

with ’ð j Þ ¼
Pj�1

m¼1 gðmÞz LðmÞ (layers are numbered by

j ¼ 1 . . . n). Lð j Þ is the thickness of the jth layer and gðmÞz

represents the z component of the reciprocal lattice vector in

the mth layer gðmÞ. For r
ð j Þ
0 see Fig. 1. In equation (2) �ð j Þ0 , �ð j Þg

and �ð j Þ�g are supposed to have the same phase as �ð1Þ0 , �ð1Þg and

�ð1Þ�g, respectively. Actually, these phases change slightly if one

describes the transition between two real crystals owing to

nonzero absorption, but this error is insignificant.

The problem of dynamical diffraction in multilayered

structures has been solved many times and we only present

final results for the electric field in the layers for the case when

specularly reflected waves can be neglected. We consider �
polarization only, because the results for � polarization can be

readily obtained by multiplying �g and ��g by the polarization

factor cos 2�B, where �B is the Bragg angle. The solution for

the Fourier transform (over time) of the electric field in the jth

layer is (see e.g. Stepanov & Köhler, 1994)

Eð j Þðr;wÞ ¼
P

i

�
E
ð j Þ
i ðwÞ exp½ik

ð j Þ
i � ðr� r

ð j Þ
0 Þ�

� f1þ v
ð j Þ
i exp½igð j Þ � ðr� r

ð j Þ
0 Þ þ i’ð j Þ�g

�
; ð2Þ

where w is the angular frequency in the Fourier transform and

i ¼ 1; 2. k
ð j Þ
i represents the wavevector of the direct wave

corresponding to the solution of the dispersion equation in the

jth layer (in general, there are four solutions to the dispersion

equation, but two of them correspond to negligible specularly

reflected waves). v
ð j Þ
i is the ratio of amplitudes of diffracted

and direct waves in the jth layer. It is given by

v
ð j Þ
i ¼

�ð j Þg k2
0

ðk
ð j Þ
gi Þ

2
� k2

0"
ð j Þ
0

¼
ðk
ð j Þ
i Þ

2
� k2

0"
ð j Þ
0

�ð j Þ�gk2
0

; ð3Þ

where "ð j Þ0 ¼ 1þ �ð j Þ0 . k
ð j Þ
gi � k

ð j Þ
i þ gð j Þ represents the wave-

vector of the diffracted wave and k0 is the wavevector of the

incident wave. Actually, the component of the wavevector of

the direct wave parallel to the crystal surface is fixed during

solution of the dispersion equation. Therefore, we will call the

normal component of the vector k a solution of the dispersion

equation. Hereinafter we denote the attenuating root by k1z

[Imðk1zÞ>0] and the amplifying one by k2z [Imðk2zÞ< 0].

The boundary conditions in the interface between the jth

and ( jþ 1)th layers can be written as continuity of the electric

field (see Benediktovitch et al., 2014) separately for the waves

with components parallel to the surface equal to k0k and

(k0 þ gð1ÞÞk:

expðik1zLð j ÞÞE
ð j Þ
1 þ expðik2zLð j ÞÞE

ð j Þ
2 ¼ E

ð jþ1Þ
1 þ E

ð jþ1Þ
2 ;

v
ð j Þ
1 expðik1zLð j ÞÞE

ð j Þ
1 þ v

ð j Þ
2 expðik2zLð j ÞÞE

ð j Þ
2 ¼ v

ð jþ1Þ
1 E

ð jþ1Þ
1

þ v
ð jþ1Þ
2 E

ð jþ1Þ
2 :

ð4Þ

Now let us switch to matrix notation, similar to that of

Stepanov et al. (1998). We introduce a column vector of field

amplitudes and two auxiliary matrices:
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Figure 1
Sketch of the multilayered sample. r

ð1Þ
0 lies on the surface of the sample.



Ej �
E
ð j Þ
1

E
ð j Þ
2

 !
; Sj �

1 1

v
ð j Þ
1 v

ð j Þ
2

� �
;

F j �
expðik

ð j Þ
1z Lð j ÞÞ 0

0 expðik
ð j Þ
2z Lð j ÞÞ

" #
:

ð5Þ

Making use of these matrices, equations (4) take the form

SjF jE j ¼ Sjþ1E jþ1: ð6Þ

Even though now the equations look rather explicit, let us try

to simplify them further by introducing new unknown ampli-

tudes as a linear combination of current ones:

Aj �
Tj

Dj

� �
� SjEj; ð7Þ

where T stands for ‘transmitted’ and D stands for ‘diffracted’.

T1 ¼ 1 is the amplitude of the incident wave and D1 � D is

the amplitude of the wave diffracted from the whole sample. If

we denote the vacuum below the sample as the ðnþ 1Þth layer,

then Dnþ1 ¼ 0, which means that no wave is incident on the

lower surface of the sample in the direction opposite to the z

axis. For the introduced amplitudes the following relations are

true:

Ajþ1 ¼ N jAj; where N j � SjF jS
�1
j ; ð8Þ

Anþ1 ¼ HA1; where H � N n . . .N 1: ð9Þ

If we rewrite equation (9) in more detail (T � Tnþ1),

T

0

� �
¼ H

1

D

� �
; ð10Þ

it becomes apparent that it is a linear system for unknown

amplitudes of diffracted (D) and transmitted (T) waves. D can

be expressed as

H21 þH22D ¼ 0 ð11Þ

or, if we divide it by the increasing exponents expðik
ð1Þ
2z Lð1ÞÞ . . .

expðik
ðnÞ
2z LðnÞÞ,eHH21 þ

eHH22D ¼ 0;

with eHH � eNN n . . . eNN 1;
eNN j � Sj

eFF jS
�1
j ;

eFF j �
exp½iðk

ð j Þ
1z � k

ð j Þ
2z ÞL

ð j Þ� 0

0 1

( )
:

ð12Þ

In this way, the final expression for D,

D ¼ �eHH21=eHH22; ð13Þ

does not contain any increasing exponents. Thus, considera-

tion of thick layers will cause no numerical problems. Note

that the approach presented here of precluding numerical

errors is different from that reported by Stepanov et al. (1998).

Clearly, one can consider any set of layers using the presented

approach, not only transition layers. If one considers the more

realistic problem where the ðnþ 1Þth vacuum layer is missing

and the nth layer is the substrate (LðnÞ ! 1), then

eFF n �
0 0

0 1

� �
: ð14Þ

3. Choice of transition layer model

In this section we consider several types of transition profiles

and their influence on the diffracted intensity distribution. We

investigate the following three types of transition profiles:

Type a

�0ðzÞ ¼ �01 þ ð�02 � �01Þ�ðzÞ

�gðzÞ ¼ �g1 þ ð�g2 � �g1Þ�ðzÞ

��gðzÞ ¼ ��g1 þ ð��g2 � ��g1Þ�ðzÞ

gzðzÞ ¼ g1z þ ðg2z � g1zÞ�ðzÞ

Type b

�0ðzÞ ¼ �01 þ ð�02 � �01Þ�ðzÞ

�gðzÞ ¼ �g1 þ ð�g2 � �g1Þ�ðzÞ

��gðzÞ ¼ ��g1 þ ð��g2 � ��g1Þ�ðzÞ

gzðzÞ ¼ g1z þ ðg2z � g1zÞ�ðzÞ

Type c

�0ðzÞ ¼ �01 þ ð�02 � �01Þ�ðzÞ

�gðzÞ ¼ �g1�1ðzÞ þ �g2�2ðzÞ

��gðzÞ ¼ ��g1�1ðzÞ þ ��g2�2ðzÞ

gzðzÞ ¼ g1z þ ðg2z � g1zÞ�ðzÞ

with

�ðzÞ ¼
0; z< z0;
1; z> z0:

�
Additional indices 1 and 2 describe the properties of actual

upper and lower layers, and �ðzÞ, �ðzÞ and �1;2ðzÞ are smooth

functions providing the behavior shown in the lower part of

Fig. 2:

�ðzÞ ¼ 1
2 f1þ tanh½ðz� z0Þ=��g;

�ðzÞ ¼
1
2 exp½ðz� z0Þ=��; z< z0;

1� 1
2 exp½�ðz� z0Þ=��; z> z0;

�
�1ðzÞ ¼

f1� exp½ðz� z0Þ=��g
2; z< z0;

0; z> z0;

(

�2ðzÞ ¼
0; z< z0;

f1� exp½�ðz� z0Þ=��g
2; z> z0;

�
ð15Þ

where � is the quantitative characteristic of roughness and z0

is the z coordinate of the interface between two actual layers

(z of the upper surface of the sample is zero).

Type a (the Epstein profile; Epstein, 1930) causes an

increase in diffracted intensity between the peaks (see Fig. 2a).

The reason is that, if gz changes smoothly, then at every angle

of incidence (within the region between two peaks of different

actual layers) there are sublayers in the transition layer for
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which the Bragg condition is fulfilled and they provide higher

diffracted amplitude. In our opinion, the effect of interfacial

roughness is likely to reduce the occurrence of diffraction in

the lamellae close to the interface, rather than to shift it to

other values of the incidence angle.

In cases of type b, the z component of g changes stepwise

and, as is seen in Fig. 2(b), the increase between the peaks

disappears. However, near the left peak, one can see an

enhancement, which is connected to the specific choice of

dependence of �g and ��g on z.

Type c (see Fig. 2c) can be understood as follows: The

abrupt change of the gz profile corresponds to an interface at

which the average coherent lattice periodicity is changed. The

drop in the susceptibilities �g and ��g corresponds to a

reduction of crystallographic order due to the static Debye–

Waller factor conditioned by defects located at the interface.

Such a situation can occur, for example, for the system

described by Satapathy et al. (2005) where the nonuniform

strain decays exponentially when moving away from the

boundary. This type will be used further.

4. Differential equations for field amplitudes in
transition layers: approximate solution

In the previous section we dealt with the problem of the

transition layer by dividing it into many finite sublayers, and

the solution for a field inside the sample was given by Aj,

j ¼ 1 . . . n. Now we consider division into infinitesimal

sublayers. In this case the solution will be a function AðzÞ [we

will omit ‘(z)’ from now on], and the boundary conditions at

all interfaces will be replaced by differential equations. Let us

obtain them. Consider equation (8) in the case of infinitesimal

sublayers. Making the substitutions Aj !A, N j !N ,

Ajþ1 !Aþ dA in equation (8) results in

Aþ dA ¼ NA: ð16Þ

Further, it is necessary to take into account that under the

assumption of infinitesimal sublayer thickness

F ¼ 1þ iK dz; with K ¼
k1z 0

0 k2z

� �
; ð17Þ

where indices j are omitted and the dependence on z is

assumed. Also, Lð j Þ ! dz. By equation (8) with Sj ! S we

obtain

N ¼ 1þ iSKS�1 dz; ð18Þ

and by equation (16)

dA

dz
¼ iSKS�1

A: ð19Þ

Equation (19) is the differential equation for field amplitudes

in a crystalline sample whose properties vary along the z

direction. Its domain of applicability coincides with that of

two-beam DDT with two diffraction roots [diffraction in each

infinitesimal sublayer of the sample should be properly

described by DDT in order that equation (19) be correct].

Our present goal is to find how roughness influences the

transition matrix of one layer in a structure. In the case of

nonzero roughness it is unclear what an interface is. We

introduce it formally as the point where gz jumps from one

value to the other (as in type c). As we consider one layer, we

choose new coordinates, where z ¼ 0 in the upper interface.

The thickness of the layer is L, the susceptibilities not

perturbed by roughness are �0, �g and ��g, and the suscept-

ibilities perturbed by roughness are �0ðzÞ ¼ �0 þ��0ðzÞ,
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Figure 2
Symmetric scans of the magnitudes of the amplitude of the diffracted wave from a sample (jDj) consisting of two layers (Ge and Si) of the same thickness
(20 nm) for types of transition layers (a) a, (b) b and (c) c. Reflection 004, roughness parameter � = 2 nm. !in is the angle of incidence (with respect to the
sample’s surface). Light-green and dark-blue lines correspond to zero and nonzero roughness, respectively. Under the plots a qualitative description of
the susceptibilities near the interface as a function of z is given.



�gðzÞ ¼ �g þ��gðzÞ and ��gðzÞ ¼ ��g þ���gðzÞ. We will

also introduce a function 	�gðzÞ: ��gðzÞ ¼ �g	�gðzÞ,

���gðzÞ ¼ ��g	�gðzÞ. The reciprocal lattice vector is g and is

constant. Note that by the last definitions we can consider

roughness in both the upper and the lower surfaces of the

layer (corresponding modifications to type c will be made

below). Further, we make ordinary approximations of two-

beam DDT (search for roots in the vicinity of k0z) and obtain

an expression for the matrix SKS�1. Then, after some algebra,

equation (19) takes the form

d

dz

T

D

� �
¼ i

k0z þ
k2

0

2k0z

�0ðzÞ
k2

0

2k0z

��gðzÞ

k2
0

2kg0z

��gðzÞ k0z þ
k2

0 � k2
g0

kg0z

� �
þ

k2
0

2kg0z

�0ðzÞ

26664
37775

�
T

D

� �
: ð20Þ

k0z is the z component of k0, which is the wavevector of the

incident wave. Similarly, kg0z is the z component of kg0 �

k0 þ g. Equations (20) are similar to Takagi–Taupin equations

(Takagi, 1962, 1969; Taupin, 1964). However, the validity of

the obtained equations is not restricted to a smooth variation

of susceptibilities. In the case of constant susceptibilities,

equation (20) can be solved by Euler’s method, searching for a

solution in the form of exponents, and the solution is as

follows:

T ¼ expðik1zzÞE
ð0Þ
1 þ expðik2zzÞE

ð0Þ
2 ;

D ¼ v1 expðik1zzÞE
ð0Þ
1 þ v2 expðik2zzÞE

ð0Þ
2 ;

ð21Þ

which is precisely what one would expect in the case of an

ideal crystal. E
ð0Þ
1 and E

ð0Þ
2 are constants of integration. The

meanings of v1, v2, k1z and k2z are the same as in equations (3)

and (4) and they are expressed through �0, �g, ��g, g and k0.

We will seek a solution of equation (20) in the form of

equations (21) with varying E
ð0Þ
1 ;E

ð0Þ
2 ! E1;E2. Substitution

of the ansatz into equation (20) gives the following:

d

dz
E ¼ iMðzÞE; ð22Þ

with

MðzÞ ¼ F�1
ðzÞS�1

��0ðzÞ ���gðzÞ

��gðzÞ ��0ðzÞ

" #

 0

0 
g

 !
SFðzÞ;

E �
E1

E2

� �
; FðzÞ �

expðik1zzÞ 0

0 expðik2zzÞ

� �
;

S �
1 1

v1 v2

� �
; 
 �

k2
0

2k0z

; 
g �
k2

0

2kg0z

:

ð23Þ

One can see that if ��0ðzÞ;��gðzÞ;���gðzÞ ! 0 then the

solution is EðzÞ ¼ constant. Equation (22) has an exact

analytical solution in the case that ��0ðzÞ, ��gðzÞ and

���gðzÞ are linear functions of expð�z=�Þ, where � is the

roughness parameter. There is a plausible model consistent

with the last requirement, but the solution is cumbersome and

has numerical problems. It is expressed through the Laguerre

polynomial and hypergeometric function (not shown here).

However, it appears that an approximate solution to equation

(22) is very accurate at realistic values of roughness. The

relative error with respect to the exact solution is comparable

to the accuracy of two-beam DDT. Namely, one can find a

first-order approximation Eð1Þ by integration of equation (22),

assuming EðzÞ is constant on the right-hand side:

E
ð1Þ
ðzÞ � Eð0Þ ¼ i

Rz
0

Mðz0Þ dz0Eð0Þ; with Eð0Þ ¼
E
ð0Þ
1

E
ð0Þ
2

 !
: ð24Þ

In further consideration we will need the value of Eð1ÞðLÞ:

E
ð1Þ
ðLÞ ¼ REð0Þ; R � 1þ i

RL
0

Mðz0Þ dz0: ð25Þ

We callR the roughness matrix. Let us now consider equation

(6) as the boundary conditions at the interface between two

actual layers. One has the field at the lower interface of the jth

layer on the left-hand side. In the case of nonzero roughness

this field can be expressed through the above-mentioned

ansatz using equation (25). Then equation (6) takes the form

SjF jRjE j ¼ Sjþ1E jþ1; ð26Þ

whereRj is the roughness matrix of the jth layer. Further, it is

convenient to denote F jRj � F
0
j and obtain the diffracted

amplitude from a multilayer structure of actual layers by

equation (13), having made the substitutioneFF j !
eFF0j � eFF jRj ð27Þ

in equations (12). Thus, the formal solution to the problem

with nonzero roughness is found.

Below we will find an expression forRj and eFF0j in the case of

a transition layer of type c. Let us modify it to account for

roughness in both interfaces of the layer:

Type c*

z<
�U

�U þ �L
L z>

�U

�U þ �L
L

�0ðzÞ ¼ �0 þ
��U

0

2
expð�z=�UÞ �0ðzÞ ¼ �0 þ

��L
0

2
exp½�ðL� zÞ=�L�

��U
0 � �

U
0 � �0 ��L

0 � �
L
0 � �0

�g;�gðzÞ ¼ �g;�g½1� expð�z=�U
Þ�

2 �g;�gðzÞ ¼ �g;�gf1� exp½�ðL� zÞ=�L
�g

2

gz ¼ constant gz ¼ constant

where upper indices U and L imply the layer above or below

the one under consideration (see Fig. 3).

In this case �g;�gðzÞ are continuous functions and �0ðzÞ is

almost continuous. Actually, a small discontinuity has a subtle

influence as only the integrals of these functions will be used.

Performing the integration in equation (25) in the case of type

c* one obtains

R ¼ 1þ
i

v1 � v2

� �
I Ið��Þ

Iðþ�Þ I

� �
þ� �

Ig Ið��Þg

Iðþ�Þg Ig

� �� �
;

ð28Þ
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where ‘�’ means the Hadamard product, that is

ðA � BÞij ¼ AijBij (no summation over i and j).

� ¼

gv1 � 
v2 v2ð
g � 
Þ

�v1ð
g � 
Þ 
v1 � 
gv2

" #
;

� ¼

g�g � v1v2��g 
g�g � 
v2

2��g

�
g�g þ 
v2
1��g �ð
g�g � v1v2��gÞ

" #
;

I ¼
RL
0

��0ðzÞ dz;

Iðþ�Þ ¼
RL
0

��0ðzÞ expði�zÞ dz;

Ið��Þ ¼
RL
0

��0ðzÞ expð�i�zÞ dz;

Ig ¼
RL
0

	�gðzÞ dz;

Iðþ�Þg ¼
RL
0

	�gðzÞ expði�zÞ dz;

Ið��Þg ¼
RL
0

	�gðzÞ expð�i�zÞ dz;

ð29Þ

with � � k1z � k2z. However, in the final equation for the

amplitude diffracted from the sample one needs an expression

for eFF0:
eFF0 ¼ eFF þ 	eFF ; with

	eFF ¼ i

v1 � v2

(
� �

expði�LÞI expði�LÞIð��Þ

Iðþ�Þ I

� �

þ� �
expði�LÞIg expði�LÞIð��Þg

Iðþ�Þg Ig

" #)
:

ð30Þ

This is expressed via the following quantities (� � �U þ �L):

I ¼ 1� expð�L=�Þ½ � ��L
0�

L þ��U
0 �

U
� �

;

Ig ¼ ��
3
2þ

1
2 expð�2L=�Þ � 2 expð�L=�Þ

	 

;

Iðþ�Þ ¼ expði�LÞ
��L

0�
L

1þ i��L
þ

��U
0 �

U

1� i��U

� exp½ði��U � 1ÞL=��
��L

0�
L

1þ i��L
þ

��U
0 �

U

1� i��U

� �
;

Iðþ�Þg ¼ � expði�LÞ�L 3þ i��L

ð1þ i��LÞð2þ i��LÞ

þ exp½ði��U
� 1ÞL=��

2�

ð1þ i��LÞð1� i��UÞ

� exp½ði��U � 2ÞL=��
2�

ð2þ i��LÞð2� i��UÞ

�
�Uð3� i��UÞ

ð1� i��UÞð2� i��UÞ
;

Ið��þ�Þ � expði�LÞIð��Þ ¼
��L

0�
L

1� i��L
þ expði�LÞ

��U
0 �

U

1þ i��U

� exp½ði��L
� 1ÞL=��

��L
0�

L

1� i��L
þ

��U
0 �

U

1þ i��U

� �
;

Ið��þ�Þg � expði�LÞIð��Þg ¼ ��L 3� i��L

ð1� i��LÞð2� i��LÞ

þ exp½ði��L
� 1ÞL=��

2�

ð1� i��LÞð1þ i��UÞ

� exp½ði��L � 2ÞL=��
2�

ð2� i��LÞð2þ i��UÞ

� expði�LÞ
�Uð3þ i��UÞ

ð1þ i��UÞð2þ i��UÞ
:

ð31Þ

It appears that Ið��Þ and Ið��Þg diverge with L!1.

However, the final expression for eFF0 is not divergent since it

involves the convergent quantities Ið��þ�Þ and Ið��þ�Þg in

equations (31). Thus, to avoid numerical problems one should

use eFF0 of equation (30) using expressions from equations (31).

We can check the limiting case �U; �L ! 0. It is seen

from equations (31) that this leads to 	eFF ! 0 as well. eFF for

the substrate layer is readily obtained by considering the limit

L!1 in equations (31) and (30). Lastly, some expressions

in equations (31) are convergent only if Im �< 1=�U;L.

However, this condition is not fulfilled only at very large

values of the roughness parameter (hundreds of nanometres).

The derivation of the roughness matrix for amorphous layers

is analogous and also much simpler than for crystalline layers.

Therefore, we do not present it here.

5. Numerical examples and fitting of experimental
rocking curve

Let us prove that the suggested approximate solution is

accurate. A comparison of exact and approximate scans for a

simple test sample is given in Fig. 4. Hereafter, by exact

solution we mean the one obtained by division of the sample

into many thin lamellae of finite thickness. The values of the

roughness parameter are very large in this example (up to the
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Figure 3
Qualitative description of type c*. The layer under consideration is placed
between the two dashed lines.



thickness of the upper layer). They are chosen in this way in

order to find the limits of applicability of the approximate

solution. In Fig. 4 one can see that the dashed lines start to

deviate slightly from the solid lines at values of the roughness

parameter of about 10 nm. For realistic values (up to several

ångströms) the exact and approximate lines are indis-

tinguishable, which proves the reliability of the approximate

solution.

Fig. 5 shows calculated scans of a superlattice based on the

type c transition layer model. Note that some peaks are

enlarged in the case of nonzero roughness, whereas others are

reduced. Actually, this is in accordance with diffraction in each

period of the superlattice. That is, if the diffracted amplitude

from one period is decreased owing to roughness at a certain

incidence angle, then the amplitude of the wave diffracted

from the superlattice is reduced too and vice versa.

We also performed a test fitting of an experimental curve by

the proposed method of calculation of rocking curves taking

into account roughness (see Fig. 6). In addition, the fitting was

done by the conventional nominal model with ideally sharp

interfaces. In the case of the model with roughness, the vari-

able parameters were the vertical scale, the layer’s thickness,

and the roughness parameter at the interface between the

layer and the substrate. In the case of the nominal model, the

only variable parameter was the vertical scale; the layer’s

thickness was fixed and equal to 5 nm (this follows from the

period of thickness fringes). The best fit was determined by

finding the curve with the smallest squared deviation (in

logarithmic scale) from the experimental rocking curve. The

experimental curve was taken from the work of Ulyanenkova

et al. (2013).

The area near the substrate peak where the largest discre-

pancy is observed is dominated by the shape of the substrate

peak. Since it is much higher in intensity than the layer, the

deviation of its shape from DDT predictions affects the curve

significantly. The deviations can be due to instrumental effects

or due to the influence of defects [see, for example, the paper

by Shreeman & Matyi (2010), where the fit of the region near

the substrate for a similar structure was obtained in the frame

of statistical dynamical diffraction theory].

In our case we are within the DDT formalism and the focus

was on the intensity from the layer. Hence, the left part of the

profile where the thickness fringes are visible is of interest.

Here we can see that the interfacial roughness model follows

the curve closer than the sharp interface model.

6. Conclusions

In this paper we obtained a general result, the application of

which is not limited to interfacial roughness. We presented the

exact (in the framework of DDT) equations for wave
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Figure 4
Calculated symmetric scans of a thin film (15 nm) of Ge solution (10%) in
Si on an Si substrate. Reflection 004. Type c of transition layer model is
assumed. jDj is the magnitude of the amplitude of the diffracted wave (�
polarization) and !in is the incidence angle (with respect to the surface
plane). The light-orange solid line represents the case of zero roughness.
Pink, purple, cyan and black solid lines correspond to interfacial
roughnesses of 2, 5, 10 and 15 nm, respectively (surface roughness is
absent). These colored lines depict the exact solution. Related black
dashed lines represent the approximate solution.

Figure 6
A thin layer (5 nm) of Si0:4Ge0:6 on an Si substrate. Reflection 004.
Symmetric scan. The blue line represents the calculation for the nominal
model of the structure with sharp interfaces. The black line depicts the fit
by the model with interfacial roughness. In the fit, the thickness is 5.8 nm
and the roughness is 0.6 nm.

Figure 5
Calculated symmetric scans of a superlattice [GaAs(2.82271 nm)/
Al0:1Ga0:9As(2.82675 nm)]100 on a GaAs substrate. Reflection 004,
interfacial roughness 0.2 nm, � polarization. jDj is the magnitude of the
amplitude of the diffracted wave and !in is the incidence angle (with
respect to the surface plane). Type c of transition layer model is assumed.
Each interface has roughness. The dark-blue scan takes into account
roughness, and the light-green one does not. Black and gray dashed lines
represent scans of one period of the superlattice with and without
interfacial roughness, respectively.



amplitudes in a crystal whose properties vary along its surface

normal [see equation (20)]. These equations could be poten-

tially applied to many other problems apart from interfacial

roughness. For instance, one could use these equations in

crystals with strain along the surface normal. This might be a

subject of further research.

Another independent result is that equation (20) has an

exact solution for a plausible model of the transition layer

describing interfacial roughness [when the Fourier compo-

nents of susceptibility are linear functions of exp ð�z=�Þ].
However, this solution is impractical because it engenders

copious numerical problems. This is why it was not exploited

in this paper.

Nevertheless, we have developed an approximate iterative

method of solution of equation (20) [see equations (24) and

(25)]. In the numerical examples in x5, it is shown that for

realistic values of the roughness parameter the approximate

solution is indistinguishable from the exact one. However, in

practice it is calculated much faster than the exact one. The

speed is comparable (two to three times longer) to that of

corresponding calculations in the model with ideally sharp

interfaces. As to the lamellar approach, to achieve sufficient

accuracy we had to use about 100 lamellae and this made the

calculations several hundred times longer with regard to the

ideal interface model. Generally, the roughness matrix

approach improves the speed of calculations by about a factor

of N, where N is the number of lamellae used to model the

transition layer. Clearly, this is a boon when performing fitting

of experimental rocking curves. The method of taking into

account roughness was incorporated into RMF in multilayers

[see equation (26)]. In order to take advantage of the speed of

the approximate solution one has to calculate analytically an

explicit form of the roughness matrix for the used model of the

transition layer. The results of such a calculation for the model

considered in this paper are given in equations (28), (30) and

(31).

A trial fitting of the experimental curve showed that the

roughness matrix approach with transition layer model type c

provides better agreement with experimental rocking curves

in the region of thickness fringes far from the peak of the

substrate. In the vicinity of the substrate both models (nominal

and type c) deviate from the experimental curve. The

disagreement may be caused by instrumental effects or by the

influence of defects. However, this single fit does not provide

enough evidence to make any final conclusions. In the future,

additional experiments should be performed, possibly with

superlattices, where interfacial roughness is thought to have a

stronger influence on rocking curves.

It would also be desirable to make some additional inde-

pendent measurements of the roughness of studied samples,

for example by XRR or electron microscopy.
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