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Intermetallic � 0 precipitates typically strengthen nickel-based superalloys. The

shape, size and spatial distribution of strengthening precipitates critically

influence alloy strength, while their temporal evolution characteristics

determine the high-temperature alloy stability. Combined ultra-small-, small-

and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used

to evaluate the temporal evolution of an alloy’s precipitate size distribution

(PSD) and phase structure during in situ heat treatment. Analysis of PSDs from

USAXS–SAXS data employs either least-squares fitting of a preordained PSD

model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori

definition of a functional form of the PSD. However, strong low-q scattering

from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of

typical alloys. This work describes the extension of Bayesian–MaxEnt analysis

methods to data exhibiting structure factor effects and low-q power law slopes

and demonstrates their use in an in situ study of precipitate size evolution during

heat treatment of a model Ni–Al–Si alloy.

1. Introduction

The formation of fine, coherent, ordered, intermetallic � 0

precipitates in a face-centered cubic matrix strengthens Ni-

based superalloys (Sims et al., 1987; Reed, 2008). The design

and development of precipitation-strengthened alloys

requires an understanding of the kinetics of precipitate

nucleation, growth and Ostwald ripening (coarsening). The

shape, particle size distribution (PSD) and spatial distribution

of precipitates critically influence alloy strength. Thus, many

studies have addressed the kinetics of � 0 growth and coar-

sening (Sims et al., 1987; Reed, 2008; Jayanth & Nash, 1989,

1990; Ardell, 1999; Baldan, 2002a,b). In addition, coarsening

kinetics dictate the long-term structural stability of alloys.

Various factors, including phase equilibria, diffusion kinetics,

elastic properties and precipitate structure, influence temporal

and spatial precipitate evolution during coarsening.

Continued interest in the prediction of coarsening behavior,

particularly in complex engineering alloys, has inspired

correlation of in silico PSD evolution simulation results with in

situ studies (Jayanth & Nash, 1989, 1990; Ardell, 1999; Baldan,

2002a,b; Voorhees, 1985, 1992).

Classical methods for determination of PSD temporal

evolution involve ex situ aging and microscopy on a series of

different samples aged for different times. In situ X-ray or

neutron scattering provides an alternative method for PSD

study using sequential measurements on a single sample

undergoing heat treatment. In particular, combined ultra-

small-, small- and wide-angle X-ray scattering (USAXS–
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SAXS–WAXS) allows the study of not only precipitate growth

and coarsening by evaluation of the PSD (from USAXS–

SAXS) temporal evolution, but also the phase structure (from

WAXS) as a function of heating time. Evaluation of the

scattering intensity IðqÞ obtained from USAXS–SAXS in

terms of a PSD generally employs either a functionally defined

PSD or a maximum entropy approach.

Lifshitz & Slyozov (1961) and Wagner (1961) developed a

theory (LSW theory) describing coarsening behavior of a

vanishingly small volume fraction of precipitates within a

matrix, predicting scaling of the average radius hri with time t

as hri3 / t and a time-invariant PSD. LSW theory further

specifies a functional form for the PSD �ðr; roÞ characterized

by a size parameter ro to yield a distribution of particle radii r:

�ðr; roÞ ¼
4

9

r

ro

� �2
3

3þ r=ro

� �7=3
3

3� 2r=ro

� �11=3

� exp
2r=ro

2r=ro � 3

� �
: ð1Þ

Assuming a spherical precipitate geometry, integration of the

LSW distribution �ðr; roÞ over a spherical form factor Pðq; rÞ

gives the expected scattering intensity IðqÞ from an LSW

distribution of spherical precipitates:

IðqÞ ¼
R1
0

Pðq; rÞ �ðr; roÞ dr: ð2Þ

However, often a broader-than-LSW PSD occurs in real

systems, which other theories address by development of

alternative models for the PSD. For example, Ardell &

Ozolins (2005) developed the TIDC model of precipitation

hardening, defining a PSD that incorporates a shape para-

meter in addition to a characteristic radius ro.

Unfortunately, a priori definition of a defined PSD shape

for small-angle scattering (SAS) data analysis can give

misleading results. The knowledge imparted by such a distri-

bution ordinarily exceeds the information available from the

scattering experiment – the simple fact that a model fits the

data does not, by itself, make it the most appropriate model.

Rather than beginning with a defined functional form for the

PSD, inverse transform approaches seek an arbitrary size

distribution AðrÞ that explains the observation IðqÞ:

IðqÞ ¼
R1
0

Pðq; rÞAðrÞ dr: ð3Þ

Truncation of the data, the presence of noise, slit integration

limits and resolution effects complicate determination of AðrÞ

given only the data IðqÞ, as many different solutions fit the

measured data within the experimental uncertainty. Selection

of the most likely solution from this set relies on the principle

of parsimony, which says to select the simplest PSD sufficient

to explain the SAXS observation.

Various techniques exist for determination of the most

likely inverse transform solution from SAS data, including the

point of inflection (Glatter, 1977), perceptual criteria

(Svergun, 1992) and maximum entropy (MaxEnt) (Jemian &

Allen, 1994; Hansen & Muller, 1996). MaxEnt methods have

the advantage that AðrÞ does not depend upon subjective

decisions about the solution; the data and experimental

uncertainty in conjunction with a functional prior expectation

mðrÞ alone dictate the solution AðrÞ. MaxEnt finds a solution

by minimizing �’� �2 (rather than �2 alone), where ’ char-

acterizes the deviation of the solution from a user-supplied

prior expectation:

’ðrÞ ¼ �

Z1
0

AðrÞ ln
AðrÞ

mðrÞ
þ AðrÞ �mðrÞ dr: ð4Þ

The Lagrange multiplier � controls the relative weight of

misfit �2 and prior functional ’. External knowledge about the

form of the PSD could suggest a particular form (such as the

LSW distribution) for the prior expectation function mðrÞ, in

which case MaxEnt and conventional fitting would be likely to

give similar results. However, often X-ray scattering analysis

provides the only insight into PSD evolution (e.g. in the

absence of costly ex situ transmission electron microscopy

studies), in which case MaxEnt methods should employ the

least informative prior expectation possible, a flat mðrÞ.

An uninformative flat prior for mðrÞ conveys no information

about the form of the distribution; expecting a flat PSD at the

outset means that new information (peaks) in AðrÞ comes only

from the measurement. Taylor expansion of equation (4) with

a flat prior estimate function mðrÞ reveals equivalence between

the entropy functional ’ and traditional smoothness regular-

ization (Hansen, 2000); the assumption of a flat prior corre-

sponds to the usual smoothness (sum of second derivative)

criteria. Bayesian techniques developed and implemented in

the program IFTc (Hansen, 2012, 2014) enhance the tradi-

tional MaxEnt framework by finding the most likely value for

� without employing the traditional relation between �2 and
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Figure 1
Simulated IðqÞ data with 1% added Gaussian noise before (dashed red)
and after smearing (points); the solid line shows the fit eII ¼ eKKA. The
desmeared data come from the solution AðrÞ via I ¼ KA, where the
pinhole-collimated operator Kðq; rÞ results from substitution of a delta
function for the slit geometry WðtÞ in equation (6). The upper inset shows
the generating distribution (dashed red) and the reconstruction AðrÞ
(black); the lower inset shows a projection of the evidence Pð�; rmaxÞ

surface onto the P–� plane during the search for AðrÞ.



the number of data points or relying on an ad hoc selection of

�. Instead, the data and measurement error inherently

dictate �.

Figs. 1 and 2 illustrate the power of Bayesian–MaxEnt

methods as implemented in Hansen’s IFTc (Hansen, 2014)

applied to SAS data analysis using a set of simulated scattering

data from an LSW ensemble of spheres according to equation

(5):

eIIðqÞ ¼ RR1
0

WðtÞP ðq2 þ t2Þ
1=2; r

� �
�ðr; roÞ dr dt: ð5Þ

This formula assumes isotropic scattering from a line-colli-

mated incident beam with the slit orthogonal to the direction

of resolution. Integration of a spherical form factor over the

distribution �ðr; roÞ and the slit geometry WðtÞ gives the slit-

smeared scattered intensity eIIðqÞ. The simulated data result

from addition of 1 and 10% random Gaussian error, respec-

tively.

Reconstruction of the distribution AðrÞ uses the inverse

problem formulation in equation (6):

eIIðqÞ ¼ Rrmax

0

R1
0

WðtÞP ðq2 þ t2Þ
1=2; r

� �
dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eKKðq;rÞ

AðrÞ dr: ð6Þ

Integration of the spherical form factor Pðq; rÞ over the slit

geometry WðtÞ gives the transform matrix elements eKKðq; rÞ,

and discretization gives the matrix equation eII ¼ eKKA. The

matrix equation accommodates a flat background in IðqÞ by

appending an element to A and a column of ones to the

operatoreKK. Bayesian methods can be used to find a solution to

equation (6) by maximizing the evidence P for the solution.

Laplace’s approximation of the posterior,

P ¼
expð�’� �2=2Þ

expð’Þð2�Þ1=2 Q �2
i

detð��rr’Þ

detðrr�2=2� �rr’Þ

� �1=2

; ð7Þ

gives P as a function of the hyperparameters Lagrange

multiplier � and limit of integration rmax (Hansen, 2000;

Vestergaard & Hansen, 2006). The measurement error �,

together with the prior and goodness of fit, uniquely deter-

mines the most likely value for the evidence.

A small simulated measurement uncertainty (Fig. 1) gives a

MaxEnt reconstruction of AðrÞ that closely follows the origi-

nating LSW distribution. Addition of 10% random noise

causes the reconstructed AðrÞ to differ significantly from the

original input data. Less convincing data means that the result

cannot differ as significantly from the prior expectation, so a

simpler (in this context, closer to the flat prior expectation)

distribution than the original LSW results. The reason for the

drastic change in the appearance of AðrÞ with these relatively

small amounts of added error in IðqÞ becomes clear by

comparing the similarity between the desmeared scattering

intensity of the original (error-free) data and the reconstruc-

tion shown by the black and red dashed lines in Fig. 1. These

examples serve to illustrate the intuitive nature of the Baye-

sian–MaxEnt approach – the quality of the measurement

influences the information obtainable from the data analysis.

Characterization techniques often employ SAS data alone

for determination of the PSD owing to its ease of use in situ; in

these situations, indiscriminate use of a prescribed size

distribution risks biasing the conclusion toward the precon-

ceived result. The appeal of MaxEnt comes from the inherent

ability to extract as much information from SAS data as

possible without overfitting. However, application of MaxEnt

to metallic alloys becomes complicated by two effects: the

grain structure of metals typically gives power law scattering at

low q and interparticle interference [SðqÞ] appears in relatively

high volume fraction alloys. Conventional inverse transfor-

mation using equation (2) gives misleading results in the

absence of flat IðqÞ at low q (the distribution relates to the q

range of the instrument, rather than the underlying sample)

and can fail with significant SðqÞ influence. In this work, we

extend the inverse transformation methodology to accom-

modate both effects, and demonstrate its utility by analyzing

temporal in situ SAXS from precipitation hardening in a

simple nickel-based alloy system.

2. Experimental

Ni–Al–Si alloys were prepared from the pure metals in an arc-

melting furnace with a copper hearth, with subsequent

homogenization at 1373 K. The specimen was electrical

discharge machined, wet polished to a thickness of 60 mm and

placed in the cup of a Linkam 1500 furnace. The furnace was

placed in the USAXS–SAXS–WAXS instrument and heated

to an indicated temperature of 873 K, and USAXS–SAXS–

WAXS scans were taken over a period of 200 min. The X-ray

energy was 24 keV, the exposure times for SAXS and WAXS

were 30 s, and the USAXS flyscan time was 90 s.

The USAXS–SAXS–WAXS instrument (Ilavsky et al., 2009,

2013; Fig. 3) consists of a Bonse–Hart USAXS instrument

combined with two-dimensional SAXS and WAXS area

detectors. The first pair of Si(220) optics (‘collimator’)

removes significant higher harmonics from the upstream

Si(111) monochromator and remains in place for all three
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Figure 2
The same data and analysis technique presented in Fig. 1, but with 10%
added Gaussian error. The width of the reconstruction AðrÞ line (black)
reflects the error estimate.



modes of operation. In the USAXS mode, a second pair of

Si(220) crystals (‘USAXS’) is moved in front of the sample

and scans the USAXS q range that includes the main beam

from q ¼ ð4�=�Þ sin � ¼ 0 to q ¼ 0:3 Å�1 with a resolution of

10�4 Å�1 in the scanning direction and 0.3 Å�1 orthogonal to

the plane of the analyzer crystals. SAXS and WAXS employ

two-dimensional area detectors with q ranges from

q ¼ 0:1 Å�1 to q ¼ 1:2 Å�1 and q ¼ 1:0 Å�1 to q ¼ 6:0 Å�1,

respectively. Effective slit smearing of the USAXS data in the

direction perpendicular to the scanning direction means that

combining the USAXS with the SAXS data requires mathe-

matical slit smearing of the pinhole-collimated SAXS. Alto-

gether, the USAXS–SAXS–WAXS instrument covers a range

from 1� 10�4 to 6 Å�1 (corresponding to length scales from

6 mm to 1 Å) with a typical time resolution of 5 min.

3. Results and discussion

In situ time-resolved USAXS–SAXS–WAXS on an Ni–Al–Si

alloy undergoing heat treatment at 873 K yielded the time-

resolved data series shown in Fig. 4. The initial scattering

intensity IðqÞ shows a low-q power law slope and a Guinier

knee at mid-q. During heat treatment, a new population of

scatterers appears at high q and shifts to lower q with time, as

expected from previous studies of precipitation behavior in

this alloy system (Muralidharan & Chen, 2000). The combined

USAXS–SAXS data after heat treatment suggest the presence

of three length scale regimes, namely a low-q power law region

for the grain structure of the metal and two precipitate size

distributions:

IðqÞ ¼
R

slit

IGrains þ I2nd PSD þ I1st PSD þ bkg; ð8Þ

IGrains ¼ aq�b: ð9Þ

The following analysis of precipitate evolution during heating

ignores the invariant second PSD, fitting it with a normally

distributed Nðr; �Þ ensemble of spheres:

I2nd PSD ¼
R

Pðq; rÞN ðr; �Þ dr: ð10Þ

The high-q region shows growth of a new first PSD, consistent

with precipitation hardening in Ni alloys. At the same time,

the WAXS data reveal the gradual appearance of the � 0 phase

during heating, distinguishable by its ð100Þs superlattice

reflection.

Studies of similar alloys using transmission electron

microscopy revealed spherical precipitates on the smallest

length scales (Muralidharan & Chen, 2000), suggesting use of

a spherical form factor integrated over a distribution for the

first PSD. Preliminary analysis revealed that IðqÞ in this region

fell more sharply than Guinier’s law, suggesting use of an

interparticle interference function SðqÞ in conjunction with the

single-particle scattering using the approximation

IðqÞ ¼ SðqÞPðqÞ. Equation (11) shows the resulting structural

level for the first PSD,

I1st PSD ¼ SðqÞ
R

Pðq; rÞ �ðr; roÞ dr; ð11Þ

where SðqÞ indicates the interprecipitate structure factor and

�ðr; roÞ the LSW distribution. The scripting tool in the soft-

ware package Irena (Ilavsky & Jemian, 2009) was used to fit all

the measured data sequentially to this hierarchical USAXS–

SAXS model; the ro thus obtained follows the hri3 / t time

dependency predicted by LSW theory. However, some

assumptions of LSW theory, such as a dilute system of preci-

pitates, may not apply to real systems. MaxEnt techniques
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Figure 4
USAXS–SAXS–WAXS during in situ annealing of a ternary Ni alloy. The
combined USAXS–SAXS data show structural alloy evolution beginning
from the homogenized material, exhibiting a flat high-q region (red)
progressing to formation and growth of precipitates. The inset shows the
corresponding WAXS, revealing the change in phase composition. The
100 reflection grows with the shift in the high-q population, consistent
with growth of the � 0 phase. The black line shows one example of the
hierarchical model used to fit the data over time. The lines underneath
show the linearly superposed fitting components of the grain structure,
the time-invariant PSD and the dynamic PSD corresponding to the
growing precipitates.

Figure 3
Schematic of the USAXS–SAXS–WAXS instrument. The pair of
collimating crystals and the sample remain fixed, while the USAXS,
SAXS and WAXS components move in and out around the sample. The
Bonse–Hart USAXS analyzer stage rotates and moves down while
scanning in q, while SAXS and WAXS data come from conventional area
detectors.



remove an initial bias by avoidance of an a priori assumption

about the form of the distribution.

The presence of the grain structure, second PSD and

structure factor together makes implementation of MaxEnt

difficult; a variety of existing modifications address inverse

transformation of SAXS data in the presence of SðqÞ. In cases

with weak correlation between particles, simple truncation of

the data at low q may serve to isolate a sufficient range of

uncontaminated PðqÞ. For spheroidal particles at moderate

volume fractions, an extension to IFTc elucidates estimates for

PðqÞ and SðqÞ (Hansen, 2008). The generalized indirect

Fourier transform (GIFT) method accommodates inter-

particle interactions by fitting an effective SðqÞ model and

performing the inverse transformation (Brunner-Popela &

Glatter, 1997). This method fixes the Lagrange multiplier

while searching for SðqÞ parameters based upon the misfit �2.

Here, we propose integration of the GIFT technique with the

Bayesian solution for AðrÞ. In addition to treatment of the

Lagrange multiplier as an unknown hyperparameter in the

original Bayesian implementation of MaxEnt, our approach

also optimizes the SðqÞ (hyper)parameters using the evidence

obtained for the resulting PSD AðrÞ.

For study of this alloy system with MaxEnt, the form of the

inverse problem changes from its typical implementation

[equation (3)] to include a product with a structure factor SðqÞ:

IðqÞ ¼ SðqÞ
Rrmax

0

Pðq; rÞAðrÞ dr: ð12Þ

Because SðqÞ and its parameters do not depend on r, the

inverse problem becomes

IðqÞ ¼
Rrmax

0

SðqÞPðq; rÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Kðq;rÞ

AðrÞ dr; ð13Þ

again in the form of a matrix equation I ¼ KA. The corre-

sponding inverse problem eII ¼ eKKA for line-collimated data

comes from integration of the kernel over the slit geometry:

eIIðqÞ ¼ Rrmax

0

R1
0

WðtÞ S ðq2 þ t2Þ
1=2

� �
P ðq2 þ t2Þ

1=2; r
� �

dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eKKðq;rÞ
AðrÞ dr:

ð14Þ

The conventional analysis in Fig. 4 used a power law slope

for the grain structure and a static collection of spheres for the

low-q PSD. Because the grain scattering and low-q PSD

evidently do not change over the course of this study, trun-

cation of the data in the region near q ¼ 10�2 Å�1 gives a

single power law slope at low q that results from the terminal

slope of the second PSD. Defining an effective structure factor

SðqÞ as resulting from the low-q power law and an interference

function for hard spheres given by Vrij (1978) gives the

following model:

SðqÞ ¼ aqb
þ SVrijðd; �; 	; qÞ: ð15Þ

The effective structure factor SðqÞ has parameters mean

distance d, variance � and volume fraction 	 characterizing

hard sphere interaction, and a and b characterize the intensity

and terminal slope of the invariant secondary PSD. While this

method requires an initial assumption about SðqÞ, Fritz &

Glatter (2006) determined that the solution of inverse

problems such as these does not depend heavily on this choice,

to the extent that averaging the diagonal elements of the

partial structure factor matrix for hard spheres gives accep-

table results. The classic MaxEnt problem sought a Lagrange

multiplier � that gave the most likely solution AðrÞ. Here, we

seek the values of �, d, �, 	, a and b that give the most likely

solution AðrÞ.

Unlike the � and rmax hyperparameters in the classic small-

angle MaxEnt kernel, the nonlinearity of SðqÞ hyperpara-

meters does not guarantee a single maximum in the multi-

dimensional evidence posterior, precluding use of the Laplace

approximation. In addition, Monte Carlo approximation of

the posterior would require recalculation of the transform

matrix elements, including the internal partial structure factor

parameters, for each point. The alternative used herein treats

the problem within a hierarchical Bayesian framework.

Fixed values for the structure factor hyperparameters and

performing MaxEnt according to the model in equation (14)

gives a solution AðrÞ with its most likely value for the hyper-

parameters �. Unlike MaxEnt without an SðqÞ, computational

efficiency dictates a fixed value for rmax, since changing it

requires recomputing the transform elements. The solution

AðrÞ obtained from a particular set of structure factor hyper-

parameters has a value for the associated evidence P. The best

solution for AðrÞ comes from finding parameters for the

structure factor that give the greatest evidence P. The search

for structure factors at this outer level of inference uses

Goffe’s implementation of Monte Carlo Metropolis–Boltz-

mann annealing (Goffe et al., 1994). A broad predefined inter-

val for the SðqÞ parameters corresponds to an uninformative
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Figure 5
Application of the model in equation (14) to a data set (black points)
from Fig. 4, showing the smeared fit found (solid green), the desmeared
equivalent (dashed green), the effective structure factor as defined in
equation (15) (blue) and the scattering intensity from a noninteracting
ensemble of spheres (red). The upper inset shows the distribution AðrÞ
obtained; the black band shows the error approximated using the
posterior evidence distribution. The lower inset shows the progression of
the Boltzmann–Metropolis search for the best SðqÞ parameters.



flat prior. Boltzmann annealing narrows this interval and

focuses on a region of the parameter space that has the

greatest evidence. Changes in SðqÞ eventually become small

enough that AðrÞ and P no longer significantly change, ending

the optimization.

Fig. 5 demonstrates this technique applied to one IðqÞ from

the temporal USAXS–SAXS shown in Fig. 4. Truncation of

the data removes the low-q scattering from the grain bound-

aries and the secondary particle size distribution, leaving a

power law slope at low q. As shown by the plot parameter

values as a function of iteration number, the search algorithm

begins with a random search over a wide range of values,

searching for a region with a global maximum. At the end, the

values for SðqÞ hyperparameters having the highest evidence

give the most likely AðrÞ consistent with the data, measure-

ment error and assumption about the form of SðqÞ. Analysis of

the data set shown required about 30 min over eight threads.

After setting the flat priors for SðqÞ and fixing rmax, the

program automatically finds the solution AðrÞ. Fig. 6 shows the

series of results for AðrÞ resulting from the temporal USAXS–

SAXS data in Fig. 4.

As a check of the technique’s analytical methodology and

internal consistency, in Fig. 7 we compare the particle size

determined from AðrÞ, the particle size determined from the

Bayesian search for the SðqÞ hyperparameters and the kinetics

revealed by WAXS. Defining ro as the mode of AðrÞ gives a

method for characterizing the spherical precipitate sizes

present. The most likely AðrÞ comes from the most likely value

for the SðqÞ hyperparameters, which includes the diameter d of

spheres in Vrij’s structure factor SVrijðqÞ. The WAXS shows

growth with time of the ð100Þs superlattice reflection, char-

acterized by its integrated intensity
R
ð100Þs. Plotting these

three parameters on the same time axis demonstrates that all

three follow similar trajectories. At longer times, the evolution

approaches hri3 / t.

4. Conclusion

Small-angle scattering allows in situ volume-averaged

measurements on alloys during heat treatment. Analysis of the

scattering data using conventional methods relies on external

prior knowledge about the form and distribution of precipi-

tates. The desire to avoid prior assumptions about the form of

the PSD solution drove the development of MaxEnt approa-

ches that seek the best explanation for the PSD given only the

measured data and the shape of the precipitates. However,

alloys that do not have flat IðqÞ at low q or have SðqÞ present

generally inhibit application of the MaxEnt method. We have

described a Bayesian augmentation of the GIFT technique for

MaxEnt determination of PSDs from scattering of such alloys.

Its application to in situ USAXS–SAXS–WAXS data collected

from a model Ni–Al–Si system revealed a self-consistent

correlation between the result of the distribution, the SðqÞ

parameters and the phase identity from WAXS.

The Fortran program employed in this work uses a slightly

modified version of BayesApp’s IFTc (Hansen, 2012, 2014) as

an internal subroutine. The correspondence author will

provide the source code and a Windows executable for free

upon request.
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Figure 6
AðrÞ obtained using the model in equation (14) from the temporal
USAXS–SAXS data shown in Fig. 4, from the initial appearance of the
precipitate (red) to its PSD after heating at 873 K for 3.5 h (magenta).

Figure 7
Comparison of parameters obtained from the mode ro of each AðrÞ (red),
the d values simultaneously obtained from the SðqÞmodel (black) and the
integrated intensity of the � 0 superlattice reflection

R
ð100Þs (blue). For

comparison, the green lines show the best fit to hri2 / t (solid) and
hri3 / t (dashed).
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