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In small-angle scattering theory and data modeling, it is generally assumed that

each scattered ray – photon or neutron – is only scattered once on its path

through the sample. This assumption greatly simplifies the interpretation of the

data and is valid in many cases. However, it breaks down under conditions of

high scattering power, increasing with sample concentration, scattering contrast,

sample path length and ray wavelength. For samples with a significant scattering

power, disregarding multiple scattering effects can lead to erroneous conclu-

sions on the structure of the investigated sample. In this paper, the impact of

multiple scattering effects on different types of scattering pattern are

determined, and methods for assessing and addressing them are discussed,

including the general implementation of multiple scattering effects in structural

model fits. The modification of scattering patterns by multiple scattering is

determined for the sphere scattering function and the Gaussian function, as well

as for different Sabine-type functions, including the Debye–Andersen–

Brumberger (DAB) model and the Lorentzian scattering function. The

calculations are performed using the semi-analytical convolution method

developed by Schelten & Schmatz [J. Appl. Cryst. (1980). 13, 385–390],

facilitated by analytical expressions for intermediate functions, and checked

with Monte Carlo simulations. The results show how a difference in the shape of

the scattering function plotted versus momentum transfer q results in different

multiple scattering effects at low q, where information on the particle mass and

radius of gyration is contained.

1. Introduction

Multiple scattering occurs in all small-angle scattering (SAS)

experiments to some degree. A schematic illustration of the

process is presented in Fig. 1, showing how multiple scattering

from coherent scatterers will give an incoherent contribution

to the scattering pattern (Schelten & Schmatz, 1980). For most

typical samples and experimental conditions, the probability

of a scattering event is relatively low, and the effect of multiple

scattering on the data is therefore negligible. For strongly

scattering samples, however, multiple scattering will contri-

bute significantly and must be accounted for to interpret the

data correctly. This leads to a less straightforward data analysis

and standardized data analysis tools cannot be applied. The

multiple scattering effects increase with sample concentration,

scattering contrast, size of scattering objects, sample thickness

and ray wavelength. Therefore, they are encountered more

frequently in small-angle neutron scattering (SANS) than in

small-angle X-ray scattering (SAXS) because of the typically

larger sample thicknesses (up to 5 mm, compared with 1 mm

or less for X-rays) and longer wavelengths (up to 10–20 Å,

compared with ca 1 Å for X-rays) applied. However, the
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effects might also be seen in SAXS for particles of high atomic

number elements, resulting in a high scattering contrast.

Traditionally, a solution to the multiple scattering problem

has been to reduce the sample concentration, thickness or

contrast. However, this is not always possible and might also

interfere with the structures of interest. The focus of the

current work is to clarify how the degree of multiple scattering

in experimental data is estimated from sample scattering or

transmission (x2.1) and at what level it must be considered in

the data interpretation (x2.2), and then to go through the

various methods available for the calculation of multiple

scattering effects on scattering functions used in data

modeling (x3), aimed at enabling full use of the affected data.

General results are presented for the case of scattering from

spheres (x4.1), together with experimental data illustrating the

potential difficulties in determining the correct level of

multiple scattering based on transmission measurements

(x4.2). Results are also presented for different representative

model scattering functions (x4.3), for high-q data (x4.4) and for

peak scattering (x4.5).

Multiple scattering effects will not appear similar for all

types of scattering pattern, and a range of representative types

are therefore addressed to illustrate this point: the sphere

(Rayleigh, 1910), Gaussian (Guinier & Fournet, 1955),

Debye–Andersen–Brumberger (DAB; Debye et al., 1957),

Sabine (Sabine & Bertram, 1999) and Lorentzian scattering

functions, where both the DAB and Lorentzian functions are

special cases of Sabine functions. The scattering functions

including multiple scattering effects were calculated semi-

analytically by Hankel transformations, using the convolution

method of Schelten & Schmatz (1980). Useful analytical

expressions for the Hankel transforms were derived for each

of the scattering functions, leading to faster and more robust

calculations. All results were checked with Monte Carlo

simulations. On the basis of the results, both the general and

the more specific effects of multiple scattering are discussed,

including the effects on scattering peaks.

At low momentum transfers q [q = 4�sin(�/2)/�, where � is

the ray wavelength and � is the total scattering angle], multiple

scattering affects the scattering patterns so that the Guinier

approximation cannot be used directly to obtain the radius of

gyration of the scattering particles. Instead, an apparent value

will be obtained. The forward scattering (scattering intensity

at q = 0), which is directly connected to the total scattering

cross section of the scattering particles, will also be modified

by multiple scattering, which could lead to erroneous

conclusions on the particle mass. Correcting expressions were

therefore developed for representative scattering functions to

allow determination of the actual radius of gyration, and of the

unmodified forward scattering, from experimentally deter-

mined values. Simple approximation methods were applied

that are valid at the more moderate levels of multiple scat-

tering generally found.

Note that multiple scattering corrections to data regarding

the small-angle scattering approximation have already been

studied extensively. More complicated general treatments

including larger scattering angles have been developed by

Vineyard (1954) and Sears (1975). Berk & Hardman-Rhyne

(1985) included refraction effects and calculations that extend

to very strongly multiply scattering systems. Šaroun (2000)

adapted the Hankel transform method for slit-smeared data

obtained from double-crystal diffractometers. Schnablegger &

Glatter (1995) addressed corrections for moderate multiple

scattering effects in static light-scattering data. Multiple scat-

tering also has an impact on incoherently scattering samples,

such as water or vanadium, which is relevant for their use as

standards for the calibration of absolute intensity. This was

addressed by Barker & Mildner (2015), who showed how

multiple scattering enhances the scattering at q = 0 where the

path length through the sample is shortest. Numerous other

data treatments have been produced as parts of experimental

papers. Herein, we primarily reference treatments that are

appropriate for our more limited scope of small-angle scat-

tering following the given scattering model functions.

2. Estimating the impact of multiple scattering

The impact of multiple scattering depends on the scattering

power, �, which, under the assumption of small scattering

angles, gives the average number of times any ray – neutron or

photon – is scattered on its path through the sample (Ruland

& Tompa, 1972; Berk & Hardman-Rhyne, 1985). It is there-

fore a crucial parameter to assess when considering whether

multiple scattering effects need to be accounted for in a

specific case.

2.1. Determining s

If the scattering angle is small, the total path length within

the sample is constant and equal to the sample thickness ds. �
is then defined as

� � ds�SAS;1: ð1Þ

�SAS,1 is the scattering cross section per sample volume, which

represents the probability per unit path length through the

sample that a ray is scattered. �SAS,1 is given by the integral of

the scattered function I1(q) over all scattering momentum

research papers

1456 Jensen and Barker � Effects of multiple scattering J. Appl. Cryst. (2018). 51, 1455–1466

Figure 1
A schematic sketch illustrating a multiple scattering process. An incident
ray is scattered by diffraction from within a coherent volume of sample.
Subsequently, a widely separated scattering event occurs, with the
observed scattering angle depending upon the incoherent addition of the
separate scattering events.



transfer vectors q. I1(q) is here defined as the differential

scattering cross section, d�SAS,1/d�, in units of cm�1 sr�1,

where the subscript ‘1’ denotes single scattering, i.e. a scat-

tering pattern with no multiple scattering effects. For an

isotropic scattering pattern, the integral reduces to an integral

over the momentum transfer q:

�SAS;1 ¼

Z
�

I1ðqÞ d� ¼ 2�

Z�
0

sinð�ÞI1ðqÞ d� ¼
�2

2�

Zqu

0

qI1ðqÞ dq:

ð2Þ

qu = 4�/� is the maximum value of q, corresponding to a

scattering angle of 180�. Note that the scattering power � is

then proportional to ds�
2. As an alternative to performing the

integrals in equation (2), the scattering power � can also be

determined from the small-angle scattering transmission of

the sample, TSAS, which is given by

TSAS ¼ exp ð��Þ: ð3Þ

The total sample transmission T also contains contributions

from absorption, incoherent scattering and inelastic scattering,

so that T = TabsTincTinelTSAS. T is determined experimentally

from the intensity of the direct beam on the detector, most

commonly attenuating the beam to avoid detector damage.

Since this measurement will inevitably cover nonzero

momentum transfers up to a value qL, it might also cover a

significant fraction of the scattering. In that case, the measured

transmission Tmeas will only partially include the contribution

TincTinelTSAS, and the included small-angle scattering contri-

bution can be obtained by replacing the lower limit in the

integrals in equation (2) by qL. By making two different

transmission measurements, T(qL1) and T(qL2) with suitably

different qL , so that the small-angle scattering mainly contri-

butes in the interval qL1 < q < qL2 , TSAS can be estimated from

their ratio: TSAS ’ T(qL1)/T(qL2). Many instruments are

capable of this and routinely run such transmission measure-

ments. For example, double-crystal instruments often make

measurements with and without an analyzer (Schwahn & Yee-

Madeira, 1987). Instruments that use large two-dimensional

detectors can determine the two different transmissions

T(qL1) and T(qL2) by summing over only the area of the

primary unscattered beam and over the entire detector,

respectively.

2.2. Assessing the multiple scattering impact

� directly gives the average number of scattering events for

a ray, and also the individual probabilities for each of the

higher orders of multiple scattering. Let Pj be defined as the

probability that an incident ray is scattered j times before

leaving the sample (Ruland & Tompa, 1972). Then

P0 ¼ TSAS; Pj ¼
� j

j!
TSAS: ð4Þ

Note that the above expressions are derived assuming that the

total path length through the sample is equal to the sample

thickness ds, which is correct for P0 and P1 , but for higher

orders of Pj is only valid for sufficiently small scattering angles,

holding reasonably well for SAS data. By renormalizing the

above probabilities based only on scattered rays, the

normalized distribution over j is obtained:

P0j �
PjP1
1 Pj

¼
Pj

1� TSAS

: ð5Þ

For small �, double scattering is the dominant contribution to

the multiple scattering component, with a normalized prob-

ability of P2
0 ’ P2 /P1 = �/2 ’ (1 � TSAS)/2. The normalized

probabilities for the different scattering orders are shown in

Fig. 2 as a function of �. Multiple scattering will become

significant approximately at a transmission below TSAS = 90%

corresponding to � = 0.105, where the normalized probability

of double scattering is 5%, versus 95% for single scattering.

For � = 1, multiple scattering (j � 2) makes up more than 40%

of the total scattering.

Scattering powers for samples of spherical particles of

different materials (polystyrene, protein, amorphous silica and

gold) suspended in water are reported in Table 1 to illustrate

values that might be encountered in typical experiments. They

can also serve as a guideline for samples with non-spherical

particles of similar size. The values are obtained using the

scattering function for spheres as given below in equation (13),

giving � = 3
2 �

2ds’��2R0 , using a sphere radius R0 = 500 Å and

a volume fraction ’ = 0.01. Numbers are reported for both

neutron and X-ray scattering. For neutron scattering, heavy

water (D2O) was used as a solvent, which enhances the scat-

tering contrast and limits the contribution from incoherent

neutron scattering. A sample thickness of ds = 1 mm was

applied in all cases. This is a typical value for SAXS, but for

SANS, heavy water samples up to 5 mm thick might be used,

which would then cause a proportional increase in �. For

SAXS, the contrast increases with the electron density of the

particles and the highest scattering power is obtained for gold

particles, where multiple scattering would be highly signifi-

cant. For SANS, the contrast with respect to the deuterated
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Figure 2
Normalized probability of scattering for the five first scattering orders as a
function of scattering power �. (For � = 1, P1

0 = 0.582, P2
0 = 0.291 and P3

0 =
0.061.)



solvent is highest for particles which contain many hydrogen

atoms. Here, multiple scattering would be significant for the

polystyrene colloid if the sample thickness were doubled to

just 2 mm. These are only illustrative examples, and by using

larger particles, a higher sample concentration or a larger

sample thickness, the scattering power would be significantly

enhanced.

For very large particles, one should note that multiple

scattering effects might also be accompanied by refraction

effects. A ray encounters a phase shift � upon passing through

the particle. If � is significantly larger than 1, refraction will

cause suppression of scattering and a perturbation of the

scattering pattern (Berk & Hardman-Rhyne, 1985). For

spheres, the phase shift is given by � = 2��R0�, and refraction

effects would set in at R0 > 4.7 mm for SANS on polystyrene

spheres in D2O, and at R0 > 0.8 mm for SAXS on gold spheres

in H2O.

3. Methods for calculation of multiple scattering
functions

Scattering patterns including multiple scattering effects, Im(q),

were determined for various different scattering functions

I1(q), representing typical scattering patterns that might be

encountered. The calculations were performed using the semi-

analytical one-dimensional convolution method of Schelten &

Schmatz (1980) as described below. Results were obtained for

different scattering power � and checked by Monte Carlo

simulations, which were also applied to perform calculations

for scattering functions extending to large scattering angles,

where the approximation of scattering at small angles does not

apply.

3.1. Semi-analytical convolution method

The multiple scattering function can be determined semi-

analytically for a given single scattering function, I1(q). It is

given by the sum of the scattering curves for all scattering

orders, normalized by their individual scattering cross section

�SAS, j [equation (2] and weighted by their probabilities Pj

[equation (4)]. Using the present definition of absolute scale,

the total intensity is also normalized by the sample path length

and the transmission TSAS, resulting in the expression

ImðqÞ ¼
X1

1

Pj

�TSAS

IjðqÞ

¼
X1

1

� j�1

j!
IjðqÞ

¼ I1ðqÞ þ
X1

2

� j�1

j!
IjðqÞ; ð6Þ

Note that, depending on the method used to determine the

sample transmission, the experimental data for Im(q) might be

lower by a factor down to TSAS if the transmission measure-

ment did not restrict the range of angles collected to suffi-

ciently small momentum transfers qL .

As shown by Schelten & Schmatz (1980), any order of two-

dimensional scattering function Ij(q) is given by the two-

dimensional scattering convolution of the next lower order

Ij�1(q) with the first order I1(q):

IjðqÞ ’ I1ðqÞ � Ij�1ðqÞ; ð7Þ

where * symbolizes convolution in two dimensions. This

results in a convolution from I1(q) to Im(q) by ‘forward’ and

‘back’ two-dimensional Fourier transforms. Monkenbusch

published a program performing both the convolution from

I1(q) to Im(q) and the deconvolution back to I1(q) using fast

Fourier transform algorithms (Monkenbusch, 1991). Two data

sets were collected for the same sample, but with different

sample thicknesses and hence different scattering powers. The

single scattering functions obtained by deconvolution were

similar, but not identical, illustrating both the power of this

approach and also the limitations for real data with noise and a

limited q region.

Schelten & Schmatz (1980) gave the expressions for

isotropic scattering patterns I1(q) based on a Hankel trans-

form to obtain the intermediate function i1(r), which can then

be modified into im(r) to account for the multiple scattering

and transformed back to the multiple scattering function

Im(q):

ixðrÞ ¼ 2�ds

R1
0

J0ðqrÞ IxðqÞ q dq; ð8Þ

ijðrÞ ’ i1ðrÞ ij�1ðrÞ; ð9Þ

imðrÞ ¼
2�

�

� �2

exp
�

2�

� �2

i1ðrÞ

" #
� 1

( )
; ð10aÞ

i1ðrÞ ¼
2�

�

� �2

ln 1þ
�2 imðrÞ

2�ð Þ2

� �
; ð10bÞ

IxðqÞ ¼
1

2�ds

Z1
0

J0ðqrÞ ixðrÞ r dr: ð11Þ
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Table 1
The calculated scattering contrast �� and scattering power � from typical
colloidal samples for SAXS and SANS of dilute solutions (’ = 1%) of
spherical particles with radius R0 = 500 Å suspended in water, and having
a sample thickness ds = 1 mm.

For X-rays light water is used for solvent, whereas for neutrons heavy water
D2O is used to enhance the scattering contrast. For X-rays a wavelength of � =
1.54 Å is used, corresponding to Cu K� radiation, whereas for neutrons � =
6 Å is used. Note that for neutrons some D/H is exchanged, affecting the
contrast. All samples have transmissions from X-ray absorption of above 30%,
except for the gold sample which is only 0.7%.

Material
Density
(g cm�3)

��SAXS

(Å�2) �SAXS

��SANS

(Å�2) �SANS

Polystyrene 1.05 1.8 � 10�7 5.6 � 10�7 5.0 � 10�6 0.067
Protein 1.35 2.5 � 10�6 1.1 � 10�3 3.2 � 10�6 0.027
SiO2 2.3 1.03 � 10�5 0.019 2.7 � 10�6 0.020
Au 19.32 1.15 � 10�4 2.4 1.7 � 10�6 0.008



J0() is the zero-order Bessel function of the first kind and x

denotes either 1 or m for single or multiple scattering,

respectively. Note that, in the limit � ! 0, im(r) = i1(r) and

Im(q) = I1(q), as expected. Equations (8)–(11) are modified

from the versions of Schelten and Schmatz, where the single

scattering functions were given by S(q), such that I1(q) =

[exp(�)/dx]S(q), in accordance with our definition of intensity,

which is normalized by the transmission and sample thickness.

Analytical Hankel transform pairs I1(q) () i1(r) exist for

all the scattering functions addressed here, such that the

forward integral of equation (8) can be solved analytically for

i1(r). This greatly improves both the robustness and the speed

of the calculations. They are all presented in Appendix A. For

the Gaussian function, the integral of the back transform

could also be solved analytically, as given in Appendix A. For

the other functions, it was solved numerically.

The method of Schelten and Schmatz might also, in prin-

ciple, be used to deconvolute data containing multiple scat-

tering effects, to obtain the corresponding single scattering

functions I1(q). This would, however, require very precisely

determined scattering intensities with very low noise (Schelten

& Schmatz, 1980), collected over a wide q range and with the

possibility of extrapolation to obtain intensity values for the

lowest and highest q. For this reason, the inclusion of multiple

scattering in the model function is the preferred approach.

Rather than obtaining Im(q) directly from a transformation

of I1(q), it can also be calculated as a combination of Ij(q)

according to equation (6). Only significantly contributing

higher-order scattering functions must be included, which in

many cases means that inclusion of the second-order scat-

tering function is sufficient. The orders that must be included

can be estimated from equation (5) by setting a certain frac-

tion that must be accounted for; for example, if the target is to

include 99% of the scattering, for a given value of �, it must

apply that
P

j=1Pj
0 � 0.99. The scattering power is determined

from the transmission TSAS [equation (3)] or from the integral

over the data or model according to equations (1) and (2).

Ij (q), and hence Ij(q), can be determined numerically from

any model function I1(q) by two-dimensional convolutions of

I1(q), according to equation (7). They might also be deter-

mined by Hankel transforms using equations (8), (9) and (11).

In order to determine Ij (q) analytically, the transform pairs

Ij (q) () ij(r) = [i1(r)] j must exist and the back transform

given in equation (11) must be solved. Analytical expressions

exist for all higher-order transforms Ij (q) of the Gaussian

function and the Sabine function, and for the second-order

Lorentzian transform. All these transform solutions are given

in Appendix A. Alternatively, Ij(q) can also be determined by

simulation. After combining the contributing orders Ij(q)

according to equation (6), the result can be compared with the

experimental data.

Relatively fast calculation of Im(q) can be achieved either

by numerical solution of the Hankel transforms, potentially

aided by analytical solutions for i1(r), or by summing contri-

buting orders Ij(q), obtained by Hankel transforms or two-

dimensional convolutions. This allows for inclusion of the

calculation in a model optimization routine, so that the

multiple scattering data can be fitted using a structural model,

as is routinely done for single scattering data. Apart from the

model parameters, this then also requires a parameter giving

the scattering power, either determined from transmission

measurements or, ideally, obtained from the model using

equation (2).

3.2. Monte Carlo simulation method

Simulations can be a very useful tool in the interpretation of

experimental data including multiple scattering effects. For

any given structural model, simulations give the ability to

probe the multiple scattering function Im(q), as well as any

individual order of scattering function Ij (q). This option is

included in the Igor software SAS data reduction and analysis

macro (Kline, 2006).1 The procedure is time consuming, but

running it for the relevant value of scattering power and a

series of tentative structural parameters might allow for esti-

mation of the structure that best fits the data.

Monte Carlo simulations were used to verify the results

obtained from the faster semi-analytical convolution approach

by Schelten and Schmatz in the Lorentzian case, where

significant scattering occurs at larger scattering angles so that

the small-angle approximation is no longer valid. The simu-

lation approach also allowed for truncation of the function at a

scattering angle of 180�, which is not possible using the

approach of Schelten and Schmatz. An ideal non-divergent

monochromatic beam was applied, scattering from a sample of

infinite slab geometry with a thickness of 1 mm, using ca 107

scattered rays per simulated scattering pattern. Simulations

were also completed to verify calculations for the other scat-

tering functions, but none of the data are included here.

4. General effects of multiple scattering

4.1. Scattering from spheres

The general effects of multiple scattering can be illustrated

by the example of scattering from spheres, as also shown by

Schelten & Schmatz (1980). Fig. 3 shows Im(q) for scattering

from monodisperse spheres of radius R0 = 500 Å for several

different �. The single scattering function is given below in

equation (13). The q scale is renormalized by the radius of

gyration RG, and the plot is shown on both a linear intensity

scale, highlighting the Guinier region, and a logarithmic

intensity scale, highlighting the low-intensity features at high

q. The contributions from single scattering, I1(q), and double

scattering, I2(q) (both normalized to unity at q = 0), as

determined from Hankel transforms, are shown in Fig. 4.

Three main effects of increasing multiple scattering

(decreasing scattering transmission) are seen. Firstly, the

forward scattering Im(0) is substantially enhanced at a scat-

tering power of � = 0.693 (corresponding to TSAS = 0.5) and

increases further for higher �. This might lead to an over-

estimation of the contrast or size of the scattering particles if
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1 Disclaimer: the use of certain trade names or commercial products does not
imply any endorsement of a particular product, nor does it imply that the
named product is necessarily the best product for the stated purpose.



the effects of multiple scattering are not considered in the data

analysis. Note that, if the small-angle scattering falls inside the

direct beam, the measured transmission does not include the

contribution from TSAS, and the measured scattering patterns

will follow TSASIm(q), resulting in decreasing Im(0) with

increasing � as shown by Schelten and Schmatz. The data

interpretation therefore depends critically upon how the

sample transmission is measured.

Secondly, the scattering curve is slightly broadened. This is

not readily apparent from the plot in Fig. 3, owing to the

moderate degree of multiple scattering, but Fig. 5 clearly

shows that the double scattering curve is much broader than

the single scattering curve, with the full width at half-

maximum increased by ca 30%. At high levels of multiple

scattering, this will lead to a noticeable decrease in the

apparent radius of gyration. As equation (7) suggests, the

apparent radius of gyration for any higher-order scattering

function is given by RG, j
2 = RG

2 /j.

Thirdly, the sharp minima are significantly altered even at a

relatively low scattering power, � = 0.105 (T = 0.9), as seen in

Fig. 3(b). Fig. 4(b) shows that, already at double scattering, the

minima found in the single scattering function are completely

washed out. Without considering multiple scattering, this

effect might have been assigned to polydispersity or shape

anisotropy of the particles.

4.2. Assessing multiple scattering effects in experimental data

When assessing the scattering power for an experimentally

determined scattering pattern, a good transmission measure-

ment is key, as described above. However, the high intensities

at low q resulting from multiple scattering can affect the

precision of this measurement, resulting in a wrong estimate of

the multiple scattering effect and of the absolute scale of the

data, as seen from the data presented here. SANS data were

collected on the NGB30 SANS instrument at the National

Institute for Standards and Technology Center for Neutron

Research (NCNR) (Glinka et al., 1998) for samples of

monodisperse spherical particles of polystyrene (Rennie et al.,

2013) in D2O at a volume fraction of ’ = 0.0025. The scattering

power was varied by varying the neutron wavelength (6, 8.4,

12 and 20 Å) and the sample thickness (1, 2, 5 and 10 mm). A

model of monodisperse spheres, including instrumental

smearing effects, was fitted to the data set for the lowest

scattering power, corresponding to a negligible fraction of

multiple scattering of 1 � P1
0 = 0.014. A sphere radius of R0 =

708.5 	 0.8 Å was determined, where the uncertainty denotes

one standard error. The theoretical values for � fall in the

range 0.028–3.13, as determined from equation (13). Experi-

mental values for � were calculated from the small-angle

scattering transmission TSAS, which was determined as
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Figure 3
Plots of the multiple scattering function Im(qRG) for monodisperse
spheres and scattering powers � = 0, 0.1, 0.5 and 2.0. Panel (b) shows Im(q)
on a log scale to enhance the minima in the scattering function.

Figure 4
Plots of the single scattering function I1(qRG), double scattering function
I2(qRG) and triple scattering function I3(qRG) for monodisperse spheres,
all normalized at q = 0. Panel (b) shows Ij (q) on a log scale to enhance the
minima in the scattering function.



described above, by the ratio of transmission values measured

over the area of the direct beam and over the area of the entire

detector. As shown in Fig. 5(a), the determined values did not

match the theoretical ones at any considerable scattering

power. With increasing scattering power, the small-angle

scattering will increase and contribute significantly within the

area of the direct beam, leading to a measured transmission

which is too high. The ratio between the measured and actual

values of TSAS is given by

TSAS;exp

TSAS

¼
exp �ds�tot;exp

� �
exp �ds�1ð Þ

¼ exp
�ds�

2

2�

Zqu

qbeam

qIm;expðqÞ dq�

Zqu

0

qI1ðqÞ dq

2
64

3
75

8><
>:

9>=
>;

’ exp
ds�

2

2�

Zqbeam

0

qI1ðqÞ dq

2
4

3
5; ð12Þ

where qbeam is the largest value of q which is considered to fall

within the direct beam for the experimental transmission

measurement and qu is the upper value, as defined under

equation (2). The last expression assumes that the scattering

cross section for Im(q) has the same relative contribution at

q < qbeam as does I1(q). The experimentally determined

transmission values were corrected by this factor, using a value

for qbeam that takes into account that they were obtained using

a square to define the area of the direct beam. The resulting

corrected scattering powers are in much better accordance

with the expected values, as also shown in Fig. 5(a). For

scattering data in general, it would be necessary to extrapolate

an experimentally determined scattering function to q = 0 to

estimate this correction. This illustrates the difficulty in

obtaining precise values of the scattering power from trans-

mission measurements, and hence also the difficulties in

obtaining data on an absolute scale. Therefore, we used here

the theoretically calculated values for TSAS to normalize the

data. The data for all scattering powers are shown in Fig. 5(b).

The Monte Carlo simulated scattering curves (lines) using the

theoretically calculated scattering powers show good agree-

ment with the experimental data, again confirming that the

uncorrected scattering powers are not in agreement with the

actual conditions.

4.3. Multiple scattering effects on different scattering model
functions

Scattering functions modified by multiple scattering Im(q)

were calculated as a function of scattering power � for various

representative scattering functions I1(q), listed below. The

analytical expressions for the associated scattering power � are

also given, as determined from the integral over qI(q) as given

in equation (2). In addition, approximate solutions �approx are

shown, obtained using an infinite upper limit for q, rather than

the actual upper value, qu = 4�/�, corresponding to the

maximum scattering angle � = 180�. This modification results

in simpler expressions. Owing to the steeply decaying scat-

tering functions I(q), the deviation from the exact result is

negligible, except for the Sabine model with p = 1, corre-

sponding to a Lorentzian function.

Sphere form factor:

I1ðqÞ ¼ 9I1ð0Þ
sinðqR0Þ � qR0 cosðqR0Þ

qR0ð Þ
3

� �2

; ð13Þ

�approx ¼
27

40�
U;

� ¼ �approx 1�
1

quR0ð Þ
2
þ

sinð2quR0Þ

ðquR0Þ
3
þ

cosð2quR0Þ � 1

2ðquR0Þ
4

� �
:

ð14Þ
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Figure 5
(a) Scattering powers for a dilute solution of polystyrene spheres in D2O,
collected for different values of scattering power in the range 0.028–3.13,
obtained by varying the sample thickness and neutron wavelength. The
values are determined from transmission measurements (open symbols)
and the same values corrected for small-angle scattering in the direct
beam (closed symbols), plotted against the theoretical value of the
scattering power. The line follows �exp = �theory. (b) Plots of SANS data
from the solutions, normalized by the corrected transmissions presented
in panel (a). The lines are calculated scattering patterns for spheres,
including multiple scattering effects according to the theoretical values of
the scattering power.



Gaussian function:

I1ðqÞ ¼ I1ð0Þ exp �
1

3
qRG

� �2

� �
; ð15Þ

�approx ¼
3

4�
U; � ¼ �approx 1� exp �q2

u R2
G=3

� �� 	
: ð16Þ

General Sabine model function (p � 1):

I1ðqÞ ¼
I1ð0Þ

1þ q	ð Þ2
� 	p ; ð17Þ

�approx ¼
3p

4�ðp� 1Þ
U; � ¼ �approx 1� 1þ q2

u	
2

� �1�p
h i

;

ð18Þ

where U � dsI1ð0Þ�
2=R2

G and R2
G = 3R2

0=5 = 3p	2. R0 is the

sphere radius, RG is the radius of gyration and 	 is a correla-

tion length. The scattering function from spheres [equation

(13)] is the model used most often to describe particulate

systems. The Gaussian function [equation (15)] accurately

models the Guinier region for any type of particle, but greatly

underestimates the scattering at large q. The algebraic scat-

tering function, developed by Sabine & Bertram [equation

(17)], closely resembles the predicted scattering functions for

fractal materials (Sinha et al., 1984). The DAB scattering

function [equation (17), p = 2] is commonly used in modeling

two-phase materials, and the multiple scattering corrections

have also been given by Ruland & Tompa (1972). The

Lorentzian function [equation (17), p = 1] has a shape very

close to that of the Debye function used to describe the

scattering from random-walk statistical polymer chains. The

sphere and DAB models both correspond to actual real-space

structures, and the forward scattering I1(0) is directly related

to the volume fraction ’ of particles, their individual volume V

and their scattering contrast ��, by I1(0) = ’V��2. The
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Figure 6
(a) Plots of five different scattering functions I1(qRG) and of the
corresponding multiple scattering functions Im(qRG) for � = 0.5. (b) The
integrals over qRGI1(qRG) are proportional to the scattering power �,
according to equations (1) and (2), and therefore all have the same value.
For the Lorentzian function an infinite integral will be obtained, and it
was therefore truncated at quRG = 350 (see text).

Figure 7
Plots of (a) the forward scattering cross section Im(0) normalized by I1(0),
and (b), (c) the Guinier radius RG,m normalized by RG,1 , versus scattering
power � for the five scattering functions. The Lorentzian scattering
function was truncated at quRG = 350 for calculation of the scattering
power �, which for a wavelength of 6 Å corresponds to a radius of
gyration of 167 Å. The power series expressions given in equation (19) fit
the results for � < 2, using the coefficients given in Table 2.



Sabine model with p = 3/2 has the unique property that the

shape of all orders of the scattering function is invariant if q is

rescaled by the beam broadening caused by multiple scat-

tering: Ij (RG,jq)/ j2 = I1(RGq), where RG, j = RG / j (Sabine &

Bertram, 1999).

The Gaussian function, the sphere function, and Sabine

functions for p = 2 (DAB model), p = 3/2 and p = 1 (Lorentzian

function) are shown in Fig. 6(a) (thick and dashed lines),

together with multiple scattering functions for � = 0.5 (thin

solid lines). The multiple scattering effects are most clearly

visible for the sphere function, owing to the smearing of the

sharp minima. Fig. 6(b) shows qRGI(qRG), which is the inte-

grand in equation (2) for determining the scattering cross

section �SAS,1. The scattering power � is therefore propor-

tional to the area under the curves. It is seen that the contri-

bution to � is distributed very differently over q for the

different scattering functions. For the Lorentzian curve, the

integrand does not converge for q ! 1, illustrating the

significance of the truncation at qu = 4�/� or qRG = 4�RG/�.

The shape of the scattering curve I(qRG) will therefore

depend on the value of RG.

For Fig. 6 we used quRG = 350 for the calculation of �. Note

that the scattering contribution to � is significant up to qu, so

that only a minor fraction is covered by the plot.

Multiple scattering functions were determined for the same

five functions, using a wide range of values for �. The forward

scattering Im(0) and apparent radius of gyration RG,m are

plotted in Fig. 7. They depend very differently on � for the five

cases, showing that the multiple scattering effects within the

Guinier region are duly influenced by the shape of the scat-

tering function at larger q beyond the Guinier region. Since

the higher-order scattering functions Ij(q) are obtained by

convoluting I1(q) with itself [equation (7)], it can be expected

that the most steeply descending I1(q) will perturb the Guinier

region the most. That is, the perturbations are expected to be

largest for the sphere and Gaussian functions, smaller for the

DAB and Sabine functions, and smallest for the Lorentzian

function. This trend is indeed observed for Im(0). For RG,m ,

which reflects the slope of the multiple scattering functions,

the trend is less clear, because it depends on the more specific

shape of the scattering functions and on the chosen q range for

which RG,m is determined. Analytical solutions for Im(0) are

obtained for the Sabine and Gaussian functions and for RG,m

for the Gaussian function. They are all given in Appendix A.

The dependence of Im(0) and RG,m on � as shown in Fig. 7

was fitted in the range 0 
 � 
 2 with empirical power series,

similar to the corrections of Boothroyd (1988) for the second

virial coefficient:

Imð0Þ

I1ð0Þ
ffi exp A0 þ A1� þ A2�

2
þ A3�

3
� �

;

RG;m

RG

ffiB0 þ B1� þ B2�
2 þ B3�

3:

ð19Þ

The obtained coefficients are given in Table 2 for the five

different scattering functions, as well as for Sabine functions of

intermediate p. Then, for a known or estimated �, and with a

rough idea about the type of scattering function, the multiple

scattering effect on these quantities can be estimated. In

addition, for the given scattering functions it is possible to

obtain the forward single scattering I1(0) and the actual radius

of gyration RG from the measured values, Im(0) and RG,m ,

using equation (19) together with the fit parameters reported

in Table 2. Copley (1988) also made similar calculations for

spheres using Monte Carlo simulations, which agree well with

the current data. The empirical power series break down for

� ! 1. Here, a power law is instead observed for the

apparent radius of gyration:

RG;m

RG

ffi �C: ð20Þ

The values of C are also given in Table 2, except for the

Lorentzian function which does not follow this behavior.

For the Lorentzian function, the value of � is determined for

a function truncated at qRG = 4�RG/�. However, the Hankel

transformations require continuous functions and are

performed for the entire function for q ! 1. We therefore

applied Monte Carlo simulations to obtain multiple scattering

functions for truncated Lorentzian functions using a range of

different values of RG. Only minor deviations from the Hankel

transform results were observed in the q range covered by

Fig. 6. A larger value of RG will give a function which decays
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Table 2
Fit parameters to the power series expressions of equation (19), obtained for various scattering functions, fitted over the range 0 < � < 2.

Numbers are given to the significant digit without affecting the fit quality. All calculations are based on Hankel transforms, giving high-precision results for I(0) and
RG, and the zero-order coefficients are therefore fixed at A0 = 0 and B0 = 1. The largest deviation of the fit from the calculation is less than 0.03%, observed at � = 2.
The last column gives fit parameters to the power law expressions of equation (20), obtained for various scattering functions, fitted for � > 100.

Function 10 � A1 102
� A2 103

� A3 102
� B1 103

� B2 104
� B3 C

Gaussian 2.5000 2.436 1.68 �6.2485 �4.977 1.79 �0.504
Sphere 2.5791 2.285 1.40 �5.2929 �4.437 0.91 �0.584
Lorentzian† (p = 1) 0.4708 0.234 0.20 �1.9610 �0.925 �0.65
Sabine (p = 1.1) 0.4167 0.159 0.09 �1.6924 �0.600 �0.24 �5.000
Sabine (p = 1.25) 0.8334 0.547 0.50 �3.2711 �1.989 �1.04 �2.001
Sabine (p = 1.5) 1.2500 1.062 1.11 �4.6867 �3.494 �2.07 �1.018
Sabine (p = 1.75) 1.4991 1.421 1.31 �5.4187 �4.259 �2.32 �0.730
DAB (p = 2) 1.6663 1.619 1.60 �5.8336 �4.756 �1.77 �0.627

† Scattering power obtained using quRG = 350.



less steeply, leading to a weaker impact of multiple scattering

for a given scattering power �. Coefficients for the power law

expressions in equation (19) for the truncated Lorentzian

functions, as obtained from simulation results, are given in

Table 3, showing the expected trend of decreasing impact with

increasing RG. For real samples scattering according to the

Lorentzian function, one might expect the scattered intensity

to be effectively truncated at a value of q < qu , given by the

length scale of the building blocks of the scattering structure.

This would then result in a different effect of multiple scat-

tering compared with the effects reported here, which assume

Lorentzian scattering at all q up to qu .

4.4. Multiple scattering effects at high q

The effect of multiple scattering at large q has been

analyzed analytically by Berk & Hardman-Rhyne (1985) and

Monkenbusch (1996). If the intensity decreases with q steeper

than q�2, it applies that

ImðqÞ ffi I1ðqÞ expð�Þ ¼
I1ðqÞ

TSAS

: ð21Þ

That is, the shape of the scattering pattern is conserved, but

the intensity increases with decreasing scattering transmission.

For scattering from micrometre-sized structures, multiple

scattering is often significant. However, the Guinier region,

containing most of the scattering intensity, then typically lies

behind the beamstop. Therefore, the transmission TSAS is

sometimes not accounted for, and the reported scattering

pattern will correspond to TSASIm(q), hence closely following

the single scattering function I1(q).

4.5. Multiple scattering effects on peak scattering

In phase-separated systems where a well defined repeated

length scale exists, scattering rings are observed at the Bragg

angle �peak , leading to a peak in I(q) at the corresponding

scattering vector qpeak . Fig. 8 shows Monte Carlo simulation

results for a scattering function given by a Gaussian peak with

qpeak = 0.05 Å�1 and a full width at half-maximum of 0.01 Å�1.

The scattering curves including multiple scattering effects

Im(q) were determined for � = 0.1, 1 and 5 and are plotted in

Fig. 8(a). It is seen that the peak is conserved, so that the

higher-order scattering functions Ij(q) mainly contribute with

a smooth background. Fig. 8(b) shows the individual higher-

order scattering contributions Ij(q). The second order of

scattering will convolute the first-order scattering ring with a

ring of the same radius. Therefore, increased intensity is

observed at ca q = 0 and q = 2qpeak . The third-order scattering

results in another convolution, and the features will prefer-

entially be ‘scattered back’ to the original angle �peak , so that a

peak is again observed at q = qpeak , albeit much less

pronounced. Thus, for even j, features are present at ca q = 0

and q = 2qpeak , whereas for odd j a peak is observed at qpeak .

This effect was observed by Silas & Kaler (2003) in data for a

bicontinuous microemulsion, following the Teubner–Strey

model, with a peak representing the characteristic correlation

length of the sample. They identified a higher-order peak as an

effect of multiple scattering, rather than representing an

independent structural feature of the sample, and were able to

analyze their data accordingly using the method of Schelten

and Schmatz.
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Table 3
Fit parameters to the power series expressions of equation (19), obtained
for simulated multiple scattering functions for Lorentzian functions
truncated at different values of quRG, fitted over the range 0 < � < 2.

Numbers in parentheses () represent the one-standard-deviation error on the
last digit. All calculations are based on Guinier fits performed in the interval
0.5 < qRG < 1.0. A0 = 0 and B0 = 1 are expected for an optimal Guinier fit using
data for qRG! 0.

quRG A0 A1 A2 B0 B1

50 �0.02254 (1) 0.068 (3) 0.009 (2) 0.887 (3) �0.050 (3)
100 �0.02152 (1) 0.056 (3) 0.006 (2) 0.893 (2) �0.044 (2)
200 �0.02245 (1) 0.0535 (8) 0† 0.895 (3) �0.039 (3)
500 �0.01769 (1) 0.040 (1) 0† 0.894 (3) �0.031 (3)
1000 �0.02555 (1) 0.0434 (8) 0† 0.888 (3) �0.020 (3)
2000 �0.02494 (1) 0.0380 (8) 0† 0.890 (3) �0.020 (3)

† Fixed at zero in the fit.

Figure 8
(a) Plots of multiple scattering functions Im(q) for a Gaussian-shaped
peak for � values of 0.1, 1 and 5. Strong multiple scattering produces a
large background, but the peak shape is only slightly altered. (b)
Individual contributions Ix(q) for orders of scattering x in the interval
1 to 5.



5. Conclusions

Methods to account for contributions from multiple scattering

and the associated error in data analysis are addressed. The

determination of the scattering power, and thereby the level of

multiple scattering effects, from experimental data is

addressed, highlighting the requirement for precise transmis-

sion measurements. The scattering functions including

multiple scattering effects Im(q) are determined semi-

analytically for representative scattering profiles, using the

method of Schelten and Schmatz, together with analytical

expressions for the intermediate functions, reported in the

present paper, facilitating the calculations.

Model-independent structural information, in the form of

the forward scattering I(0) and radius of gyration RG, can be

determined from scattering data at low q in the Guinier

region. For data influenced by multiple scattering, apparent

values Im(0) and RG,m will be obtained. In general, multiple

scattering will lead to an increase in the forward scattering

Im(0) and a decrease in the apparent radius of gyration RG,m.

The present results show how the perturbation of Im(0) and

RG,m depends sensitively on the shape of the scattering func-

tion at intermediate and large q and is therefore different for

the different scattering patterns. Approximate expressions for

both Im(0) and RG,m as a function of � are determined for a

range of scattering functions, allowing determination of the

unperturbed values I(0) and RG for a given value of �.
The individual higher-order scattering functions Ij(q) can

be determined using two-dimensional autoconvolutions of

I1(q), or for one-dimensional functions through the Hankel

transforms suggested by Schelten and Schmatz. By including

the appropriate contributions from the different orders in

scattering models, multiple scattering effects can be accounted

for in structural model fits, so that even data containing

significant multiple scattering contributions can be quantita-

tively analyzed and interpreted.

APPENDIX A
Transforms and analytical solutions

A1. Hankel transforms to obtain i1(r) analytically from I1(q)
for the addressed scattering functions

Gaussian function:

i1ðrÞ ¼
3�dsI1ð0Þ

R2
G

exp �
3

4

� �
r

RG

� �2
" #

: ð22Þ

Sphere function:

i1ðrÞ ¼
9�dsI1ð0Þ

4R6
0

� wrR
3
0 þ

r2wrR0

8
þ ln

wr þ 2R0

r

� �
r4

16
� r2R2

0

� �� �
;

ð23Þ

where wr � ð4R2
0 � r2Þ

1=2

DAB function (p = 2):

i1ðrÞ ¼ �dsI1ð0Þ
rK1ðr=AÞ

A3
: ð24Þ

Sabine function (p > 1):

i1ðrÞ ¼ 2�dsI1ð0Þ
rP�1

2P�1�ðPÞAPþ1
K1�P

r

A
; ð25Þ

where K is the modified Bessel function.

Sabine function (p = 3/2):

i1ðrÞ ¼ 2�dsI1ð0Þ
expð�r=AÞ

A2
: ð26Þ

Lorentzian function (p = 1):

i1ðrÞ ¼ 2�dsI1ð0Þ
K0ðr=AÞ

A2
: ð27Þ

A useful identity for determining the apparent radius of

gyration for multiple scattering functions is

R2
G;N ¼

3
R1

0 iðrÞ
N

r3 dr

4
R1

0 iðrÞNr dr
R2

G;m ¼
3
R1

0 imðrÞ r
3 dr

4
R1

0 imiðrÞ r dr
: ð28Þ

A2. Analytical solutions for multiple scattering functions

A2.1. Gaussian function. The scattering of any order can be

determined from the expression

IjðqÞ ¼
1

j
I1ðq=j1=2

Þ ¼
1

j
I1ð0Þ exp

�q2R2
G

3j

� �
: ð29Þ

The scattering at q = 0 is

Imð0Þ ¼ I1ð0Þ
X1
j¼1

� j�1

j! j
¼

I1ð0Þ

�
f ð�Þ; ð30Þ

where f(�) = Ei (�) � 
 � ln(�). Ei is the exponential integral

and 
 is Euler’s constant. The apparent radius of gyration,

RG,m , is obtained by determining the curvature in the limit of

q! 0:

RG;m

RG

� �2

¼

R �
0 f ðzÞ z�1 dz

f ð�Þ
: ð31Þ

A2.2. Sabine function (p = 3/2). As shown by Sabine, p = 3/2

is a special case where the higher-order scattering functions all

have the same shape after rescaling. The scattering of any

order can be determined from the expression

IjðqÞ ¼
1

j2
I1ðq=jÞ ¼

1

j2

I1ð0Þ

1þ ðqA=jÞ2
� 	3=2

: ð32Þ

The scattering at q = 0 is

Imð0Þ ¼ I1ð0Þ
X1
j¼1

� j�1

j! j2
: ð33Þ

A2.3. Lorentzian function. i2(r) ’ [K0(r)]2. As originally

shown by Goyal et al. (1983), the Hankel transform pair is

used to solve
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I2ðqÞ ’
I1ð0Þ

qqL

ln
qL þ q

qL � q

� �
; ð34Þ

where qL = (q2 + 4/A2)1/2.
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