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1. Deduction of the equations for the mean and square mean strain
referred to a crystal structure having mean lattice parameter a′

In a general distortion problem, provided atoms do not “disappear” (as it is the case

for planar defects and dislocations) we can distinguish between three different config-

urations, as shown in Figure 1:

• The as-built configuration: that where atoms occupy positions corresponding to

a particle carved from an infinite and perfect structure.

• The mean-relaxed configuration: a configuration equal to the as-built one but

changing the lattice parameters to the mean ones obtained through the indexing

of the diffraction pattern.
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• The relaxed configuration: the “real” atomic configuration for the particle, where

the presence of the surface distorts the perfect crystalline structure respect to

the infinite or bulk counterpart.
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Fig. 1. Schematic representation of the different configurations in a general distor-
tion of a crystallite, with constant number of atoms. The as-built configuration is
transformed into the mean-relaxed one by the displacement field u⃗m and then to
the relaxed or final configuration through u⃗′. The geometrical relation between the
differents displacement fields is shown at the top-right.

The most common scope of XRPD techniques is to determine the mean-relaxed

configuration. Peak profiles details are on the other hand related to the strain or

distortion of the relaxed configuration relative to the mean-relaxed one (Warren, 1990).

The model proposed in (Perez-Demydenko & Scardi, 2017), nevertheless, refers the

strain, specifically the mean values of < ∆Lhkl > and < ∆L2
hkl > (eqs. (22) and (23)

of that study, respectively), to the as built configuration. Therefore some further work

should be made to correct those expressions.
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From the view point of a continuous displacement field which distorts a continuous

piece of matter (we neglect the points in Figure 1 and focus only in the shape changes)

a point of the as-built body at r⃗, upon deformation will move to position r⃗ ′ given by:

r⃗ ′ = r⃗ + u⃗m(r⃗) + u⃗ ′(r⃗ + u⃗m(r⃗)), (1)

i.e. we can imagine the whole distortion problem as two successive distortions: a first

one that moves points in the as-built configuration to the mean-relaxed one, and a sec-

ond that moves points from the latter to the relaxed configuration. The first distortion

is characterized by the displacement field u⃗m defined in Ω. To be compatible with a

simple shrinkage or expansion of the lattice, which is what is intended by an indexing

of a cubic powder pattern, u⃗m should be given by:

u⃗m =

(
a′

a
− 1

)
r⃗ = α r⃗, (2)

where a′ is the lattice parameter after indexing and a that of the corresponding bulk

or infinite structure. The second distortion is characterized by the displacement field

u⃗ ′, which is defined only in the region occupied by the mean-relaxed configuration,

Ω′. According to what was said before we should compute < ∆Lhkl > and < ∆L2
hkl >

using u⃗′ and performing the mean over Ω′ for its permitted values of L (since Ω and

Ω′ have different volumes, they will have different maximum permitted values of L for

each hkl, in general).

Since the total displacement field defined in Ω, which moves a point from the as-built

configuration to the relaxed one, is u⃗(r⃗) = r⃗ ′ − r⃗, eq. (1) can be written as

u⃗(r⃗) = u⃗m(r⃗) + u⃗ ′(η(r⃗)), (3)

where the function η(r⃗) = r⃗ + u⃗m(r⃗) = (α + 1)r⃗, η(r⃗) ∈ Ω′ ∀ r⃗ ∈ Ω. Writing eq. (3)

for points at r⃗ and r⃗+Lŝ, both in Ω, taking the component parallel to the diffraction
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vector ŝ and subtracting we obtain:

∆Lŝ(r⃗, L) = ∆Lm,ŝ(r⃗, L) + ∆L′
ŝ(η, r⃗, L), (4)

where

∆Lŝ(r⃗, L) = uŝ(r⃗ + Lŝ)− uŝ(r⃗), (5a)

∆Lm,ŝ(r⃗, L) = um,ŝ(r⃗ + Lŝ)− um,ŝ(r⃗), (5b)

∆L′
ŝ(η, r⃗, L) = u′ŝ(η(r⃗ + Lŝ))− u′ŝ(η(r⃗)). (5c)

Let’s denote as Ω−Lŝ the domain Ω displaced by the vector −Lŝ; a “ghost” domain

as termed in (Wilson, 1962). It can be seen that in order to have both r⃗ and r⃗ + Lŝ

in Ω for a given L, we should have r⃗ ∈ Ω∗
−Lŝ where Ω∗

−Lŝ = Ω ∩ Ω−Lŝ. We now could

substitute each term in eq. (4) by its mean over Ω∗
−Lŝ, but still it would not be clear

that the last term, < ∆L′
ŝ(η, r⃗, L) >Ω∗

−Lŝ
, is what we are looking for. Some further

comments are useful for this. First, it can be noted that the vector going from η(r⃗+Lŝ)

to η(r⃗) is also parallel to ŝ and have length:

L′ = ∥η(r⃗ + Lŝ)− η(r⃗)∥ = ∥(α+ 1)Lŝ∥ = (α+ 1)L = (a′/a)L. (6)

This means that η, or the displacement field u⃗m, transforms any ŝ-parallel segment

of length L in Ω to a segment of length L′ of Ω′, also parallel to ŝ. Second, besides

knowing that η : Ω → Ω′, it can be demonstrated that η : Ω∗
−Lŝ → Ω′∗

−L′ŝ. Therefore,

we can write eq. (5c) and its mean in Ω∗
−Lŝ as

∆L′
ŝ(η, r⃗, L) = ∆L′

ŝ(r⃗
′, L′) = u′ŝ(r⃗

′ + L′ŝ)− u′ŝ(r⃗
′), (7)

< ∆L′
ŝ(η, r⃗, L) >Ω∗

−Lŝ
=< ∆L′

ŝ(r⃗
′, L′) >Ω′∗

−L′ŝ
=< u′ŝ(r⃗

′ + L′ŝ)− u′ŝ(r⃗
′) >Ω′∗

−L′ŝ
, (8)

where r⃗ ′ = η(r⃗) ∈ Ω′∗
−L′ŝ ∀ r⃗ ∈ Ω∗

−Lŝ and r⃗ ′ + L′ŝ = η(r⃗ + Lŝ) ∈ Ω′ ∀ r⃗ ∈ Ω∗
−Lŝ.
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From eqs. (5b) and (2) we have that

∆Lm,ŝ(r⃗, L) =< ∆Lm,ŝ(r⃗, L) >Ω∗
−Lŝ

= αL. (9)

Supposing that what we know are the mean value of < ∆Lhkl > and < ∆L2
hkl >,

referred to the as-built configuration, < ∆Lŝ(r⃗, L) >Ω∗
−Lŝ

and < ∆L2
ŝ(r⃗, L) >Ω∗

−Lŝ
>,

the corrected value from eq. (4) will be then given by

< ∆L′
ŝ(r⃗

′, L′) >Ω′∗
−L′ŝ

=< ∆Lŝ(r⃗, L) >Ω∗
−Lŝ

−αL, (10)

< ∆L′2
ŝ (r⃗

′, L′) >Ω′∗
−L′ŝ

=< ∆L2
ŝ(r⃗, L) >Ω∗

−Lŝ
−2 < ∆Lŝ(r⃗, L) >Ω∗

−Lŝ
αL+ α2L2. (11)

Knowing which means are we referring to, eqs. (10) and (11) can be written shortly as

< ∆L′
ŝ(L

′) >Ω′=< ∆Lŝ(L) >Ω −αL, (12)

< ∆L′2
ŝ (L

′) >Ω′=< ∆L2
ŝ(L) >Ω −2 < ∆Lŝ(L) >Ω αL+ α2L2. (13)

Dividing eq. (12) by L′ and eq. (13) by L′2 we obtain the corresponding mean- and

mean-square strains along a distance L′ in Ω′ parallel to ŝ:

< ε′ŝ(L
′) >Ω′=

a

a′
(< εŝ(L) >Ω −α) , (14)

< ε′2ŝ (L
′) >Ω′=

(
a

a′

)2 (
< ε2ŝ(L) >Ω −2 < εŝ(L) >Ω α+ α2

)
. (15)

It is important to note that the Ls in the right- and left- members in eqs. (12,13,14,15)

are not the same, they are related through the equation L′ = (α+1)L = (a′/a)L. The

maximum permitted for both depends upon ŝ, but for L the limiting volume is Ω

whereas for L′ it is Ω′.

If the distortion model with which we are working is defined by a continuous dis-

placement field, the means in eqs. (10) and (11) can be computed through integrations,

as all possible distances L and L′ can be considered, respectively, in Ω and Ω′. If on the
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other hand, the distortion model is given by a Molecular Dynamic simulations yielding

(mean) relaxed atomic positions from the as-built one, not all distances are allowed in

principle. In this case the means can only be computed directly 1 through summations

over pairs of unit cells or atoms, in the as-built and relaxed atomic configurations.

Pair distances can be expressed in units of the unit cell parameter. In these units, it

can be seen from eq. (6) that the segments L and L′ will have the same length, i.e.

an L = duca in the as-built configuration will transforms into an L′ = duca
′ in the

mean-relaxed configuration. Therefore, when distances over discrete atomic positions

have to be considered, eqs. (10) and (11) transform to

< ∆L′
ŝ(r⃗

′, a′duc) >ω′∗
−a′ducŝ

=< ∆Lŝ(r⃗, aduc) >ω∗
−aducŝ

−αaduc, (16)

< ∆L′2
ŝ (r⃗

′, a′duc) >ω′∗
−a′ducŝ

=< ∆L2
ŝ(r⃗, aduc) >ω∗

−aducŝ
−

− 2 < ∆Lŝ(r⃗, aduc) >ω∗
−aducŝ

αaduc + α2(aduc)
2,

(17)

where the discrete ω domains refers to the atomic positions inside their corresponding

continuous Ω domains. We could as well write these equations shortly as:

< ∆L′
ŝ(a

′duc) >ω′=< ∆Lŝ(aduc) >ω −αaduc, (18)

< ∆L′2
ŝ (a

′duc) >ω′=< ∆L2
ŝ(aduc) >ω −2 < ∆Lŝ(aduc) >ω αaduc + α2(aduc)

2. (19)

For the strains we would obtain like before:

< ε′ŝ(a
′duc) >ω′=

a

a′
(< εŝ(aduc) >ω −α) , (20)

< ε′2ŝ (a
′duc) >ω′=

(
a

a′

)2 (
< ε2ŝ(aduc) >ω −2 < εŝ(aduc) >ω α+ α2

)
. (21)

1 A continuous displacement field could be built by means of an interpolations from the known dis-
placement values at the atomic positions. Then eqs. (10) and (11) could be applied also in this case.
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2. Mean radial displacement according to the surface relaxation model
presented in (Perez-Demydenko & Scardi, 2017)

The displacement field for the surface relaxation model proposed in (Perez-Demydenko

& Scardi, 2017) has the form u⃗(r⃗) = u(r⃗)r̂ with u(r⃗) given by:

u(r⃗) = σ s′r̂ r + β fR,ro(r). (22)

Here s′r̂ = s11−2(s11−s12−s44/2)(l
2
1l

2
2+l22l

2
3+l23l

2
1) and (l1, l2, l3) are the components

of the position versor r̂. Since the function fR,ro does not depend on the orientation,

the average of eq. (22) over a sphere of radius r will be:

< u(r⃗) >r=
1

4πr2

∫∫
σ s′r̂ rd

2r⃗ + β fR,ro(r). (23)

Using spherical coordinates x = r sin θ cosϕ, y = r sin θ sinϕ and x = r cos θ the inverse

of the Young modulus is given by s′r̂ = s11 − 2(s11 − s12 − s44/2)(sin
4 θ cos2 ϕ sin2 ϕ+

sin2 θ cos2 θ), which means that

1

4πr2

∫∫
σ s′r̂ rd

2r⃗ =
1

4πr2

∫ π

0

∫ 2π

0
σ s′r̂ r r

2 sin θdθdϕ

=
1

5
(3s11 + 2s12 + s44)rσ.

(24)

Substituing this eq. into eq. 23 we obtain for the mean radial displacement < u(r⃗) >r=

(1/5)(3s11 + 2s12 + s44)rσ + βfR,ro(r).
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