
computer programs

J. Appl. Cryst. (2019). 52, 193–200 https://doi.org/10.1107/S1600576718017296 193

Received 31 August 2018

Accepted 5 December 2018

Edited by G. Renaud, CEA-Grenoble DSM/

INAC/SP2M/NRS, Grenoble, France

Keywords: neutron reflectometry; X-ray

reflectometry; Bayesian analysis; computer

modelling; refnx.

Supporting information: this article has

supporting information at journals.iucr.org/j

refnx: neutron and X-ray reflectometry analysis in
Python

Andrew R. J. Nelsona* and Stuart W. Prescottb

aANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia, and bSchool of Chemical Engineering, University of

New South Wales, Sydney, NSW 2052, Australia. *Correspondence e-mail: andrew.nelson@ansto.gov.au

refnx is a model-based neutron and X-ray reflectometry data analysis package

written in Python. It is cross platform and has been tested on Linux, macOS and

Windows. Its graphical user interface is browser based, through a Jupyter

notebook. Model construction is modular, being composed from a series of

components that each describe a subset of the interface, parameterized in terms

of physically relevant parameters (volume fraction of a polymer, lipid area per

molecule etc.). The model and data are used to create an objective, which is used

to calculate the residuals, log-likelihood and log-prior probabilities of the

system. Objectives are combined to perform co-refinement of multiple data sets

and mixed-area models. Prior knowledge of parameter values is encoded as

probability distribution functions or bounds on all parameters in the system.

Additional prior probability terms can be defined for sets of components, over

and above those available from the parameters alone. Algebraic parameter

constraints are available. The software offers a choice of fitting approaches,

including least-squares (global and gradient-based optimizers) and a Bayesian

approach using a Markov-chain Monte Carlo algorithm to investigate the

posterior distribution of the model parameters. The Bayesian approach is useful

for examining parameter covariances, model selection and variability in the

resulting scattering length density profiles. The package is designed to facilitate

reproducible research; its use in Jupyter notebooks, and subsequent distribution

of those notebooks as supporting information, permits straightforward

reproduction of analyses.

1. Introduction

The use of specular X-ray and neutron reflectometry for the

morphological characterization of thin films in the approx-

imate size range 10–5000 Å has grown remarkably over the

past few years (Wood & Clarke, 2017; Daillant & Gibaud,

2009). Most neutron and X-ray sources have instruments to

perform reflectometry measurements, and there is an ongoing

need for accessible software programs for users of those

instruments to analyse their data in a straightforward fashion,

including the co-refinement of multiple contrast data sets.

Several programs are available for this purpose, with a variety

of different features (Nelson, 2006; Bjorck & Andersson, 2007;

Kienzle et al., 2011; Gerelli, 2016; Hughes et al., 2016). These

programs typically create a model of the interface, and either

incrementally refine the model against the data using least-

squares methods or use Bayesian approaches (Sivia & Skilling,

2006; Kienzle et al., 2011; Hogg et al., 2010) to examine the

posterior probability distribution of the parameters (i.e. the

statistical variation of the parameters in a model).

Given the number of publications arising from the reflec-

tometry technique, it is vital that both the experiments and

analyses are reproducible. Reproducibility in research is an

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576718017296&domain=pdf&date_stamp=2019-02-01


underlying principle of science, but unfortunately it is not

always possible to reproduce the results of others (Stark,

2018), because there is frequently not enough information

provided in journal articles to repeat the analyses. Even if the

data sets and the software packages used to analyse them are

supplied in supporting information (most often they are not),

a comprehensive, ordered set of instructions or a codified

workflow would need to be provided (Möller et al., 2017). One

example addressing this reproducibility issue is the set of

guidelines from the small-angle scattering community for the

deposition of data and and associated models (Trewhella et al.,

2017; Pauw, 2013).

Here, we outline a new reflectometry analysis package,

refnx (version number 0.1 is used in this paper; Nelson &

Prescott, 2018b), that helps to address the reproducibility issue

for the reflectometry community (we do not mean that other

programs are irreproducible, rather that the information

provided in journal articles is often lacking). It does this by

creating a scripted analysis workflow that is readily deposited

alongside the publication, such as we have done with this

paper (see the supporting information). The refnx Python

package is specifically designed for use in Jupyter notebooks

(Kluyver et al., 2016), which provide a literate programming

environment that mixes executable code cells, rich docu-

mentation of the steps that were performed and the compu-

tational output. By including the analysis, as performed by the

authors, in such a notebook, and appending it as supporting

information along with the data, readers are empowered to

replicate the exact data analysis and potentially extend the

analysis, provided they have set up the same computing

environment (Millman & Pérez, 2014). Setting up the

computing environment is simplified using the conda package

manager (Continuum Analytics, 2017) and an environment

file, although other approaches are available.

2. Method

refnx is written in Python with an extensible object-oriented

design (Fig. 1) in which the user creates a model of the sample

based on what they know about its composition, with refine-

ment of that model against the data. As with Motofit (Nelson,

2006), it calculates reflectivity using the Abeles method

(Heavens, 1955) for specular reflection from a stratified

medium. Detailed documentation for refnx is available online

(https://refnx.readthedocs.io/) and is distributed with the

package.

The building block of the analysis is the Parameter object,

which represents a model value [e.g. the scattering length

density (SLD) of the material], whether that value is allowed

to vary in a fit, and a bounds attribute. The bounds are a

probability distribution representing pre-existing knowledge

of a parameter’s value, called a prior probability. A prior

might be a simple uniform distribution that specifies a lower

and upper bound (e.g. volume fraction is in the interval [0, 1]),

or a normal distribution that represents an experimentally

derived value and its associated uncertainty (e.g. thickness is

100 � 4 Å). Any of the scipy.stats (Jones et al., 2001)

continuous distributions, or other distributions created by the

user, can be used for this purpose. Algebraic relationships

between Parameter objects can be applied to permit more

sophisticated constraints that can cross between Component

objects (e.g. the sum of the thicknesses of several layers is

known to some uncertainty).

2.1. Structure representation

The Structure object represents the interfacial model,

assembled from individual Component objects in series. Each

Component represents a subset of the interface and selected

attributes of the Component can be described by physically

relevant Parameter objects. The simplest and most familiar

Component is a Slab, which has a uniform SLD, thickness,

roughness and volume fraction of solvent. The simplest

models are simply a series of Slab objects. More sophisticated

components include LipidLeaflet (a lipid monolayer, or

one-half of a lipid bilayer) and Spline (for free-form

modelling of an SLD profile using spline interpolation). It is

straightforward to develop/modify new components for

different structural functionality, a consequence of the

program design.

To include further prior knowledge of the real sample into

the model, each Component can contribute to the prior

probability in addition to its constituent Parameter objects.

This is useful when a Component has a derived value, such as

surface excess, which is already known.

To calculate the reflectivity from the series of Component

objects that form the model, each Component has a slabs

property that represents a discretized ‘slice’ approximation to

a continuous SLD profile for its particular region of the

interface. A Slab object has a single slice because it is a single

thickness of uniform SLD. A LipidLeaflet is made of two

computer programs

194 Nelson and Prescott � refnx J. Appl. Cryst. (2019). 52, 193–200

Figure 1
A schematic flow chart, showing the relationship between the classes that
make up a typical reflectometry curve-fitting problem. The key step for
the user is assembling materials (Component) such as a ‘Slab:
Component’ (a Component that is a Slab) and encoding prior
knowledge into each Parameter that describes that Component.



slices (head/tail regions), but the Spline has many thin slices

approximating the smooth curve. Each of these slices has

uniform SLD, with the Névot–Croce approach being used to

describe the roughness between them (Névot & Croce, 1980).

The Structure object is used to construct a Reflect-

Model object. This object is responsible for calculating the

resolution-smeared reflectivity of the Structure, scaling the

data and adding a Q-independent constant background [via

the scale and background Parameter objects; Q = (4�/

�)sin(�), where � is the angle of incidence and � is the

wavelength of the incident radiation]. There are different

types of smearing available: constant dQ/Q, point-by-point

resolution smearing read from the data set of interest or via a

smearing probability kernel of arbitrary shape (Nelson &

Dewhurst, 2014). The constant dQ/Q and point-by-point

smearing use Gaussian convolution, with dQ representing the

full width at half-maximum (FWHM) of a Gaussian approx-

imation to the instrument resolution function (van Well &

Fredrikze, 2005).

2.2. Model/data comparison

The Objective class is the comparator of the predicted

and measured reflectivities, using the ReflectModel and a

data set, Data1D, to calculate �2, log-likelihood [equation

(2)], log-prior, residuals and the generative model. The

Data1D object has x, x_err, y and y_err attributes to represent

Q, dQ, R and dR, respectively. As is standard for many

reflectometry data files, the Data1D object reads a three- or

four-column plain-text datafile. A three-column data set

represents Q (Å�1), R and dR (one standard deviation). A

four-column data set represents Q (Å�1), R, dR and dQ (Å�1).

dR is the uncertainty in the reflectivity, R, and dQ specifies the

FWHM of the instrument resolution function, for each data

point. Extending Data1D would allow other formats to be

read – at the moment there is no standardized data format for

reflectometry. One example of this could be a wavelength-

dispersive file using (�, �) data instead of Q, such as that used

in energy-scanned X-ray reflectometry, or sometimes

produced by wavelength-dispersive neutron reflectometers. In

such a case, ReflectModel could be subclassed to make full

use of this energy-dispersive information. The creation of a

standardized data format for reflectometry would facilitate

ingestion of data and allow other important information, such

as experimental metadata, to be used.

An Objective can be given a Transform object to

permit fitting as log10R versus Q or RQ4 versus Q; the default

(no Transform) is R versus Q. Several Objective objects

can be combined to form a GlobalObjective for co-

refinement. The object-oriented nature of the program allows

reuse of Parameter and Component objects, and this is the

basis for linking parameters between samples for co-refine-

ment. For a comprehensive demonstration of multiple-

contrast co-refinement, see the annotated notebook in the

supporting information.

2.3. Statistical comparison and model refinement

The Objective statistics are used directly by the

CurveFitter class to perform least-squares fitting with the

functionality provided by the SciPy package (Differential

Evolution, Levenberg–Marquardt, LBFGSB – limited

Broyden–Fletcher–Goldfarb–Shanno with bounds). Addi-

tional SciPy solvers can be added relatively simply and it

would be possible for other minimizers to use Objective

directly. CurveFitter can also perform Bayesian Markov-

chain Monte Carlo (MCMC) sampling of the system, exam-

ining the posterior probability distribution of the parameters

[equation (1)]. The posterior distribution is proportional to

the product of the prior probability and the likelihood (or the

sum of the log-probabilities):

pð� j D; IÞ ¼
pð� j IÞ pðD j �; IÞ

pðD j IÞ
; ð1Þ

pðD j �; IÞ ¼ �
1

2

X
n

yn � ymodel;n

�n

� �2

þ logð2��2
nÞ

" #
: ð2Þ

The prior, p(� | I), is the probability distribution function for a

parameter, �, given pre-existing knowledge of the system, I, as

outlined above. The likelihood [equation (2)], p(D | �, I), is

the probability of the observed data, D, given the model

parameters and other prior information. It is calculated from

the measured data, yn (with uncertainties �n), and the

generative model, ymodel, n. The likelihoods that are used here

assume that the measurement uncertainties are normally

distributed [equation (2)]. However, other types of measure-

ment uncertainties (e.g. Poissonian) could be implemented by

a subclass of Objective, overriding the log-likelihood

method. The model evidence, p(D | I), is a normalizing factor.

The posterior probability, p(� | D, I), describes the distri-

bution of parameter values consistent with the data and prior

information. In the simplest form, this is akin to a confidence

interval for a parameter derived by least-squares analysis.

However, when parameters are correlated, or two models give

a similar quality of fit (‘multi-modality’), a simple confidence

interval can be misleading. The posterior probability is

derived by encoding the likelihood and prior distributions and

then using an MCMC algorithm (via the emcee and ptemcee

packages) to perform affine-invariant ensemble sampling

(Foreman-Mackey et al., 2013; Vousden et al., 2016). At the

end of an MCMC run, the parameter set possesses a number

of samples (called a ‘chain’); the samples reveal the distribu-

tion and covariance of the parameters, the spread of the

model-predicted measurements around the data and, in a

reflectometry context, the range of SLD profiles that are

consistent with the data. The chain statistics are used to

update each Parameter value and assign a standard uncer-

tainty. For the sampling, these represent the median and half

of the [15.87, 84.13] percentile range, respectively; the latter

approximates the standard deviation for a normally distrib-

uted statistic.

The ptemcee package is a variant (a ‘fork’ in open-source

software development terms) of the emcee package that has

computer programs

J. Appl. Cryst. (2019). 52, 193–200 Nelson and Prescott � refnx 195



been extended to implement the parallel-tempering algorithm

for the characterization of multi-modal probability distribu-

tions; different modes can be traversed by chain populations at

higher ‘temperatures’, while individual modes are efficiently

explored by chains at lower ‘temperatures’ (Vousden et al.,

2016). Having multiple populations in the parallel-tempering

algorithm allows the sampler to escape local maxima, greatly

aiding its ability to explore the most probable regions of the

posterior. ptemcee is also able to estimate the log-evidence

term [the denominator in equation (2)], which is useful when

calculating the Bayes factor for model comparison.

Parallelization of the sampling is automatic, making full use

of multi-core machines, and can use MPI (message passing

interface) on a cluster for yet greater parallelization. Visuali-

zation of the samples produced by MCMC sampling is

performed using the corner package for scatter-plot matrices

(Foreman-Mackey, 2016), which gives a representation of the

probability distribution function for each individual parameter

and also the covariance for each pair of parameters. As will be

seen later, the plot for two normally distributed and uncor-

related parameters is isotropic, while covariant parameters

show significant anisotropy. An evaluation of the impact of

hard bounds can also be made by looking for plots where the

bounds are clearly truncating the distribution function,

allowing the bounds to be re-evaluated and adjusted if

necessary.

2.4. User interface

A significant motivation in the development of refnx has

been the facilitation of reproducible analysis by helping the

user describe how an analysis was performed. A few lines of

computer code provide an incredibly powerful description,

conveying the details with a precision that is hard to match in

written text, as well as being extremely concise. Example

analyses within the refnx code base are often sufficient to

complete the task. These few lines of Python code can be

further extended to produce publication-quality plots, saved

and ready to import into the next publication, or to be used in

a loop for batch-fitting purposes. While Python is a popular

language for instruction and data analysis, meaning that the

relatively few lines of code required to complete a refnx

analysis of a set of experiments is not a huge hurdle, a simpler

graphical user interface (GUI) is also provided. The browser-

based GUI is available for fitting within a Jupyter notebook

(Fig. 2), making use of the ipywidgets modules (Project

computer programs

196 Nelson and Prescott � refnx J. Appl. Cryst. (2019). 52, 193–200

Figure 2
A screenshot of the Jupyter/ipywidgets GUI; this Jupyter notebook is available in the supporting information.



Jupyter Contributors, 2015). The GUI has a ‘To code’ button

that turns the current model into the few lines of code

required to perform the analysis without using the GUI, thus

providing the desired instructions for a reproducible analysis.

The ability to generate analysis code also provides a stepping

point for building more advanced models independently. The

current GUI is able to use slab-based models for fitting a

single data set, and a fully functional web-based reflectometry

analysis notebook is currently available (Nelson & Prescott,

2018a). If desired, it is possible to execute Jupyter notebooks

in batch mode or to run the generated Python code within a

Python program to complete batch-mode fitting of larger data

sets. The refnx repository contains a growing set of examples

of different uses of the refnx package.

3. Example data analysis with a lipid bilayer

Neutron reflectometry is an ideal technique for the study of

biologically relevant lipid membrane mimics and their inter-

actions with proteins etc. Multiple contrast-variation

measurements are necessary to reduce modelling ambiguity

(due to loss of phase information in the scattering experiment)

and improve the ability to determine the structure of various

components in the system. The gold-standard approach for

analysis of these data sets is co-refinement with a common

model, and to parameterize the model in terms of chemically

relevant parameters, such as the area per molecule (Campbell

et al., 2018). Sometimes a patchy coverage (distinct to low area

per molecule) necessitates the use of an (incoherent) sum of

reflectivities from different areas. refnx has functionality for all

these requirements, such as the LipidLeaflet component for

describing the head and tail groups of a lipid leaflet, and

MixedReflectModel to account for patchiness.

The parameters used in the LipidLeaflet component are

area per molecule (A), thicknesses for each of the head and

tail regions (tx), sums of scattering lengths of the head and tail

regions (bx), partial volumes of the head and tail groups (Vx),

roughness between head and tail region, and SLDs of the

solvents for the head and tail groups (�x,solv). The overall

SLDs of each of the head and tail group regions are given by

’x ¼
Vx

Atx

; ð3Þ

�x ¼ ’x

bx

Vx

þ ð1� ’xÞ �x;solv: ð4Þ

The approach used in the LipidLeaflet component ensures

that there is a 1:1 correspondence of heads to tails. By default,

the head and tail solvents are assumed to be the same as the

solvent that is used throughout the Structure. This will be

the case when using LipidLeaflet for a solid–liquid reflec-

tometry experiment. However, at the air–liquid or liquid–

liquid interfaces the solvents for the head and tail regions may

be different, and it is possible to use different solvent SLDs for

each. We note that the LipidLeaflet component may also

be used to describe other amphiphiles adsorbing at an inter-

face.

Here, LipidLeaflet is used to co-refine three contrasts

[D2O, Si contrast-match (HDmix, SLD = 2.07 � 10�6 Å�1) and

H2O] of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine

(DMPC) bilayer at the solid–liquid interface (Fig. 3). [The

validity of LipidLeaflet does depend on the area per

molecule being equal for the headgroup and tailgroup regions,

as pointed out by Gerelli (2016), which can be violated if there

are guest molecules that insert into the membrane.] Two

LipidLeaflet objects are required to describe the inner and

outer leaflets of a bilayer; hence the component contains an

attribute which can reverse the direction of one of the leaflets.

The use of individual objects to describe each leaflet leads to

great flexibility: it becomes easy to model asymmetric bilayers

(the inner leaflet can be a different lipid from the outer lipid),

and one can model interstitial water layers between the leaf-

lets as well.

The Jupyter notebook used for the analysis, lipid.ipynb,

is available in the supporting information. The corner plot

(Fig. 4) produced from the MCMC analysis shows the covar-

iance between parameters, with an area per molecule of

computer programs

J. Appl. Cryst. (2019). 52, 193–200 Nelson and Prescott � refnx 197

Figure 3
(a) Neutron reflectivity from a DMPC bilayer supported on a silicon
crystal, measured at three contrasts, with 500 samples from the posterior
distribution in grey and the median of the distribution in red. Data for the
contrast-matched (HDmix) and H2O contrast are offset by 0.1 and 0.01,
respectively. (b) The SLD profile of the D2O, model showing 500 samples
from the posterior distribution, with the median in red. It is seen that the
uncertainty in the reflectivity at high Q is associated with an uncertainty
in the SLD profile at the lipid–D2O interface.



57.00 � 0.15 Å. Fig. 3 shows the probability distribution of the

generative model around the data and in the SLD profile.

These are families of plausible fits that are obtained by plot-

ting a subset of samples from the MCMC chain. The spread in

the SLD profiles is used to determine what range of structures

is consistent with the data. Multi-modalities in these SLD

profiles can be due to statistical uncertainties, the Q ranges

measured and the loss of phase information in neutron

reflectometry (Majkrzak, 1999; Heinrich et al., 2009).

4. Distribution and modification

Each submodule in refnx possesses its own unit testing code

for checking that the functions and classes in the module

operate correctly, both individually and collectively. For

example, there are tests that check that the reflectivity of a

model is calculated correctly, or that the behaviour of a

function is correct for the different possible inputs and code

paths through it. Since the test suite is an integral part of the

package, each installation is testable. In addition, there is a

benchmarking suite to track changes in performance, specifi-

cally the speed of critical calculations, over time. This devel-

opment approach is important for providing assurances to the

community that the code is tested and works.

The source code for refnx is held in a publicly accessible

version-controlled git repository (Nelson & Prescott, 2018b).

User contributions may be made using the standard GitHub

workflow, in which contributors create their own ‘fork’ of the

computer programs

198 Nelson and Prescott � refnx J. Appl. Cryst. (2019). 52, 193–200

Figure 4
A corner plot for the varying parameters of DMPC bilayers supported on a silicon crystal, measured at three contrasts. The sampling took �33 min on a
2.8 GHz quad-core computer for 20 saved steps, corresponding to 4000 samples, with the steps being thinned by a factor of 400. A larger-scale image is
available in the supporting information.



main refnx repository and create a feature branch to which

they make modifications. They then submit a pull request (PR)

against the main repository. The modifications made in the PR

are checked on continuous-integration (CI) web services that

run the test suite against a matrix of Python versions on the

macOS, Linux and Windows operating systems. Features are

merged into the main repository if all tests pass, and if manual

code review concludes that the changes are scientifically

correct, of sufficiently high standard and useful. When a

sufficient number of features have accumulated, a new release

is made. Successive releases have an incrementing semantic

version number which can be obtained from the installed

package, with each release being given its own digital object

identifier (DOI). We encourage users to submit models for

inclusion in a user-contributed models repository (refnx-

models, https://github.com/refnx/refnx-models). We will work

with users to develop a suitable way of documenting and

sharing their models.

The recommended way of using refnx is from a conda

environment, which offers package, dependency and envir-

onment management (Continuum Analytics, 2017), using the

pre-compiled distributables on the refnx conda-forge channel.

These distributables are made as part of the release process

using the same CI web services as are used to test the code.

The matrix of distributables covers the major Python versions

currently in use, across the macOS, Windows and Linux

operating systems. Alternatively the package can be installed

from source, either directly from the git repository or via pip

from the version uploaded to PyPI (https://pypi.python.org/

pypi/refnx; the installation command is pip install

refnx). Building from source requires a C compiler and the

Cython (https://cython.org/) and NumPy (https://www.numpy.

org/) packages to be installed; further dependencies should be

installed to run the test suite to verify that compilation and

installation have been successful.

refnx is released under the BSD permissive open-source

licence. In addition, all of the dependencies of refnx are

released under open-source licences, which means that use is

free of cost to the end user and, more importantly, the user is

free to modify, improve and inspect this software.

5. Comments on reproducibility of analyses

In order for a given scattering analysis to be fully reproducible

by others, a general set of conditions need to be met (Helliwell

et al., 2017; Möller et al., 2017):

(i) The processed data sets used in the analysis need to be

deposited with a journal article, or be freely available. Ideally,

the raw data sets, and the means to create the processed data

sets, should also be made available.

(ii) The exact software environment needs to be recrea-

table.

(iii) The exact ordered set of steps taken during the analysis

needs to be listed.

Each of these points is often inadequately addressed in the

literature. For example, the use of different software versions

may change the output of an analysis, or the use of a GUI

program may preclude recording the full set of steps, or

options, applied by a user (Chirigati et al., 2013). Whilst it is

unable to meet the first criterion by itself, the use of refnx in a

Jupyter notebook can fulfil the other two requirements,

providing a little care is taken. As we have already noted, the

ordered set of steps to perform the analysis is the Jupyter

notebook in which the analysis was performed, and this is an

artefact that can be archived.

The exact software environment can be recreated by noting

down the versions of the software packages used during an

analysis (refnx, SciPy, NumPy, Python etc.). At a later date,

those exact versions can be installed in the same Python

version using one of the following: the conda package

manager, by installing from the source at a given version tag in

the git repository, or by pip. The conda package manager can

use environment files to recreate a specific setup. An alter-

native way of recreating the environment is by using a virtual

machine, or another container environment such as Docker.

The strengths and weaknesses of various software distribution

practices and their relationship with reproducible science have

been discussed in detail elsewhere (Möller et al., 2017).

The usefulness of open-source software in a git (or other

version-controlled) repository must be emphasized here

(Möller et al., 2017). With closed-source or proprietary soft-

ware, the ability to return to a specific software version/

environment can be frustrated, and different versions can have

modifications that can unknowingly change the output of an

analysis. In addition, reduced accessibility (due to cost etc.) to

the wider scientific community can also hinder reproducibility.

Moreover, there are important ramifications for verifiability

(Chirigati et al., 2013). refnx is based on a fully open software

stack, with good unit test coverage. The user can run tests for

each component and inspect parts for correctness. For

example, the behaviour of the reflectivity calculation in refnx

is checked from first principles in the test suite, and this can be

done now and in several years’ time. If problems are discov-

ered, they can be corrected. With a fully or partially closed-

source program, such checking is much harder, as one does not

possess full knowledge of what happens inside.

6. Conclusions

refnx is a powerful tool for least-squares or Bayesian analysis

of neutron and X-ray reflectometry data that is ideally usable

for reproducible research with Jupyter notebooks, and it has

been built with extensibility in mind. Its features include

MCMC sampling of posterior distribution for parameters,

structural models constructed from modular components with

physically relevant parameterization, algebraic inter-para-

meter constraints, mixed-area models, co-refinement of

multiple data sets, probability distributions for parameter

bounds used directly for log-prior terms and a (Jupyter)

ipywidgets GUI.

6.1. Supporting information

The files available in the supporting information for this

article are as follows:

computer programs

J. Appl. Cryst. (2019). 52, 193–200 Nelson and Prescott � refnx 199



(i) gui.ipynb – the Jupyter notebook used to create the

GUI screenshot.

(ii) lipid.ipynb – the Jupyter notebook used for the

lipid analysis example.

(iii) rg5158sup2.pdf – a PDF view of the Jupyter

notebook used for the lipid analysis example.

(iv) rg5158sup3.pdf – a larger-scale image of the corner

plot shown in Fig. 4.

(v) rg5158sup4.zip – containing example lipid

data sets c_PLP0016596.dat, c_PLP0016601.dat and

c_PLP0016607.dat.

(vi) reduction.ipynb – the notebook for reducing

example data sets.

(vii) rg5158sup5.zip – raw files for the example data

sets.

(viii) refnx-paper.yml – the conda environment file to

reproduce the analysis environment in this paper.

Acknowledgements

We acknowledge Anton Le Brun (ANSTO) for the provision

of the lipid bilayer data sets in the example, James Hester

(ANSTO) for comments made on the draft manuscript, and

Andrew McCluskey (Bath University) and Isaac Gresham

(UNSW) for important feedback on refnx development.

References

Björck, M. & Andersson, G. (2007). J. Appl. Cryst. 40, 1174–1178.
Campbell, R. A., Saaka, Y., Shao, Y., Gerelli, Y., Cubitt, R., Nazaruk,

E., Matyszewska, D. & Lawrence, M. J. (2018). J. Colloid Interface
Sci. 531, 98–108.

Chirigati, F. S., Troyer, M., Shasha, D. E. & Freire, J. (2013). IEEE
Data Eng. Bull. 36(4), 54–59.

Continuum Analytics (2017). Conda – Package, Dependency and
Environment Management for any Language, https://conda.io/docs/.

Daillant, J. & Gibaud, A. (2009). Editors. X-ray and Neutron
Reflectivity: Principles and Applications, Lecture Notes in Physics,
Vol. 770. Heidelberg: Springer Verlag.

Foreman-Mackey, D. (2016). J. Open Source Software, 1(2), 24.
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. (2013).

Publ. Astron. Soc. Pac. 125, 306–312.
Gerelli, Y. (2016). J. Appl. Cryst. 49, 330–339.

Heavens, O. (1955). Optical Properties of Thin Films. London:
Butterworth.

Heinrich, F., Ng, T., Vanderah, D. J., Shekhar, P., Mihailescu, M.,
Nanda, H. & Lösche, M. (2009). Langmuir, 25, 4219–4229.

Helliwell, J. R., McMahon, B., Guss, J. M. & Kroon-Batenburg, L. M. J.
(2017). IUCrJ, 4, 714–722.

Hogg, D. W., Bovy, J. & Lang, D. (2010). ArXiv e-prints. arXiv:
1008.4686.

Hughes, A. V., Ciesielski, F., Kalli, A. C., Clifton, L. A., Charlton,
T. R., Sansom, M. S. P. & Webster, J. R. P. (2016). Acta Cryst. D72,
1227–1240.

Jones, E., Oliphant, T., Peterson, P. et al. (2001). SciPy: Open Source
Scientific Tools for Python, http://www.scipy.org/.

Kienzle, P. A., Krycka, J., Patel, N. & Sahin, I. (2011). Refl1d – Depth
Profile Modelling, http://reflectometry.org/danse/docs/refl1d/.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,
Avila, D., Abdalla, S. & Willing, C. (2016). Positioning and Power in
Academic Publishing: Players, Agents and Agendas, edited by F.
Loizides & B. Schmidt, pp. 87–90. Amsterdam: IOS Press.

Majkrzak, C. (1999). Acta Phys. Pol. A, 96, 81–99.
Millman, K. J. & Pérez, F. (2014). Implementing Reproducible

Research, edited by V. Stodden, F. Leisch & R. D. Peng, ch. 6.
London: Chapman & Hall.

Möller, S., Prescott, S. W., Wirzenius, L., Reinholdtsen, P., Chapman,
B., Prins, P., Soiland-Reyes, S., Klötzl, F., Bangnacani, A., Kalaš, M.,
Tille, A. & Crusoe, M. R. (2017). Data Sci. Eng. 2, 232–244.

Nelson, A. (2006). J. Appl. Cryst. 39, 273–276.
Nelson, A. R. J. & Dewhurst, C. D. (2014). J. Appl. Cryst. 47, 1162.
Nelson, A. & Prescott, S. W. (2018a). Online Reflectivity Fitting with

refnx, https://mybinder.org/v2/gh/refnx/refnx-binder.git/master.
Nelson, A. & Prescott, S. W. (2018b). refnx – Neutron and X-ray

Reflectometry Analysis in Python, https://www.github.com/refnx/
refnx.

Névot, L. & Croce, P. (1980). Rev. Phys. Appl. 15, 761–769.
Pauw, B. R. (2013). J. Phys. Cond. Matter, 25, 383201.
Project Jupyter Contributors (2015). ipywidgets, https://github.com/

jupyter-widgets/ipywidgets.
Sivia, D. & Skilling, J. (2006). Data Analysis: A Bayesian Tutorial.

Oxford Science Publications.
Stark, P. (2018). Nature, 557, 613.
Trewhella, J., Duff, A. P., Durand, D., Gabel, F., Guss, J. M.,

Hendrickson, W. A., Hura, G. L., Jacques, D. A., Kirby, N. M.,
Kwan, A. H., Pérez, J., Pollack, L., Ryan, T. M., Sali, A.,
Schneidman-Duhovny, D., Schwede, T., Svergun, D. I., Sugiyama,
M., Tainer, J. A., Vachette, P., Westbrook, J. & Whitten, A. E.
(2017). Acta Cryst. D73, 710–728.

Vousden, W., Farr, W. M. & Mandel, I. (2016). Mon. Not. R. Astron.
Soc. 455, 1919–1937.

Well, A. A. van & Fredrikze, H. (2005). Physica B, 357, 204–207.
Wood, M. & Clarke, S. (2017). Metals, 7, 304.

computer programs

200 Nelson and Prescott � refnx J. Appl. Cryst. (2019). 52, 193–200

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rg5158&bbid=BB31

