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Grazing-incidence X-ray diffraction studies on organic thin films are often

performed on systems showing fibre-textured growth. However, indexing their

experimental diffraction patterns is generally challenging, especially if low-

symmetry lattices are involved. Recently, analytical mathematical expressions

for indexing experimental diffraction patterns of triclinic lattices were provided.

In the present work, the corresponding formalism for crystal lattices of higher

symmetry is given and procedures for applying these equations for indexing

experimental data are described. Two examples are presented to demonstrate

the feasibility of the indexing method. For layered crystals of the prototypical

organic semiconductors diindenoperylene and (ortho-difluoro)sexiphenyl, as

grown on highly oriented pyrolytic graphite, their yet unknown unit-cell

parameters are determined and their crystallographic lattices are identified as

monoclinic and orthorhombic, respectively.

1. Introduction

Crystalline thin films are often characterized by grazing-inci-

dence X-ray diffraction (GIXD) owing to the high surface

sensitivity of the technique. A schematic drawing of the

experimental method is shown in Fig. 1(a). To achieve this

surface sensitivity, the angle of incidence of the primary beam

relative to the sample surface (�i) is chosen close to the critical

angle of total external reflection, and the scattered X-ray

beam encloses an in-plane angle �f, as well as an out-of-plane

angle �f relative to the surface. The primary X-ray beam,

described by the wavevector k0, and the scattered beam k

determine the scattering vector q by q = k � k0. In this

geometry the in-plane component qxy and the out-of-plane

component qz of q are given by

qxy ¼
2�

�
cos2 �i þ cos2 �f � 2 cos�i cos�f cos �f

� �1=2
ð1Þ

and

qz ¼
2�

�
sin �i þ sin �fð Þ: ð2Þ

A key direction in reciprocal space is the z direction at qxy =

0, which reveals the orientation of crystals relative to the

substrate surface. In the important case of crystalline fibre-

textured films, it defines the crystallographic plane of the thin-

film crystallites which is parallel to the substrate surface (i.e.
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the contact plane). However, in GIXD

geometry the z direction is inaccessible

in reciprocal space. To experimentally

assess this direction, one needs to resort

to specular X-ray diffraction [cf.

Fig. 1(b)], where the incidence angle of

the primary beam (�i) and the exit angle

of the scattered X-ray beam (�f) are

equal. This results in a scattering vector

q always perpendicular to the substrate

surface and the scattering vector then

exclusively has a qz component (with

qxy = 0). In the following, a diffraction

peak observed via specular X-ray diffraction is denoted as

qspec ¼ ð4�=�Þðsin �iÞ. The correlation between the scattering

vector q and the corresponding lattice periodicities is obtained

via the Laue equation: for the appearance of a diffraction peak

the scattering vector q has to be equal to a reciprocal lattice

vector g.

In general, indexing of GIXD patterns means assigning

Laue indices to the observed Bragg peaks. In the specific case

of GIXD data recorded on fibre-textured films, which is

covered in the present manuscript, two components of the

reciprocal lattice vectors – qz and qxy – are taken from

experimental reciprocal-space maps and available for indexing

(Smilgies & Blasini, 2007; Hailey et al., 2014). As the fibre-

textured crystals have a well defined crystallographic contact

plane, the rotation matrix of the crystallites relative to the

sample surface must be considered (Shmueli, 2006), i.e. the

contact plane of the investigated crystals must be determined.

In many cases, it can be deduced from specular X-ray

diffraction data; however, the correct assignment to a crys-

tallographic plane with Miller indices u, v and w cannot be

obtained from specular X-ray diffraction alone, if the crystal

structure is unknown (Salzmann & Resel, 2004; Smilgies &

Blasini, 2007; Hailey et al., 2014; Jiang, 2015). By combining

the peak positions of the GIXD pattern (qxy, qz) with the

specular peak position (qspec), mathematical expressions can

be derived where the required number of unknown para-

meters for indexing the pattern is significantly reduced. In

recent work, we demonstrated this approach for the general

case of the triclinic crystallographic system (Simbrunner et al.,

2018).

Here, we now turn our focus to crystallographic lattices of

higher symmetry. Obviously, the equations for the in-plane

and out-of-plane components of the reciprocal-space vectors

become less complex if the number of unit-cell parameters is

reduced. This can facilitate the indexing procedure; however,

the parameters of the rotation matrix do not reduce. In the

following, we first concentrate on monoclinic systems and

subsequently present mathematical expressions for all other

systems. Via two practical examples, we then explicitly

demonstrate the application of these equations. We stress that

our indexing procedure does not rely on knowing either the

chemical structure of the material or the experimental inten-

sities of the diffraction peaks. We show that the presented

approach can succeed with a limited number of reflections for

experimental data of high quality.

2. Indexing method

For the mathematical treatise a laboratory coordinate system

is assumed, where the xy plane runs parallel to the substrate

surface; a, b, c, �, � and � are the parameters of the (direct)

unit cell, and a*, b*, c*, �*, �* and �* are the reciprocal cell

parameters (Giacovazzo, 2011), which are summarized in

Table 1. If the (001) lattice plane is parallel to the substrate

surface in a GIXD experiment, the reciprocal lattice vector g

with its Laue indices h, k and l can be represented by the

equation

g ¼

gx

gy

gz

0
@

1
A ¼ A�001

h

k

l

0
@

1
A; ð3Þ

where the matrix A�001 is given as

A�001 ¼

a� sin �� sin � 0 0

�a� sin �� cos � b� sin �� 0

a� cos�� b� cos �� c�

0
@

1
A: ð4Þ

When the Laue condition q = g is fulfilled, diffraction can be

observed.

If the (001) lattice plane is not parallel to the substrate

surface, the matrix A�001 must be transformed, i.e. the rotation
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Table 1
Relations between the parameters of the direct lattice (a, b, c, �, �, �) and of the reciprocal lattice
(a*, b*, c*, �*, �*, �*) and the volume of the crystallographic unit cell V.

b* (c*), cos�* (cos�*), sin�* (sin�*) and cos� (cos�) can be derived by cyclic rotation of parameters
from entries 1–4, respectively, of row 1.

a� ¼
2�bc sin�

V
cos�� ¼

cos� cos � � cos�

sin� sin �
sin�� ¼

V

abc sin� sin �
cos� ¼

cos�� cos �� � cos��

sin�� sin ��

V ¼ abcð1� cos2 �� cos2 �� cos2 � þ 2 cos� cos� cos �Þ1=2
¼ abc sin�� sin� sin �

Figure 1
X-ray diffraction geometries for crystal structure investigations of thin
films, with k0 and k as the wavevectors of the incident and scattered X-ray
beams, respectively; �i is the angle of incidence, �f the out-of-plane
scattering angle and �f the in-plane scattering angle. (a) Grazing-
incidence X-ray diffraction, where the scattering vector is split into an in-
plane component qxy and an out-of-plane component qz. (b) Specular
X-ray diffraction in co-planar geometry, with �i = �f and �f = 0, where the
scattering vector q consists only of a nonzero out-of-plane component qz.



matrix of the thin-film crystallites relative to the substrate

surface has to be considered (Shmueli, 2006). In particular, it

has to be rotated around the zone axis which is defined by the

(001) plane and the new contact plane (uvw). Then the reci-

procal-space vector with the Laue/Miller indices u, v and w,

guvw, is perpendicular to the contact plane. Its magnitude is

purely out of plane and corresponds to the specular scan, gspec.

Furthermore, the out-of-plane component gz and in-plane

component gxy of any reciprocal-space vector ghkl can be

determined by their scalar product and vector (cross) product

with guvw, respectively. As the magnitude of a vector and the

scalar product of two vectors are both rotation invariant, the

unrotated expressions, i.e. equation (3), for ghkl and guvw are

sufficient. Therefore, the following expressions result:

gzgspec ¼ ghkl � guvw

�� ��
¼ huz2

a þ kvz2
b � hvþ kuð Þzazb cos �

þ ua� cos�� þ vb� cos �� þ wc�ð Þ

� ha� cos�� þ kb� cos �� þ lc�ð Þ ð5Þ

with za ¼ 2�=ða sin �Þ, zb ¼ 2�=ðb sin �Þ,

gspec ¼ guvw

�� �� ¼ �u2z2
a þ v2z2

b � 2uvzazb cos �

þ ua� cos �� þ vb� cos�� þ wc�ð Þ
2
�1=2

ð6Þ

and

g2
xyg2

spec ¼ ghkl � guvw

�� ��2 ¼ 2�ð Þ4

V2

�
kw� lvð Þ

2a2 þ hw� luð Þ
2b2

þ hv� kuð Þ
2c2 þ 2 ku� hvð Þ hw� luð Þbc cos�

þ 2 hv� kuð Þ kw� lvð Þac cos�

þ 2 hw� luð Þ lv� kwð Þab cos �
�
; ð7Þ

where the volume is

V ¼ abc sin �� sin � sin �: ð8Þ

Furthermore, from equation (3) the length of the vector

jghklj, gxyz, can be determined as

g2
xyz ¼ h2z2

a þ k2z2
b � 2hkzazb cos �

þ ha� cos �� þ kb� cos�� þ lc�ð Þ
2: ð9Þ

Using equations (5) and (6), equation (9) can be rewritten

as

g2
xyz ¼ h2z2

a þ k2z2
b � 2hkzazb cos �

þ
gzgspec � huz2

a þ kvz2
b � hvþ kuð Þzazb cos �

� �� �2

g2
spec � u2z2

a þ v2z2
b � 2uvzazb cos �

� � ; ð10Þ

and by algebraic transformations the following expression can

be derived:

g2
xyg2

spec ¼ z2
a u2g2

xy þ hgspec � ugz

� �2
h i
þ z2

b v2g2
xy þ kgspec � vgz

� �2
h i

� 2zazb cos � uvg2
xy þ hgspec � ugz

� �
kgspec � vgz

� �� �
� hv� kuð Þ

2z2
az2

b sin2 �: ð11Þ

As a result of symmetry relationships, further analogous

expressions for the cell parameter triples (a, c, �) and (b, c, �)

and their corresponding Miller and Laue indices can be

derived.

From equations (5) and (6) the following expression can be

obtained:

ha� cos �� þ kb� cos�� þ lc�

¼
gzgspec � huz2

a � kvz2
b þ hvþ kuð Þzazb cos �

ðg2
spec � u2z2

a � v2z2
a þ 2uvzazb cos �Þ1=2

: ð12Þ

From equation (12), the residual unit-cell parameters c, �, �
and the Laue indices l can be determined (Truger et al., 2016).

Analogously, the following equation is valid:

ha� cos �� þ kb� þ lc� cos��

¼

"
gzgspec � hu

2�

a sin �

	 
2

� lw
2�

c sin �

	 
2

þ hwþ luð Þ
2�

a sin �

2�

c sin �
cos �

#
,"

g2
spec � u2 2�

a sin �

	 
2

� w2 2�

c sin �

	 
2

þ 2uw
2�

a sin�

2�

c sin�
cos�

#1=2

: ð13Þ

In a monoclinic system (� = � = 90�), equation (11) reduces

to

g2
xyg2

spec ¼ 2�=að Þ
2

u2g2
xy þ hgspec � ugz

� �2
h i

þ 2�=bð Þ
2

v2g2
xy þ kgspec � vgz

� �2
h i

� hv� kuð Þ
2 2�=að Þ

2 2�=bð Þ
2: ð14Þ

Equation (14) comprises – in addition to the rotation

parameters u and v – only the lattice parameters a and b, as

well as the Laue indices h and k. This facilitates the mathe-

matical analysis, where the integer variables can be varied and

only two real unknowns must be calculated.

In rare cases, if the net planes oriented parallel to the

substrate surface have a weak structure factor, which inhibits

the acquisition of specular diffraction data (Djuric et al., 2012),

gspec must be treated as an additional real unknown parameter,

which necessitates a more extensive numerical analysis. In the

most general case, if no contact plane exists, u, v and w are

non-integers. In this case it is preferable to use an alternative

notation of the rotation matrix (see Appendix A).

For calculating the remaining unit-cell parameters c, � and

the Laue indices l, the following expression results from

equation (12):

�h
2�

a
cot �þ l

2�

c sin �
¼

gzgspec � hu 2�=að Þ
2
� kv 2�=bð Þ

2

g2
spec � u2 2�=að Þ

2
� v2 2�=bð Þ

2
� �1=2

:

ð15Þ
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Analogously to equation (14), by choosing related substitu-

tions on the basis of the symmetric properties of the relations

for gxyz, gxy, gz and gspec for the general (triclinic) case, the

following expressions hold:

g2
xyg2

spec ¼ 2�=bð Þ
2 v2g2

xy þ kgspec � vgz

� �2
h i

þ 2�=cð Þ
2

w2g2
xy þ lgspec � wgz

� �2
h i

� kw� lvð Þ
2 2�=bð Þ

2 2�=cð Þ
2; ð16Þ

g2
xyg2

spec ¼
2�

a sin �

	 
2

u2g2
xy þ hgspec � ugz

� �2
h i

þ
2�

c sin�

	 
2

w2g2
xy þ lgspec � wgz

� �2
h i

� 2
2�

a sin �

2�

c sin �
cos�

� uwg2
xy þ hgspec � ugz

� �
lgspec � wgz

� �� �
� hw� luð Þ

2 2�

a sin �

	 
2
2�

c sin�

	 
2

sin2 �: ð17Þ

Furthermore, equation (13) reduces to

k
2�

b
¼

"
gzgspec � hu

2�

a sin �

	 
2

� lw
2�

c sin �

	 
2

þ hwþ luð Þ
2�

a sin�

2�

c sin�
cos�

#
,"

g2
spec � u2 2�

a sin �

	 
2

� w2 2�

c sin�

	 
2

þ 2uw
2�

a sin �

2�

c sin �
cos�

#1=2

: ð18Þ

For orthorhombic systems, the formulae are valid with � = 90�.

In Table 2 we summarize the mathematical expressions for

gxyz, gz, gxy and the volume V in triclinic, monoclinic and

orthorhombic systems. In tetragonal and cubic lattices, in

addition to � = 90�, a = b and a = b = c, respectively. In

Appendix B useful formulae for tetragonal, trigonal and

hexagonal systems are listed.

As every linear combination of the unit-cell vectors obeys

the Laue condition, the mathematical solutions are not unique

and include superlattices (Santoro et al., 1980). The definite

crystallographic solution, the reduced cell, is defined as the

cell that satisfies the conditions derived from the reduction

theory of quadratic forms (Niggli, 1928). The main conditions

for reduction require that the unit cell is based on the three

shortest vectors of the lattice; such a unit cell is then called a

Buerger cell (Buerger, 1957). However, this cell may not be

unique. An unambiguous unit cell is the ‘reduced cell’ defined

by Niggli; the criteria are listed in detail in International Tables

for Crystallography (De Wolff, 2016). In general, the criteria

for reduced cells demand that a2 � b2 � c2 and that the angles

are either acute (type I) or obtuse (type II). Geometrical

ambiguities, called lattice metric singularities, which generate

subcells of lower symmetry, may occur in some indexing cases

(Santoro & Mighell, 1970; Mighell, 2000). Such singularities

can often be easily detected from simple relationships

between the lattice parameters of the two cells (Boultif &

Louër, 2004).

In the following we turn to employing the formalism

derived above to determine the unit-cell parameters of two

prototypical organic semiconductors, which show as yet

unknown polymorphs if grown in thin films on substrates of

highly oriented pyrolytic graphite (HOPG).

3. Examples

3.1. Experiments

Thin films of diindenoperylene (DIP, C32H16) and of ortho-

difluorosexiphenyl (o-F2-6P, C36F2H24) were grown on freshly

cleaved HOPG (ZYA quality) by physical vapour deposition

in a high vacuum (final nominal film thickness 30 nm; base

pressure < 5 � 10�6 Pa). The films were characterized at

beamline W1 at the synchrotron radiation facility DORIS

(HASYLAB, Hamburg, Germany). GIXD experiments were

performed together with specular X-ray diffraction using a

goniometer in pseudo 2 + 2 geometry and a one-dimensional

detector (MYTHEN, Dectris). The wavelengths of the

primary radiation were 1.1796 and 1.1801 Å for DIP and

o-F2-6P, respectively. GIXD experiments were performed

using incident angles of the primary beam relative to the

HOPG substrate of �i = 0.13 and 0.15� for DIP and o-F2-6P,

respectively. Reciprocal-space maps were recorded by keeping

the sample fixed and by performing a series of detector scans

along the in-plane scattering angle �f at differently fixed out-

of-plane scattering angles �f. The vertical mounting of the

detector allows the simultaneous measurement of ��f = 3.5�.

The diffraction pattern was transformed to reciprocal space

using the custom-made software PyGID (Moser, 2012). The

resulting reciprocal-space maps give the measured intensities

on a logarithmic scale by a colour code; the exact positions of

the Bragg peaks in terms of qxy and qz were determined by

Gaussian fits. The qz values of the peak positions were

corrected for refraction effects; maximum variations of 0.011

and 0.014 Å�1 are obtained for DIP and o-F2-6P, respectively

(Resel et al., 2016).

3.2. Diindenoperylene

A specular scan of DIP crystals grown on a HOPG substrate

is shown in Fig. 2(a). The dominant diffraction peak at qz =

1.872 Å�1 (d = 3.356 Å) can be identified as the 002 peak of

the HOPG substrate. Forming the difference with the refer-

ence data recorded for the plain substrate (orange curve)

reveals a clear diffraction peak at qspec = 1.776 Å�1, which is

assigned to the DIP adsorbate and corresponds to a lattice

spacing of 3.54 Å. Note that a specular reflection from DIP at

the same position has been observed before for gold

substrates by Dürr et al. (2003). The authors concluded on a

lying molecular orientation from their data and denoted this

polymorph as the � phase; however, no direct determination

research papers

J. Appl. Cryst. (2019). 52, 428–439 Josef Simbrunner et al. � Indexing GIXD patterns of thin films 431



of the unit cell by indexing GIXD reciprocal-space-map data

has been performed before. Our reciprocal-space map of DIP

on HOPG is shown in Fig. 2(b). Strong diffraction features of

the HOPG substrate are located along qxy = 2.94 Å�1. Addi-

tionally, weak diffraction features at qxy = 2.24 Å�1 /qz =

0.98 Å�1 and at qxy = 2.34 Å�1 /qz = 0.98 Å�1 are also due to

the HOPG substrate. Bragg peaks at low q values (q2 = qxy
2 +

qz
2) were selected for the indexing procedure and lie at centres

of the triangles in Fig. 2(b). In total, we only used ten Bragg

peaks (based on their qxy and qz positions) together with the

Bragg peak of the specular diffraction pattern (qspec) for our

indexing procedure. Note that qspec, qxy and qz are experi-

mental results which describe specific components of the

scattering vector, while gspec, gxy and gz refer to these

components within the reciprocal lattice. According to the

Laue condition, the individual components of the scattering

vector q and of the reciprocal lattice vectors g must be equal.

As known crystal structures of DIP exhibit a monoclinic

lattice (Heinrich et al., 2007; Kowarik et al., 2009), in a first step

of indexing, equation (14) may be chosen. The combination of

Bragg peaks from the reciprocal-space map (qxy and qz) with

the peak from the specular scan (qspec) reduces the number of

parameters considerably to two integer numbers (instead of

three) for the Miller indices of the contact plane, to two

integer numbers (instead of three) for the Laue indices of each

Bragg peak, and to two real numbers (instead of four) for the

lattice constants. In theory, by using a quadratic equation, a

and b can be calculated from two independent pairs of (gxy, gz)
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Table 2
Relations for the total length gxyz, the out-of-plane component gz and the in-plane component gxy of the reciprocal-space vectors with indices hkl and of
the vector uvw (gspec) by using direct and reciprocal lattice parameters and the volume V in triclinic, monoclinic and orthorhombic systems.

Triclinic

g2
xyz ¼ g2

x þ g2
y þ g2

z ¼ h2a�2 þ k2b�2 þ l2c�2 þ 2hka�b� cos �� þ 2hla�c� cos�� þ 2klb�c� cos��

gzgspec ¼ hua�2 þ kvb�2 þ lwc�2 þ ðhvþ kuÞa�b� cos �� þ ðhwþ luÞa�c� cos�� þ ðkwþ lvÞb�c� cos��

gspec ¼ ðu
2a�2 þ v2b�2 þ w2c�2 þ 2uva�b� cos �� þ 2uwa�c� cos�� þ 2vwb�c� cos��Þ1=2

g2
xyg2

specV2 1

ð2�Þ4
¼ ðkw� lvÞ2a2

þ ðhw� luÞ2b2
þ ðhv� kuÞ2c2

þ 2ðku� hvÞðhw� luÞbc cos�þ 2ðhv� kuÞðkw� lvÞac cos�þ 2ðhw� luÞðlv� kwÞab cos �

V ¼ abcð1� cos2 �� cos2 �� cos2 � þ 2 cos� cos� cos �Þ1=2
¼ abc sin�� sin� sin �

Monoclinic a 6¼ b 6¼ c, � = � = 90�

g2
xyz ¼ h2 2�

a sin�

	 
2

þ k2 2�

b

	 
2

þ l2 2�

c sin�

	 
2

� 2hl
2�

a sin�

2�

c sin �
cos�

gzgspec ¼ hu
2�

a sin�

	 
2

þ kv
2�

b

	 
2

þ lw
2�

c sin�

	 
2

� ðhwþ luÞ
2�

a sin�

2�

c sin�
cos�

gspec ¼ u2 2�

a sin�

	 
2

þ v2 2�

b

	 
2

þ w2 2�

c sin�

	 
2

� 2uw
2�

a sin�

2�

c sin�
cos�

" #1=2

g2
xyg2

spec ¼ ðkw� lvÞ2
2�

b

	 
2
2�

c sin�

	 
2

þ ðhw� luÞ2
2�

a sin�

	 
2
2�

c sin�

	 
2

sin2 �þ ðhv� kuÞ2
2�

a sin�

	 
2
2�

b

	 
2

þ 2ðhv� kuÞðkw� lvÞ
2�

a sin �

2�

b

	 
2
2�

c sin�
cos�

V ¼ abc sin�

Orthorhombic a 6¼ b 6¼ c, � =� = � = 90�

g2
xyz ¼ h2 2�=að Þ

2
þ k2 2�=bð Þ

2
þ l2 2�=cð Þ

2

gzgspec ¼ hu 2�=að Þ
2
þ kv 2�=bð Þ

2
þ lw 2�=cð Þ

2

gspec ¼ ½u
2 2�=að Þ

2
þ v2 2�=bð Þ

2
þ w2 2�=cð Þ

2
	
1=2

g2
xyg2

spec ¼ ðkw� lvÞ2 2�=bð Þ
2 2�=cð Þ

2
þ ðhw� luÞ2 2�=að Þ

2 2�=cð Þ
2
þ ðhv� kuÞ2 2�=að Þ

2 2�=bð Þ
2

V ¼ abc



(see Appendix C). Because of experimental inaccuracies,

however, we prefer treating equation (14) as linear with the

unknowns �1 ¼ ð2�=aÞ
2, �2 ¼ ð2�=bÞ

2 and �3 ¼ ð2�=aÞ
2
�

ð2�=bÞ
2. The first step of indexing is then based on a systematic

variation of integer variables: (i) a pair of Miller indices for the

contact plane (the crystallographic plane of DIP crystals

parallel to the substrate surface), and (ii) two Laue indices for

each of the selected Bragg peaks from the reciprocal-space

map [Fig. 2(b)]. By using several pairs of (gxy, gz), sets of

overdetermined linear equations are then obtained, from

which the solutions with the least errors e concerning the

system of equations (i.e. norm of the residuals) and the factor

f ¼ j�1�2 � �3j=j�1�2j are selected. Furthermore, the volume

of the resulting unit cell should be as small as possible. From

�1, �2 and �3 the solution for a and b can be optimized (see

Appendix D). In our case, for u = 1 and v = 2, e and f of the

optimal solution are 4.8 � 10�3 and 1.1 � 10�3, respectively.

The next best solutions to the optimal choice of the Laue

indices h and k have almost the same error e (plus 1% and

minus 1%, respectively) but a larger factor f of about 40 and

56%, respectively.

As equation (16) is analogous to equation (14), two solu-

tions (for a and c, respectively) with consistent unit-cell

parameter b, Miller index v and Laue indices k must exist. If

the Miller indices are chosen to be v = 2 and w = 1, an

appropriate solution can be found. Thus, a monoclinic lattice

with the contact plane (121) results and the cell parameters a,

b and c and the Laue indices h, k and l can be assigned to the

experimental pattern. In a last step, using equation (15), the

last cell parameter � can be obtained.

Alternatively, in a first step of indexing, equation (17),

which is valid for any lattice type, can be used. For this

procedure we use the following specific algorithm: appropriate

mathematical substitutions transform equation (17) into linear

equations with three real unknowns, containing the lattice

constants a, c and � (see Appendix E). Assigning two low

integers as the Miller indices u and w, and choosing Laue

indices h and l in a specific range, is a starting point to find

solutions for the lattice constants a, c and �. In theory, a set of

lattice constants can be obtained from three equations with

independent pairs of gxy and gz. Being linearized, these

equations can be solved analytically by determining the

inverse matrix of their coefficients. To account for experi-

mental inaccuracies, however, all ten peaks can be included

simultaneously, again for creating an overdetermined system

of linear equations. This system can be solved either by

multiplying both sides of the equations with the transpose of

the coefficient matrix or by QR decomposition to solve the

least-squares problem (Bronshtein et al., 2015). In addition to

an optimized approximated solution of the unknown variables,

the associated error can be calculated. By varying the integer

variables, the final solution to the overdetermined system is

found. This is done by choosing the optimal set of equations

regarding a small error and a volume of the resulting unit cell

that is as small as possible. To overcome the computational

complexity with an increasing number of equations, this

procedure is performed stepwise. In a first step, four equations

with small q values are chosen, for which the possible range of

Laue indices is restricted. Only systems with errors not

exceeding a certain limit are included further. Thus the Laue

indices h and l for all reflections can be assigned and the unit-

cell parameters a, c and � are calculated. A modification of this

algorithm relies on comparing the systematically varied coef-

ficients of the ten linear equations and seeking clusters of

related coefficients.

Thus, for u = 1 and w = 1 a solution for a first set of lattice

constants (a, c, �) and the Laue indices h and k can be

obtained. Then, in a second step, it can be checked if equation

(18) results for all peak positions (qxy, qz) in integer multiples

of 2�/b. If – as is the case here – this condition is fulfilled, the

assumption of a monoclinic lattice is justified. Furthermore,

using equation (13) for a triclinic system and calculating � and

� does not result in a more accurate final solution. Conse-

quently, the lattice constant b is obtained and the Laue indices

k for all reflections can be assigned.
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Figure 2
X-ray diffraction of DIP grown on a (001) substrate of HOPG. The
chemical structure of the molecule is given as an inset. (a) Specular
diffraction pattern of the HOPG substrate with and without DIP crystals,
as well as the difference between the two patterns around the specular
diffraction peak of DIP crystals. (b) Reciprocal-space map measured by
grazing-incidence X-ray diffraction with a selection of peaks which were
used for indexing. The centres of the triangles and the crosses give the
experimental and calculated peak positions, respectively; the respective
Laue indices are also given.



In a last step, when all integer variables have been assigned,

the values of the real lattice parameters can be numerically

fitted. For this procedure, the expressions for gxyz, gxy and gz in

Table 2 can be used. For our example of DIP on HOPG, we

then obtain the following solution, which obeys the scalar

product criteria for type-II cells: u = 1, v = 2, w = 1; a = 7.149, b =

8.465, c = 16.62 Å, �= 90, �= 93.14, � = 90�, V = 1004.5 Å3. The

accuracy of the result can be assessed by the factors

d10;xyz ¼
1

10

P10
i¼1 jðqxyz;i � gxyz;iÞ=qxyz;ij ¼ 0:003 and d10;z ¼

1
10

P10
i¼1 jðqz;i � gz;iÞ=qz;ij ¼ 0:005, where 10 is the number of

reflections, and (qxyz,i, qz,i) are the measured and (gxyz,i, gz,i)

the calculated peak positions of the ith reflection. As an

example, the influences of the refraction correction on the

lattice constants are demonstrated by using uncorrected

values for qz. In this case, we would then obtain significantly

different lattice parameters instead: a = 7.194, b = 8.440, c =

16.60 Å, � = 90, � = 93.54, � = 90�, V = 1005.7 Å3 (d10,xyz =

0.006, d10,z = 0.025).

Importantly, however, as the underlying equations do not

allow a unique mathematical solution, it must still be checked

if the lattice obtained corresponds to the reduced unit cell. For

this purpose, three reciprocal lattice vectors g1, g2 and g3, e.g.

of the three independent Laue triples (0, 0, 1), (1, 1, 0) and

(�1, 1, 0), are calculated and the matrix

G ¼

gx1 gy1 gz1

gx2 gy2 gz2

gx3 gy2 gz3

0
@

1
A

is formed. By multiplying its inverse matrix G�1 with vectors

2�(m1, m2, m3)T, where mi are systematically varied integers in

a reasonable range (e.g. between �3 and 3), lattice vectors of

the unit cell and its superlattices can be obtained (Simbrunner

et al., 2018). Listing the lengths of these vectors in ascending

order yields 7.149, 8.465, 11.08, 14.30, 16.616 and 16.62 for the

six shortest vectors. But as the first five vectors are coplanar,

our solution matches the Buerger and reduced cell.

On the basis of this solution, peak positions are calculated

and plotted in Fig. 2(b) as crosses. In addition to the ten peaks

we initially selected, all other observed peaks can now be

indexed according to this unit cell.

Our result is significantly different from the known crystal

structures of DIP, that is, an enantiotropic polymorph that is

stable at temperatures above 423 K (Heinrich et al., 2007)

showing lattice constants of a = 7.171, b = 8.55, c = 16.80 Å, �=

90, �= 92.42, � = 90�, V = 1029.0 Å3, as well as a thin-film phase

grown on sapphire (Kowarik et al., 2009) with a = 7.09 
 0.04,

b = 8.67
 0.04, c = 16.9
 0.5 Å, �= 90, �= 92.2
 0.2, � = 90�,

V = 1037
 30 Å3. In Table 3 we summarize the various results.

Comparing these cells highlights that DIP grows on HOPG in

a previously unknown polymorph, most likely in the same

polymorph which has been referred to as � phase in the

literature before (Dürr et al., 2003; Kowarik et al., 2006; Casu

et al., 2008).

3.3. ortho-Difluorosexiphenyl

The experimental GIXD data for the o-F2-6P film [the

synthesis of o-F2-6P is reported by Niederhausen et al. (2018)]

as grown on HOPG are shown in Fig. 3. We now observe a well

pronounced specular diffraction peak at qspec = 1.636 Å�1,

corresponding to a lattice spacing of 3.84 Å in the out-of-plane
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Table 3
The lattice constants of diindenoperylene at different temperatures
compared with our result.

Heinrich et al. (2007) Kowarik et al. (2009) This work

T (K) 423 403 300
a (Å) 7.1709 (8) 7.09 (4) 7.149 (50)
b (Å) 8.5496 (9) 8.67 (4) 8.465 (41)
c (Å) 16.7981 (18) 16.9 (5) 16.62 (36)
� (�) 90 90 90
� (�) 92.416 (11) 92.2 (2) 93.14 (93)
� (�) 90 90 90
Volume (Å3) 1028.95 1037 1004.5

Figure 3
X-ray diffraction of o-F2-6P, as grown on a (001) plane of HOPG; the
inset gives the chemical structure of the molecule. (a) Specular diffraction
pattern of the sample with the characteristic diffraction peak of the
HOPG substrate and of the o-F2-6P crystals. (b) Reciprocal-space map
measured by grazing-incidence X-ray diffraction. Selected peaks for the
indexing procedure are marked by triangles around the maximum of the
diffracted intensity; the crosses give the calculated peak positions based
on indexing together with the assigned Laue indices.



direction. Like the case of DIP above, this points to lying �-

stacked growth of the molecules on the HOPG substrate, a

growth behaviour that has been reported before for related

systems (Salzmann et al., 2012). The reciprocal-space map

reveals, besides the diffraction peaks of HOPG (see discussion

above), a highly regular sequence of Bragg peaks located at

constant qz values. In this example, the indexing procedure

was performed on 16 selected reflections.

In marked contrast to non-substituted 6P growing in a

monoclinic crystal structure (Baker et al., 1993; Resel, 2003),

from the highly symmetric diffraction pattern, an ortho-

rhombic lattice with its contact plane parallel to the (010)

plane (u = w = 0) can be assumed for o-F2-6P on HOPG. As for

the specular scan the relation gspec ¼ 2ð2�=bÞ (v = 2) holds, the

following expressions (see Table 2) follow:

g2
xy ¼ g2

x þ g2
y ¼ h2 2�=að Þ

2
þ l2 2�=cð Þ

2; ð19Þ

gz ¼ k2�=b: ð20Þ

On that basis, we obtained for the unit cell of o-F2-6P on

HOPG: u = 0, v = 2, w = 0; a = 5.724, b = 7.659, c = 27.424 Å, �=

� = � = 90�, V = 1202.3 Å3. The accuracy of the result can be

assessed by d16;xyz ¼
1

16

P16
i¼1 jðqxyz;i � gxyz;iÞ=qxyz;ij ¼ 0:0015

and d10;z ¼
1

10

P10
i¼1 jðqz;i � gz;iÞ=qz;ij ¼ 0:0015, as for dN,z only

the 10 reflections with k > 0 are included. Note that as a result

of equation (24) the Laue indices h and l can be either positive

or negative. Again, if uncorrected values for qz were used, b =

7.614 Å would follow. It can be proven that a, b and c are the

shortest non-coplanar unit-cell vectors.

As an illustration of the comparison between calculated

peaks and experimental data, the peak positions are plotted in

Fig. 3(b) as crosses; there are no crystal structures known so

far for molecular crystals of o-F2-6P. The low out-of-plane

lattice spacing that we observe via specular diffraction

strongly points to �-stacked growth of this fluorinated 6P

derivative, if grown on HOPG. This is remarkable insofar as

non-substituted 6P grows in a herringbone arrangement of the

molecules in all known structures and on numerous surfaces

including HOPG (Resel, 2003) and, therefore, it is obviously

the (one-sided) fluorination of the molecule that changes its

growth behaviour dramatically. A similar behaviour has been

observed for pentacene (herringbone) and perfluoro-

pentacene on HOPG (�-stacking) (Salzmann et al., 2012), as

well as for 6,13-bis(triisopropylsilylethynyl)pentacene and

pentacenequinone (Swartz et al., 2005). The transition from

inclined to parallel molecular planes in these structures has

been ascribed to the impact of intramolecular polar bonds by

the authors. For o-F2-6P, no bulk crystal structures have been

published yet, and structural characterization was limited to

sub-monolayers on Ag(111) by low-temperature scanning

tunnelling microscopy (Niederhausen et al., 2018). There, in

contrast to non-fluorinated 6P molecules which individually

adsorb in the sub-monolayer regime on the metal surface

without packing, the authors find a flat lying stack arrange-

ment of the o-F2-6P molecules with small lateral shifts along

the row direction. The net dipole moment of o-F2-6P is

derived as 1.1 Debye owing to the polar C—F bonds at the

ortho position of the outer phenyl ring, which appear to

maximize their distance in neighbouring molecules.

Building upon previous work (Salzmann et al., 2011; Truger

et al., 2016), the unit cell determined in the present work for

o-F2-6P (and, likewise, for DIP) can now be used to model the

molecular arrangement therein, which will be the subject of a

forthcoming study.

4. Discussion – determining the crystallographic system

In the case of powder diffraction only the lengths of the

reciprocal-space vectors are used for indexing. In the

dichotomy method the cell constants are varied in increasingly

smaller intervals and the hkl indices are subsequently refined

using the least-squares method (Boultif & Louër, 1991, 2004).

The search of indexing solutions typically starts from the cubic

end of the symmetry sequence. Each crystal system is explored

independently up to a maximum input volume, unless a

solution has been found with a higher symmetry.

Indexing of GIXD patterns is based on the knowledge of

two components of the reciprocal space vector, the in-plane

component qxy and the out-of-plane component qz [Fig. 1(a)].

Since the lattice type cannot be assigned a priori, we suggest

following an iterative approach. As a consequence of imper-

fect data due to experimental inaccuracies, it seems that

starting with a lattice of higher symmetry is favourable, since

incoherency becomes evident quickly and the tendency to find

only a ‘local minimum’ when finally optimizing the cell para-

meters increases with the number of variables in the equa-

tions. Moreover, boundary conditions and experimental

constraints can be included in the indexing procedure with less

numerical effort. If no satisfactory solution can be found with

a specific lattice type, the next lower symmetry system will

then be used.

In single-crystal diffraction, where reciprocal lattice vectors

are used for indexing, in a first step the model parameters are

refined in a triclinic setting. If possible symmetry elements are

detected, cell refinement with symmetry-bases restraints is

performed (Sauter et al., 2004). In the matrix approach to

symmetry (Himes & Mighell, 1987) this is accomplished by 64

symmetry matrices to check if the transformation leads to

identity. Furthermore, systems of higher symmetry imply a

high impact of symmetry considerations such as diffraction

intensities and systematic absences (Hahn, 2006). Determi-

nation of the symmetry profile in crystallographic structures is

a persistent challenge (Hicks et al., 2018) and certainly lies

beyond the scope of the present work.

The final goal in crystallographic analysis is the determi-

nation of the most fundamental property of the structure – the

correct space group. Four steps are necessary to achieve this

endeavour (Marsh, 1995): (i) the derivation of the correct

space lattice, i.e. the smallest primitive (reduced) unit cell; (ii)

the assignment of the correct Laue group on the basis of the

symmetry of the diffraction intensities and an initial decision

if a structure is centrosymmetric; (iii) the identification of

any systematic absences characteristic of translational

symmetry elements (glide planes or screw axes); and (iv) the
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final decision as to whether or not the structure is centro-

symmetric. Higher metric symmetry is usually identified by

computer programs (Hicks et al., 2018).

We emphasize that in the present work we focus only on the

first point. For determining the lattice parameters and

indexing of the diffraction pattern it is appropriate to choose

the crystallographic system of the highest order which can be

rationally fitted to the measured reflections. However, it is not

the shape of the unit cell that determines the lattice type but

the symmetry of the diffraction intensities (Marsh, 1995).

In GIXD the diffraction intensities are influenced by

various parameters. This may impede the determination of the

correct Laue group. Furthermore, as the in-plane component

of the reflections is measured, the Laue indices in lattices of

higher symmetry can be ‘degenerate’, i.e. they cannot be

assigned with positive or negative sign, as is the case in our

example of o-F2-6P. For the reliable identification of

systematic absences it is further necessary to obtain a

reasonable number of reflections.

5. Conclusion

Indexing of GIXD data of fibre-textured films is important for

phase analysis as well as for the identification of new poly-

morphs. In the present work, we provide a unifying framework

for indexing reciprocal-space maps obtained by GIXD for

monoclinic lattices and lattices of higher symmetry. Our

approach of including the Bragg peak from a specular X-ray

diffraction experiment into the mathematical formalism is of

considerable help for indexing of GIXD patterns, where the

spatial orientation of the unit cell must be considered. Math-

ematical expressions with a significantly reduced number of

unit-cell parameters are derived, which facilitates the

computational efforts. For crystallographic lattices of higher

symmetry, where the set of unit-cell parameters is reduced, the

specular diffraction peak is still important for determining the

orientation of the crystallographic unit cell relative to the

sample surface. Procedures are described in detail for how to

use the derived mathematical expressions. We demonstrate

the high value of our approach by successfully applying our

formalism for indexing diffraction patterns of two organic

semiconductors grown as crystalline thin films on graphite

surfaces. We find a monoclinic lattice for diindenoperylene

and an orthorhombic lattice for ortho-difluorosexiphenyl, the

unit-cell parameters of which were successfully determined

following our approach.

APPENDIX A
Alternative rotation parameters if no contact plane
exists

If u, v and w have to be assumed to be non-integers, it may be

preferable to replace the vector guvw by a sample surface

normal vector n = (sin sin�, �cos sin�, cos�)T with the

rotation angles � and  . Then for the monoclinic system the

following expression can be derived:

g2
xyz ¼ h2 2�=að Þ

2
þ k2 2�=bð Þ

2

þ
gz � sin � hð2�=aÞ sin � kð2�=bÞ cos ½ 	

cos�

� �2

: ð21Þ

The same equation is valid in the orthorhombic case.

For the tetragonal and cubic systems the following expres-

sion is valid:

g2
xyz ¼ h2

þ k2
� �

2�=að Þ
2

þ
gz � ð2�=aÞ sin � h sin � k cos ð Þ

cos �


 �2

: ð22Þ

Therefore, especially in the cubic case, it is much easier to

solve the equation

g2
xyz ¼ h2

þ k2
þ l2

� �
2�=að Þ

2
ð23Þ

first, as in the case of powder diffraction, and then to deter-

mine the rotation parameters.

Note that for DIP � = 76.11� and  = 149.37�. In the case of

o-F2-6P � = 90� and  = 180�.

APPENDIX B
Mathematical expressions for tetragonal, trigonal and
hexagonal systems

In Table 4 we summarize the mathematical expressions for

gxyz, gz, gxy and the volume V in trigonal and hexagonal

systems.

From equation (11), the following formulae for 2�=a in

tetragonal and hexagonal systems, respectively, can be

derived:

Tetragonal:

With p ¼ hv� ku and P ¼ ðh2 þ k2Þg2
spec � 2ðhuþ kvÞ �

gspecgz þ ðu
2 þ v2Þg2

xyz

if p 6¼ 0:
2�

a

	 
2

¼
P� ðP2 � 4p2g2

xyg2
specÞ

1=2

2p2
ð24Þ

if p ¼ 0:
2�

a
¼

gxygspec

P1=2
ð25Þ

Hexagonal:

With p ¼ hv� ku and P ¼ ðh2 þ hkþ k2Þg2
spec � ð2hu þ

2kvþ hvþ kuÞgspecgz þ ðu
2 þ uvþ v2Þg2

xyz

if p 6¼ 0:
2�

a

	 
2

¼
P� ðP2 � 3p2g2

xyg2
specÞ

1=2

2p2
ð26Þ

if p ¼ 0:
2�

a
¼

31=2

2

gxygspec

P1=2
ð27Þ

In both cases, by systematically varying the integer variables u,

v, h and k, the factor 2�/a must be constantly observed for

every reflection, allowing the assessment of the appropriate

Miller and Laue indices.
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APPENDIX C
Calculating a and b from two pairs of (gxy, gz) in a
monoclinic lattice

If (gxy,1, gz,1) and (gxy,2, gz,2) are the components of two Bragg

peaks with the corresponding Laue indices (h1, k1) and (h2,

k2), respectively, as a result of equation (14) the following

relations arise:

2�

a

	 
2

g2
h;1 þ

u2

g2
spec

 !
þ

2�

b

	 
2

g2
k;1 þ

v2

g2
spec

 !

�
2�

a

	 
2
2�

b

	 
2
h1v� k1uð Þ

2

g2
xy;1g2

spec

¼ 1; ð28Þ

2�

a

	 
2

g2
h;2 þ

u2

g2
spec

 !
þ

2�

b

	 
2

g2
k;2 þ

v2

g2
spec

 !

�
2�

a

	 
2
2�

b

	 
2
h2v� k2uð Þ

2

g2
xy;2g2

spec

¼ 1; ð29Þ

where gh;1 ¼ ð1=gxy;1Þðh1 � ugz;1=gspecÞ, gh;2 ¼ ð1=gxy;2Þ �

ðh2 � ugz;2=gspecÞ, gk;1 ¼ ð1=gxy;1Þðk1 � vgz;1=gspecÞ and gk;2 ¼

ð1=gxy;2Þðk2 � vgz;2=gspecÞ. Expressing ð2�=bÞ2 in equation (28)

as a function of ð2�=aÞ2 and substituting this term in equation

(29) leads to a quadratic equation for ð2�=aÞ
2, which has the

two solutions

2�=að Þ
2
¼ 2 g2

k;2 � g2
k;1

� ���
g2

h;1g2
k;2 � g2

h;2g2
k;1

� �
þ ð2uv=g2

specÞ gh;1gk;1 � gh;2gk;2

� �
þ 2ðu2=g2

specÞ g2
k;2 � g2

k;1

� �
� �

�
; ð30Þ

where

� ¼ gh;1gk;2 � gh;2gk;1

�� ��
� gh;1gk;2 þ gh;2gk;1 � 2uv=g2

spec

� �2
h

þ2ðuv=g2
specÞ gh;1 þ gh;2

� �
gk;1 þ gk;2

� ��1=2
: ð31Þ

Consequently,

2�=bð Þ
2
¼ 2 g2

h;2 � g2
h;1

� ���
g2

k;1g2
h;2 � g2

h;1g2
k;2

� �
þ 2ðuv=g2

specÞ gh;1gk;1 � gh;2gk;2

� �
þ 2ðv2=g2

specÞ g2
h;2 � g2

h;1

� �

 �

�
: ð32Þ

APPENDIX D
Determining a and b from k1, k2 and k3

From �1, �2 and �3 the tentative cell parameters at = 2��1
�1/2,

bt = 2��2
�1/2 and their product (ab)t = (2�)2�3

�1/2 can be

determined. An optimal solution for a and b can be obtained

by minimizing the following function F:

Fða; bÞ ¼ 1�
at

a

� �2

þ 1�
bt

b

	 
2

þ 1�
ðabÞt

ab


 �2

: ð33Þ
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Table 4
Relations for the total length gxyz, the out-of-plane component gz and the in-plane component gxy of the reciprocal-space vectors with indices hkl and of
the vector uvw (gspec) and the volume V in trigonal and hexagonal crystallographic systems.

Trigonal a = b = c, � = � = � 6¼ 90�

g2
xyz ¼

2�

a

	 
2
cos2ð�=2Þ

sinð�=2Þ sinð3�=2Þ
ðh2
þ k2
þ l2
Þ �

cos�

sinð�=2Þ sinð3�=2Þ
ðhkþ hl þ klÞ


 �

gzgspec ¼
2�

a

	 
2
cos2ð�=2Þ

sinð�=2Þ sinð3�=2Þ
ðhuþ kvþ lwÞ �

cos�

2 sinð�=2Þ sinð3�=2Þ
½ðhðvþ wÞ þ kðuþ wÞ þ lðuþ vÞ	

� �

gspec ¼
2�

a

cos2ð�=2Þ

sinð�=2Þ sinð3�=2Þ
ðu2
þ v2
þ w2
Þ �

cos�

sinð�=2Þ sinð3�=2Þ
ðuvþ uwþ vwÞ


 �1=2

g2
xyg2

spec4 sin3
ð�=2Þ sinð3�=2Þ ¼ ð2�=aÞ4fðkw� lvÞ2 þ ðhw� luÞ2 þ ðhv� kuÞ2 þ 2 cos�½ðku� hvÞðhw� luÞ þ ðhv� kuÞðkw� lvÞ þ ðhw� luÞðlv� kwÞ	g

V ¼ abcð1� cos�Þð1þ 2 cos�Þ1=2
¼ abc2½sin3

ð�=2Þ sinð3�=2Þ	1=2

Hexagonal a = b 6¼ c, � = � = 90�, � = 120�

g2
xyz ¼

4
3 ðh

2 þ k2 þ hkÞ 2�=að Þ
2
þ l2 2�=cð Þ

2

gzgspec ¼
4
3 huþ kvþ ðhvþ kuÞ=2½ 	 2�=að Þ

2
þ lw 2�=cð Þ

2

gspec ¼
4
3 ðu

2 þ v2 þ uvÞ 2�=að Þ
2
þ w2 2�=cð Þ

2
� �1=2

g2
xyg2

spec ¼
4
3 ½ðkw� lvÞ2 þ ðhw� luÞ2 � ðhw� luÞðlv� kwÞ	 2�=að Þ

2 2�=cð Þ
2
þ 4

3 ðhv� kuÞ2 2�=að Þ
4

V ¼ ð31=2=2Þa2c



This can be achieved if @F=@a ¼ 0 and @F=@b ¼ 0 are

fulfilled. Then the following solution can be obtained:

a ¼
qþD

2
þ ðqDÞ

1=2


 �1=3

þ
qþD

2
� ðqDÞ

1=2


 �1=3

; ð34Þ

b ¼ abt=at; ð35Þ

where q ¼ atðabÞ2t =ð2b2
t Þ and D ¼ q þ 2f½ðabÞt � atbt	=ð3btÞg

3.

APPENDIX E
Mathematical procedure for analytically determining
the cell parameters a, c and b

For analytically determining the unit-cell parameters a, c and �
from equation (17) it is convenient to introduce the para-

meters Xa, Xc and X� with the substitutional relations

Xa ¼
2�

a sin �

	 
2

1�
2�

c

	 
2
w2

g2
spec

" #
; ð36Þ

Xc ¼
2�

c sin �

	 
2

1�
2�

a

	 
2
u2

g2
spec

" #
; ð37Þ

X� ¼
2�

a sin �

2�

c sin �
cos��

2�

a

2�

c

uw

g2
spec

 !
: ð38Þ

Using these substitutions, equation (17) can be rewritten as

Xa

1

g2
xy

h� u
gz

gspec

 !2

þ
u2

g2
spec

" #

þ Xc

1

g2
xy

l � w
gz

gspec

 !2

þ
w2

g2
spec

" #

� 2X�

1

g2
xy

h� u
gz

gspec

 !
l � w

gz

gspec

 !
þ

uw

g2
spec

" #
¼ 1: ð39Þ

Then from three independent Bragg peak series, the para-

meters Xa, Xc and X� can be determined using a system of

linear equations. For obtaining a, c and � from equations (36)–

(38) the following identity is helpful:

2�

a sin �

	 
2
2�

c

	 
2
1

g2
spec

¼
XaXc � X2

�

g2
spec � u2Xa þ w2Xc � 2uwX�

� � :
ð40Þ
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