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Rotation is a core crystallographic operation. Two sets of Cartesian coordinates

of each point of a rotated object, those before and after rotation, are linearly

related, and the coefficients of these linear combinations can be represented in

matrix form. This 3 � 3 matrix is unique for all points and thus describes

unambiguously a particular rotation. However, its nine elements are mutually

dependent and are not interpretable in a straightforward way. To describe

rotations by independent and comprehensible parameters, crystallographic

software usually refers to Euler or to polar angles. In crystallography and cryo-

electron microscopy, there exists a large choice of conventions, making direct

comparison of rotation parameters difficult and sometimes confusing. The

program py_convrot, written in Python, is a converter of parameters describing

rotations. In particular, it deals with all possible choices of polar angles and with

all kinds of Euler angles, including all choices of rotation axes and rotation

directions. Using a menu, a user can build their own rotation parameterization;

its action can be viewed with an interactive graphical tool, Demo. The tables in

this article and the extended help pages of the program describe details of these

parameterizations and the decomposition of rotation matrices into all types of

parameters. The program allows orthogonalization conventions and symmetry

operations to be taken into account. This makes the program and its supporting

materials both an illustrative teaching material, especially for non-specialists in

mathematics and computing, and a tool for practical use.

1. Introduction

Rotation in three-dimensional space is one of the principal

geometric operations in crystallography and electron micro-

scopy. By definition, rotation is an operation that conserves all

distances and has a point fixed, differently from translation.

This operation is linear, meaning that for each point its

Cartesian coordinates after rotation are linear combinations

of its coordinates before rotation. The coefficients of these

linear combinations are the same for all points and can be

represented in matrix form. Such a rotation matrix describes

the corresponding rotation unambiguously. However, the

elements of such 3 � 3 matrices are mutually dependent; not

every matrix describes a rotation. Also, interpreting a rotation

matrix in terms of motions is not easy, except for trivial cases.

For these reasons, in order to manipulate different objects and

models and to define their spatial positions, it is convenient to

describe rotations in terms of ‘physical’ parameters, inde-

pendent if possible. Euler (1776; translation in English by J.

Sten, http://www.17centurymaths.com/contents/euler/e478tr.pdf)

showed that
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(1) ‘in whatever way a sphere is turned about its centre, it is

always possible to assign a diameter, whose direction in the

translated state agrees with that of the initial state’, and

(2) ‘everything [rigid-body rotation] can be defined using

three angles’.

In other words, each rotation in three-dimensional space

keeps not only a point but a whole line fixed, and each rotation

can be realized as a suite of three consecutive elemental

rotations about coordinate axes. These two results are at the

origin of the rotation descriptions given by so-called polar

angles1 and Euler angles, respectively. The large choice of

ways to define the position of the rotation axis (for the former

description) and to define the three rotation axes and relevant

rotation angles (for the latter description) is the principal

reason for frequent misunderstanding and confusion. This

variability is not only theoretical; in particular, a very large list

of conventions is used in structural biology. The reason for this

is that different problems may be better solved using different

sets of parameters; there is also the matter of habits in a given

research field and its historical development. This large choice

requires understanding and conversion of one group of

parameters to another.

The literature describing rotation theory is vast and often

matches to the features of particular fields and problems. In

structural biology, it varies from formal general descriptions,

e.g. Diamond & Cranswick (2010), barely accessible to non-

mathematicians, to textbooks and fundamental articles

describing details of a particular choice of parameters, for

example Giacovazzo et al. (1992), Heymann et al. (2005, 2006)

and Rupp (2010). At the same time, comprehensive material

explaining the variety of rotation conventions and their rela-

tions (e.g. Goldstein, 1950) is practically nonexistent to our

knowledge. This leads not only to insufficient understanding of

the particular procedures but also to a number of errors in the

existing descriptions that sometimes disagree with actual

program code.

Previously, a program convrot (Urzhumtseva &

Urzhumtsev, 1997) was developed to convert one set of

rotation parameters to another for a large list of crystal-

lographic conventions known at that time. This program has

now become obsolete. Tulloue (2001) has created an excellent

illustrative site of rotations defined by Euler angles, but only

for a single choice of axes. EulerAngles (Bigras & Bonev, 2012)

uses all possible sets of Euler angles for rotations about

moving coordinate axes and illustrates them. However, it

refers neither to rotation conventions in polar angles nor to

rotations about fixed coordinate axes. Pan (Morawiec, 2015)

defines a given rotation simultaneously by quaternions,

direction cosines and some particular set of Euler angles.

The program 3D Rotation Converter (Gaschler, 2016) is

more general but also does not address some major rota-

tion conventions. The site https://www.geometrictools.com/

Documentation/EulerAngles.pdf by D. Eberly gives rotation

matrices for different sets of Euler angles and expressions for

the respective angles.

In summary, these programs and sites cover a limited range

of conventions while missing some used in structural biology.

Only a few of them are illustrative; practically none of them

deal with symmetries and orthogonalization conventions that

are important in crystallographic projects.

To address these problems, we have developed a new

rotation converter, py_convrot, and describe it herein, with the

following considerations:

(a) The program should not simply convert one set of

numbers into another but be capable of graphically illustrating

what the respective numbers mean; it should have an inter-

active illustrator of different rotation conventions.

(b) The program needs to be in an open form and not to

only refer to conventions used nowadays.

(c) The program and the complementary material should be

self-contained, so that users can reproduce all calculations

without requiring external information.

(d) The material should be accessible to readers without

advanced training in mathematics and informatics.

(e) The description of parameters should be non-confusing,

especially in cases of contradicting notations and comments in

existing literature and software descriptions. The main text

should contain only the principal relations while appendices

give all minimally necessary technical details and demonstra-

tions.

( f) The software should be as compatible as possible with

widely used crystallographic packages and program suites,

such as CCP4 (Collaborative Computational Project, Number

4, 1994), PyMol (DeLano, 2002; http://www.pymol.org),

Phenix (Adams et al., 2010), Coot (Emsley et al., 2010) and

others, and be principally aimed at projects in crystallography

and electron microscopy.

2. Converter purpose

2.1. Conversion of rotation parameters

The converter addresses the problem that the rotation of an

object (a rigid body) in three-dimensional space can be

described by different types of parameters. This variety of

descriptions is large since

(a) one can describe a rotation as a single operation about

an axis in a general orientation (polar angles) or by three

consecutive rotations about coordinate axes (Euler angles),

(b) both polar and Euler angles may be defined with respect

to different coordinate axes,

(c) Euler angles may be defined with respect to both fixed

and moving axes,

(d) a positive direction of each rotation may be defined in

two opposite ways, and

(e) some conventions consider the object rotating with

respect to a fixed coordinate system, while some do it inver-

sely.

Note that (c) and (e) are different. In (c) there are two

different choices of the rotation axes, but the object is always
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1 The term ‘polar angles’, widely used in crystallography and especially in
macromolecular crystallography, sometimes is considered as formally
inappropriate; see discussion in x3.3 and in Appendix C.



moved and the system is kept fixed,

while in (e) there are two different

choices for the fixed and rotating items.

The program py_convrot considers

all possible choices listed above. For

each of these conventions, the program

first calculates the rotation matrix

corresponding to the given values of

parameters. At the next step this matrix

is interpreted in terms of parameters

corresponding to any other convention,

according to the user’s choice. If

requested, this matrix can be applied to

a list of atomic coordinates in order to

get a list of respective coordinates after

rotation (rotated atomic model). The

program can operate either with a

single set of parameter values or with a

list of sets.

The program also considers the

rotation description by the direction

cosines defining the orientation of the

rotation axis and that by quaternions.

Differently from convrot, it no longer

considers the Lattman (1972) para-

meterization of the Euler angles used in

CNS (Brünger et al., 1998).

Specifically for crystallographic

projects, orthogonalization conventions

may be taken into account when

defining the rotations. If crystal-

lographic symmetry operations (space

group) are known and selected from the

menu, the program gives a full list of

symmetry-related angles after rotation;

this option may be useful for molecular

replacement to compare results of

several rotation functions (Urzhumtsev & Urzhumtseva, 2002;

Urzhumtseva & Urzhumtsev, 2002).

2.2. Teaching goals

Teaching is another principal purpose of the program.

Demo is an interactive graphical tool especially useful for

understanding and comparing different rotation conventions.

For each choice of rotation parameters, Demo shows how the

position of an object changes with a variation of values of the

chosen parameters. A user can choose their own combination

of rotation parameters, creating and trying new conventions.

Help gives principal formulae for rotation conventions and

illustrates them one by one. Help pages are available in pdf

format; they are provided together with the program and can

be used separately.

Section 3 and Appendices A–D provide reminders of

principal definitions, basic notions and results concerning

rotations. Tables 1–3 summarize basic information relevant to

the choice of the rotation matrices and their parameters when

using direction cosines and quaternions (Table 1) or Euler

(Table 2) or polar angles (Table 3).

All of this information is classic and most of it can be found

in the literature. However it is much dispersed between

different sources and the notations used are very different,

sometimes opposite to each other and confusing. For this

reason we have tried to produce a single document presenting

this variety of options in a consistent, complete and detailed

way.

3. Method

3.1. Two basic options to describe rotations

Let an object be defined in some Cartesian coordinate

system with unit and mutually orthogonal basis vectors ex, ey,

ez (orthonormal basis), making a right-hand frame (called also

right-handed or right-chiral), and with the origin at O, the

point around which the object is rotated. In crystallography,

the default choice of the basis vectors, also referred to as
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Table 1
Rotation matrices for the direction cosines and for quaternions and their values extracted from the
matrix.

For � = � or q0 = 0 the component without the sign function is usually that with the largest absolute value
among the diagonal elements, and the other two components are defined using sign. The table gives an
example when lz is the largest component. c� and s� stand for the cosine and sine of the rotation angle �.
For other definitions see Section 3.3.1.

Matrix Matrix solution

l2
xð1� c�Þ þ c� lx ly ð1� c�Þ � lz s� lx lz ð1� c�Þ þ ly s�

lx lyð1� c�Þ þ lz s� l2
yð1� c�Þ þ c� ly lz ð1� c�Þ � lx s�

lx lz ð1� c�Þ � ly s� ly lz ð1� c�Þ þ lx s� l2
zð1� c�Þ þ c�

2
66664

3
77775

� ¼ arccos ½12 ðr11 þ r22 þ r33 � 1Þ�

� ¼ 0: lx ¼ ly ¼ 0; lz ¼ 1

0<�<�:

lx ¼ ½ðr32 � r23Þ=ð2 s�Þ�

ly ¼ ½ðr13 � r31Þ=ð2 s�Þ�

lz ¼ ½ðr21 � r12Þ=ð2 s�Þ�

� ¼ �:

lx ¼ sign ðr13Þ cos½12 arccos ðr11Þ�

ly ¼ sign ðr23Þ cos½12 arccos ðr22Þ�

lz ¼ cos½12 arccos ðr33Þ�

q2
0 þ q2

x � q2
y � q2

z 2ðqx qy � qz q0Þ 2ðqx qz þ qy q0Þ

2ðqx qy þ qz q0Þ q2
0 þ q2

y � q2
z � q2

x 2ðqy qz � qx q0Þ

2ðqx qz � qy q0Þ 2ðqy qz þ qx q0Þ q2
0 þ q2

z � q2
x � q2

y

2
66664

3
77775

q0 ¼
1
2 ½ðr11 þ r22 þ r33 þ 1Þ�1=2

q0 > 0:

qx ¼ ½ðr32 � r23Þ=ð4q0Þ�

qy ¼ ½ðr13 � r31Þ=ð4q0Þ�

qz ¼ ½ðr21 � r12Þ=ð4q0Þ�

q0 ¼ 0:

qx ¼ sign ðr13Þ cos½12 arccos ðr11Þ�

qy ¼ sign ðr23Þ cos½12 arccos ðr22Þ�

qz ¼ cos½12 arccos ðr33Þ�
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Table 2
Euler angles: rotation matrices and angles extracted from the matrices.

c1 and s1 stand for cos (�1) and sin (�1); similarly for c2, s2, c3 and s3. The function atan2 (y, x) defines the angle � such that tan� = y/x and that the signs of sin (�)
and cos (�) coincide with the signs of y and x, respectively.

Matrix product Resulting rotation matrix Matrix solution

Rx(�3)Ry(�2)Rx(�1)
c2 s1 s2 c1 s2

s2 s3 �s1 c2 s3þ c1 c3 �c1 c2 s3� s1 c3

�s2 c3 s1 c2 c3þ c1 s3 c1 c2 c3� s1 s3

0
@

1
A

�2 ¼ arccosðr11Þ

s2 ¼ 0: �1 ¼ atan2 ð�r23; r22Þ; �3 ¼ 0

s2> 0: �1 ¼ atan2 ðr12; r13Þ; �3 ¼ atan2 ðr21;�r31Þ

Ry(�3)Rz(�2)Ry(�1)
c1 c2 c3� s1 s3 �s2 c3 s1 c2 c3þ c1 s3

c1 s2 c2 s1 s2

�c1 c2 s3� s1 c3 s2 s3 �s1 c2 s3þ c1 c3

0
@

1
A

�2 ¼ arccos ðr22Þ

s2 ¼ 0: �1 ¼ atan2 ð�r31; r33Þ; �3 ¼ 0

s2> 0: �1 ¼ atan2 ðr23; r21Þ; �3 ¼ atan2 ðr32;�r12Þ

Rz(�3)Rx(�2)Rz(�1)
�s1 c2 s3þ c1 c3 �c1 c2 s3� s1 c3 s2 s3

s1 c2 c3þ c1 s3 c1 c2 c3� s1 s3 �s2 c3

s1 s2 c1 s2 c2

0
@

1
A

�2 ¼ arccos ðr33Þ

s2 ¼ 0: �1 ¼ atan2 ð�r12; r11Þ; �3 ¼ 0

s2> 0: �1 ¼ atan2 ðr31; r32Þ; �3 ¼ atan2 ðr13;�r23Þ

Rx(�3)Rz(�2)Rx(�1)
c2 �c1 s2 s1 s2

s2 c3 c1 c2 c3� s1 s3 �s1 c2 c3� c1 s3

s2 s3 c1 c2 s3þ s1 c3 �s1 c2 s3þ c1 c3

0
@

1
A

�2 ¼ arccos ðr11Þ

s2 ¼ 0: �1 ¼ atan2 ðr32; r33Þ; �3 ¼ 0

s2> 0: �1 ¼ atan2 ðr13;�r12Þ; �3 ¼ atan2 ðr31; r21Þ

Ry(�3)Rx(�2)Ry(�1)
�s1 c2 s3þ c1 c3 s2 s3 c1 c2 s3þ s1 c3

s1 s2 c2 �c1 s2

�s1 c2 c3� c1 s3 s2 c3 c1 c2 c3� s1 s3

0
@

1
A

�2 ¼ arccos ðr22Þ

s2 ¼ 0: �1 ¼ atan2 ðr13; r11Þ; �3 ¼ 0

s2> 0: �1 ¼ atan2 ðr21;�r23Þ; �3 ¼ atan2 ðr12; r32Þ

Rz(�3)Ry(�2)Rz(�1)
c1 c2 c3� s1 s3 �s1 c2 c3� c1 s3 s2 c3

c1 c2 s3þ s1 c3 �s1 c2 s3þ c1 c3 s2 s3

�c1 s2 s1 s2 c2

0
@

1
A

�2 ¼ arccosðr33Þ

s2 ¼ 0: �1 ¼ atan2 ðr21; r22Þ; �3 ¼ 0

s2> 0: �1 ¼ atan2 ðr32;�r31Þ; �3 ¼ atan2 ðr23; r13Þ

Rz(�3)Ry(�2)Rx(�1)
c2 c3 s1 s2 c3� c1 s3 c1 s2 c3þ s1 s3

c2 s3 s1 s2 s3þ c1 c3 c1 s2 s3� s1 c3

�s2 s1 c2 c1 c2

0
@

1
A

�2 ¼ �arcsin ðr31Þ

c2 ¼ 0: �1 ¼ atan2 ð�r23; r22Þ; �3 ¼ 0

c2> 0: �1 ¼ atan2 ðr32; r33Þ; �3 ¼ atan2 ðr21; r11Þ

Rx(�3)Rz(�2)Ry(�1)
c1 c2 �s2 s1 c2

c1 s2 c3þ s1 s3 c2 c3 s1 s2 c3� c1 s3

c1 s2 s3� s1 c3 c2 s3 s1 s2 s3þ c1 c3

0
@

1
A

�2 ¼ �arcsin ðr12Þ

c2 ¼ 0: �1 ¼ atan2 ð�r31; r33Þ; �3 ¼ 0

c2> 0: �1 ¼ atan2 ðr13; r11Þ; �3 ¼ atan2 ðr32; r22Þ

Ry(�3)Rx(�2)Rz(�1)
s1 s2 s3þ c1 c3 c1 s2 s3� s1 c3 c2 s3

s1 c2 c1 c2 �s2

s1 s2 c3� c1 s3 c1 s2 c3þ s1 s3 c2 c3

0
@

1
A

�2 ¼ �arcsin ðr23Þ

c2 ¼ 0: �1 ¼ atan2 ð�r12; r11Þ; �3 ¼ 0

c2> 0: �1 ¼ atan2 ðr21; r22Þ; �3 ¼ atan2 ðr13; r33Þ

Ry(�3)Rz(�2)Rx(�1)
c2 c3 �c1 s2 c3þ s1 s3 s1 s2 c3þ c1 s3

s2 c1 c2 �s1 c2

�c2 s3 c1 s2 s3þ s1 c3 �s1 s2 s3þ c1 c3

0
@

1
A

�2 ¼ arcsin ðr21Þ

c2 ¼ 0: �1 ¼ atan2 ðr32; r33Þ; �3 ¼ 0

c2> 0: �1 ¼ atan2 ð�r23; r22Þ; �3 ¼ atan2 ð�r31; r11Þ

Rz(�3)Rx(�2)Ry(�1)
�s1 s2 s3þ c1 c3 �c2 s3 c1 s2 s3þ s1 c3

s1 s2 c3þ c1 s3 c2 c3 �c1 s2 c3þ s1 s3

�s1 c2 s2 c1 c2

0
@

1
A

�2 ¼ arcsin ðr32Þ

c2 ¼ 0: �1 ¼ atan2 ðr13; r11Þ; �3 ¼ 0

c2> 0: �1 ¼ atan2 ð�r31; r33Þ; �3 ¼ atan2 ð�r12; r22Þ

Rx(�3)Ry(�2)Rz(�1)
c1 c2 �s1 c2 s2

c1 s2 s3þ s1 c3 �s1 s2 s3þ c1 c3 �c2 s3

�c1 s2 c3þ s1 s3 s1 s2 c3þ c1 s3 c2 c3

0
@

1
A

�2 ¼ arcsin ðr13Þ

c2 ¼ 0: �1 ¼ atan2 ðr21; r22Þ; �3 ¼ 0

c2> 0: �1 ¼ atan2 ð�r12; r11Þ; �3 ¼ atan2 ð�r23; r33Þ



coordinate axes, is defined by one of the orthogonalization

agreements (Appendix D).

Euler (1776) showed that any rotation, i.e. a motion with

one immobile point, O in our case, may be represented as a

single rotation about some axis in a general position. Alter-

natively, it can be represented by rotations about particular

coordinate axes, but this requires three such consecutive

elemental rotations. The Cartesian coordinates of a point after

rotation are expressed through its coordinates before rotation

(both described in the same basis {O, ex, ey, ez}) by three linear

equations that can be represented in matrix form. Note that

this rotation matrix R is the same for all points of the object

and is unique for each rotation.

3.2. Three consecutive rotations about the coordinate axes

3.2.1. Euler angles and rotation axes. Let us consider three

consecutive rotations about coordinate axes axis1, axis2, axis3

by angles �1, �2, �3, respectively; these angles are known as

Euler angles. The order in which the rotations are applied is

crucial. While in the literature one can find alternative nota-

tions for these angles (�, �, � or �, �,  or other), our notation

has the advantage of showing explicitly the order of rotations:

first by �1 about axis1, then by �2 about axis2, then by �3 about

axis3, whatever the axes are. Let us denote the respective

rotation matrices by Raxis1(�1), Raxis2(�2) and Raxis3(�3); parti-

cular expressions of matrices for rotations about ex, ey, ez are

given in Appendix B.

If the three rotation axes are selected from the set ex, ey, ez

we are talking about ‘extrinsic rotations’ or ‘active rotations’;

for simplicity we denote the corresponding choice by x, y or z,

respectively. Two consecutive rotations cannot be about the

same axis, but the first and the third axes can be the same

(referred to as proper Euler angles; when all three axes are

different, the corresponding angles are also called Tait–Bryan

angles). For example, xyz and zyz are acceptable, but not yyz.

The overall rotation matrix is a product of matrices from right

to left (Appendix A):

R ¼ Raxis3ð�3ÞRaxis2ð�2ÞRaxis1ð�1Þ: ð1Þ

For example, for axis1 = x, axis2 = y, axis3 = z the matrix (1) is

Rz(�3)Ry(�2)Rx(�1).

Often axis1, axis2, axis3 correspond to a different, mobile

coordinate system. Initially its basis vectors ux, uy, uz coincide

with the respective vectors ex, ey, ez. However, they are asso-

ciated with the rotating object and move with it. In this case we

are talking about ‘intrinsic rotations’ or ‘passive rotations’.

Referring to the same three basic matrices as above, the

rotation matrix becomes their product from left to right

(Appendix B):

R ¼ Raxis1ð�1ÞRaxis2ð�2ÞRaxis3ð�3Þ: ð2Þ

3.2.2. Direction of the rotations. The elemental matrices

Rx(�), Ry(�), Rz(�) given in Appendix B correspond to rota-

tions in the trigonometrical sense, i.e. counterclockwise when

looking against the rotation axis [Fig. 1(a)]. Working in three-

dimensional space, the term ‘right-hand rotation’ is frequently

used. While this is the default direction in mathematics and

physics, one may define a positive rotation direction in the

opposite sense, i.e. clockwise when looking against the rota-

tion axis (left-hand rotation). This does not change the form of

the rotation matrix but simply reverses the sign of its argu-

ment. (This is equivalent to inversion of the corresponding

matrix.) For example, inversion of the rotation direction for all

three extrinsic rotations [equation (1)] simultaneously makes

matrix R equal to

R ¼ Raxis3ð��3ÞRaxis2ð��2ÞRaxis1ð��1Þ: ð3Þ

For intrinsic rotations [equation (2)] it becomes

R ¼ Raxis1ð��1ÞRaxis2ð��2ÞRaxis3ð��3Þ: ð4Þ

3.2.3. System or object rotation. Owing to the relative

character of a motion, rotation of an object with respect to a

given basis may also be seen as a rotation of this basis keeping

the object fixed. Such rotation automatically means that the

coordinate axes (of the system) are moving ones.

In this case, three consecutive rotations of the basis about

its axes axis1, axis2, axis3 by angles �1, �2, �3 result in the

rotation matrix (Appendix B)

R ¼ Raxis3ð��3ÞRaxis2ð��2ÞRaxis1ð��1Þ; ð5Þ

coinciding with expression (3) above.

3.3. Single rotation about an axis in a general orientation

3.3.1. Direction cosines and quaternions. Now let us

consider a single rotation of an object by some angle � about

an axis in a general orientation. This rotation axis can be

defined by a unit vector l along it. Vector l can be represented

by its Cartesian coordinates (lx, ly, lz) in the same orthonormal

basis {O, ex, ey, ez} as above. These coordinates are cosines of

the angles that l makes with the coordinate axes ex, ey, ez

[Fig. 1(b)]. Table 1 shows the corresponding rotation matrix.

teaching and education
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Figure 1
Rotation axis l (in red). (a) Definition of the positive (trigonometric, right
hand) direction of rotation. (b) Definition of the rotation axes by
direction cosines. (c) Definition of the rotation axis by polar coordinates.
(d) Example of a standard (h = ex, n = ey) and alternative (h0 = ey, n0 =
�ex) choice for the azimuth axis.



A close description is that by quaternions. Here, the coor-

dinates of the rotation axis are ‘merged’ with the rotation

angle, giving a set of four quaternion parameters {q0, qx, qy, qz}

that are {cos(�/2), lx sin(�/2), ly sin(�/2), lz sin(�/2)}. These

quartets have a number of important mathematical features

and are convenient for formal mathematical manipulations.

The corresponding rotation matrix is also given in Table 1.

3.3.2. Polar angles and rotation axes. The normalization

condition l2
x þ l2

y þ l2
z ¼ 1 on vector l indicates that the para-

meters of direction cosines are mutually dependent; the same

is true for quaternions. Instead of these parameters, one can

define l by its spherical coordinates. Here one angle describes

the inclination of l, i.e. the angle that the vector l makes with a

chosen coordinate axis, called the ‘zenith’ or ‘polar’ axis and

which we denote by p. By definition this angle varies from 0 to

�. The plane normal to p contains two other vectors of the

Cartesian basis. One of them is chosen as the ‘azimuth’ or

‘horizontal’ axis, and we denote it by h. Vectors p and h are

completed by the third unit vector n (for normal), making a

right-hand orthogonal frame phn (Appendix C).
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Table 3
Polar angles: rotation matrices and angles extracted from the matrices..

	 is the zenith angle. c	 and s	 stand for cos(	) and sin(	); similarly for the azimuth angle 
 and rotation angle �. atan2 (y, x) is defined as for Table 2.

Rotation matrix product Resulting rotation matrix Matrix solution

Zenith: Z

Azimuth: X

Rzð
ÞRyð	ÞRzð�ÞRyð�	ÞRzð�
Þ

ðs	Þ2 ðc
Þ2 ð1� c�Þ ðs	Þ2 s
 c
 ð1� c�Þ s	 c	 c
 ð1� c�Þ
þ c� � c	 s� þ s	 s
 s�

ðs	Þ2 s
 c
 ð1� c�Þ ðs	Þ2 ðs
Þ2 ð1� c�Þ s	 c	 s
 ð1� c�Þ
þ c	 s� þ c� � s	 c
 s�

s	 c	 c
 ð1� c�Þ s	 c	 s
 ð1� c�Þ ðc	Þ2 ð1� c�Þ þ c�
� s	 s
 s� þ s	 c
 s�

2
66666666664

3
77777777775

� ¼ arccos ½ðr11 þ r22 þ r33 � 1Þ=2�

� ¼ 0: 	 ¼ 
 ¼ 0

0<�<�: 	 ¼ arccos ½ðr21 � r12Þ=ð2 s�Þ�

	 ¼ 0 or 	 ¼ �: 
 ¼ 0

0<	<�: 
 ¼ atan2 ðr13 � r31; r32 � r23Þ

� ¼ �: 	 ¼ 1
2 arccos ðr33Þ

	 ¼ 0: 
 ¼ 0

	 ¼ �=2: 
 ¼ 1
2 atan2 ðr12 þ r21; 2r11Þ

0<	<�=2: 
 ¼ atan2 ðr23 þ r32; r13 þ r31Þ

Zenith: X

Azimuth: Y

Rxð
ÞRzð	ÞRxð�ÞRzð�	ÞRxð�
Þ

ðc	Þ2 ð1� c�Þ þ c� s	 c	 c
 ð1� c�Þ s	 c	 s
 ð1� c�Þ
� s	 s
 s� þ s	 c
 s�

s	 c	 c
 ð1� c�Þ ðs	Þ2 ðc
Þ2 ð1� c�Þ ðs	Þ2 s
 c
 ð1� c�Þ
þ s	 s
 s� þ c� � c	 s�

s	 c	 s
 ð1� c�Þ ðs	Þ2 s
 c
 ð1� c�Þ ðs	Þ2 ðs
Þ2 ð1� c�Þ
� s	 c
 s� þ c	 s� þ c�

2
66666666664

3
77777777775

� ¼ arcos ½ðr11 þ r22 þ r33 � 1Þ=2�

� ¼ 0: 	 ¼ 
 ¼ 0

0<�<�: 	 ¼ arccos ½ðr32 � r23Þ=ð2 s�Þ�

	 ¼ 0 or 	 ¼ �: 
 ¼ 0

0<	<�: 
 ¼ atan2 ðr21 � r12; r13 � r31Þ

� ¼ �: 	 ¼ 1
2 arccos ðr11Þ

	 ¼ 0: 
 ¼ 0

	 ¼ �=2: 
 ¼ 1
2 atan2 ðr23 þ r32; 2r22Þ

0<	<�=2: 
 ¼ atan2 ðr31 þ r13; r21 þ r12Þ

Zenith: Y

Azimuth: Z

Ryð
ÞRxð	ÞRyð�ÞRxð�	ÞRyð�
Þ

ðs	Þ2 ðs
Þ2 ð1� c�Þ s	 c	 s
 ð1� c�Þ ðs	Þ2 s
 c
 ð1� c�Þ
þ c� � s	 c
 s� þ c	 s�

s	 c	 s
 ð1� c�Þ ðc	Þ2 ð1� c�Þ þ c� s	 c	 c
 ð1� c�Þ
þ s	 c
 s� � s	 s
 s�

ðs	Þ2 s
 c
 ð1� c�Þ s	 c	 c
 ð1� c�Þ ðs	Þ2 ðc
Þ2 ð1� c�Þ
� c	 s� þ s	 s
 s� þ c�

2
66666666664

3
77777777775

� ¼ arcos ½ðr11 þ r22 þ r33 � 1Þ=2�

� ¼ 0: 	 ¼ 
 ¼ 0

0<�<�: 	 ¼ arccos ½ðr13 � r31Þ=ð2 s�Þ�

	 ¼ 0 or 	 ¼ �: 
 ¼ 0

0<	<�: 
 ¼ atan2 ðr32 � r23; r21 � r12Þ

� ¼ �: 	 ¼ 1
2 arccos ðr22Þ

	 ¼ 0: 
 ¼ 0

	 ¼ �=2: 
 ¼ 1
2 atan2 ðr31 þ r13; 2r33Þ

0<	<�=2: 
 ¼ atan2 ðr12 þ r21; r32 þ r23Þ



The angle that the orthogonal projection of l into the plane

hOn makes with the azimuth axis h is the second angle

defining the orientation of the rotation axis. This angle is

considered in the trigonometric sense looking against p. The

two angles introduced above fully define the orientation of the

rotation axis l [Fig. 1(c)]. We call these two angles the ‘zenith

angle’, 	, and the ‘azimuth angle’, 
, reserving the term ‘polar

angles’ for the ensemble of three angles (	, 
, �) as routinely

used in macromolecular crystallography. (Some sources

reserve the term ‘polar angle’ only for a rotation in a plane.)

For 	 = 0 and for 	 = � the azimuth angle 
 is undefined and we

arbitrarily assign 
 = 0. With this choice, the rotation matrix

can be expressed as a product of the elemental matrices

(Appendix C):

R ¼ Rpð
ÞRnð	ÞRpð�ÞRnð�	ÞRpð�
Þ: ð6Þ

All rotations in equation (6) are considered in the trigono-

metrical sense.

3.3.3. Rotation direction and system rotation. Both inver-

sion of the rotation direction and consideration of the basis

rotating about a fixed object result in inversion of the sign of

the argument of the central matrix in (6), i.e. replacing Rp(�)

by Rp(��), and keeping the rest.

3.4. Conversion of rotation matrices into parameters

Previous sections have shown how to obtain the rotation

matrix from different kinds of rotation parameters. Conver-

sely, given the rotation matrix, one may wish to recover the

independent rotation parameters of one’s choice. Tables 1–3

provide the corresponding expressions considering a fixed

system and the object rotated about fixed axes in the trigo-

nometric sense. For alternative conventions, the final assign-

ment is done according to the remark in x3.3.3 or by

comparison of equation (1) with the respective expressions

(2)–(5). These tables show that the extraction of the rotation

parameters from the rotation matrix can always be done

unambiguously, except for the equivalent solution. Several

remarks have to be made.

First, the expressions for parameters are different for

general and for some particular situations, e.g. those when � =

� for polar angles or when �2 = 0 for proper Euler angles etc.

For these situations, usually the value of one of the parameters

is assigned arbitrarily. Second, in practice these particular

situations are identified with some precision and it is crucial to

keep rounding errors as small as possible. Third, each solution

has its equivalent; the reason for this is that each rotation can

be considered also as a rotation by the complementary (or

opposite) angle about the axis directed in the opposite way, i.e.

inverting the vector l.

Finally, a cyclic permutation of rotation axes in the defini-

tion of the Euler or polar angles results in a cyclic permutation

of rows and columns of the rotation matrices (Tables 2 and 3).

In turn, this corresponds to a cyclic permutation of indices of

the matrix elements in the expressions for Euler or polar

angles extracted from the rotation matrix.

4. Program

4.1. Overall structure

The program core is represented by 12 modules corre-

sponding to all possible independent assignments of rotation

axes for Euler angles [see, for example, Kuipers (1999) or

https://www.mecademic.com/resources/Euler-angles/Euler-angles]

and by three modules for all possible standard choices of the

zenith and azimuth axes. Each of these modules contains the

part that interprets the matrices in terms of the relevant Euler

or polar angles. In fact, only three modules for Rx(�), Ry(�)

and Rz(�) are sufficient to calculate any rotation matrix by

combining them appropriately, but the interpretation of the

matrix in terms of parameters would be less straightforward.

There exists also a module for matrix calculation and inter-

pretation in terms of direction cosines.

The program calls the appropriate module according to the

particular choice of parameters made by the user. If necessary,

the angle values are adjusted internally, for example are taken

in the inverse order, taken with the inverse signs (Appendices

B and C) or increased by �/2 for a nonstandard choice of

azimuth axis (Appendix C). A corresponding adjustment is

required when extracting the parameters from the matrix.

The program has a module to generate the parameters

corresponding to symmetrically equivalent orientations for a

selected space group given the rotation matrix defining the

principal position of the rotated object. The orthogonalization

and deorthogonalization module is included for use of the

program in a crystallographic environment. Finally, there is a

module to apply the rotation matrix (and the translation

vector) to a list of atomic coordinates. Note that the respective

anisotropic atomic displacement parameters and the TLS

parameters (Schomaker & Trueblood, 1968) are not recalcu-

lated (Kronenburg, 2004).

4.2. Protocol

The program can be used in a crystallographic environment

but not necessarily. The choice of a crystallographic environ-

ment means that either crystallographic symmetries will be

used or the rotation elements (e.g. the polar axis) will be

defined with respect to the crystallographic axes. In this

optional case the user needs to first select the orthogonaliza-

tion conventions; they may be different for the input and

output parameters. Then, independently of this step, the user

needs to choose the particular sets of the input and output

rotation parameters. In a simplified mode of conversion from

one known program to another, the settings above can be

done automatically by selecting the program names in the list.

This list is very short in comparison with that given by

Urzhumtseva & Urzhumtsev (1997). One reason is that many

programs have become obsolete since 1997. The second

reason is that we wanted to avoid an eventual disagreement

between the formal program descriptions, available comments

on the choice of parameters and the actual program source.

The values of the chosen input parameters can be either

entered directly by typing them or using copy/paste options or

using Demo, or provided by indicating the file containing such
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Figure 2
py_convrot session. The principal window (top), two snapshots of the interactive Demo (lower left) and an example of a Help page (lower right).



values. The last option is convenient when converting lists of

parameters, e.g. Euler angles after a molecular replacement

run. The recalculation of the parameters can be followed by

recalculation of coordinates; input and output files with lists of

atomic coordinates and an eventual model shift have to be

defined.

Any choice of the rotation parameters can be illustrated by

Demo; this can be done separately for the input and output

parameter selection. For input parameters, Demo is inter-

active; the user can vary parameter values and observe

respective changes in the axes and object positions. At any

time, Help is available, explaining the rotation matrices and

their interpretation in terms of angles, as well as illustrating

the orthogonalization conventions.

Fig. 2 shows an example of a py_convrot session.

5. Software environment and program distribution

The GUI program py_convrot is written in Python 2 and

requires version 2.6 or 2.7 and the wxPython toolkit.

py_convrot has been tested under Windows, Linux and

MacOS systems. If the Python libraries are installed in the

frame of other program packages such as PHENIX (Adams et

al., 2010), the program may be started as

phenix.wxpython py_convrot.py

The program can be downloaded from the site http://www-

ibmc.u-strasbg.fr/spip-arn/spip.php?rubrique2&lang = en. It is

also available on request from the authors. A Python 3 version

is under development.

6. Conclusions

Description of rotations in space is an old task widely

addressed in the literature. The algebraic simplicity of its

solution allows developers to select and adapt the description

that is most appropriate to their particular project. At the

same time, the variety of possible descriptions causes a lot of

confusion. The present article and associated teaching

program py_convrot, addressed to researchers working in

crystallography, cryoEM or similar fields, are an attempt to

review these descriptions and relate them to each other.

APPENDIX A
Rotation matrices in Cartesian coordinate systems

Let an object be defined in some Cartesian coordinate system

with basis vectors ex, ey, ez (right-hand orthonormal basis) and

the origin around which the object is rotated at O. Let ux, uy,

uz be three other unit vectors, rigidly associated with the

rotated object and such that for the initial position of the

object they coincide with ex, ey, ez, respectively. After rotation,

these vectors can be expressed in the basis {O, ex, ey, ez} as

u0x ¼ r11ex þ r21ey þ r31ez; u0y ¼ r12ex þ r22ey þ r32ez;

u0z ¼ r13ex þ r23ey þ r33ez:
ð7Þ

If we compose a matrix R with these coordinates in columns as

R ¼

r11 r12 r13

r21 r22 r23

r31 r32 r33

0
@

1
A ð8Þ

then the coordinates ðx0e; y0e; z0eÞ of any point of the object after

its rotation are related to its coordinates (xe, ye, ze) in the

initial position by

x0e
y0e
z0e

0
@

1
A ¼ R

xe

ye

ze

0
@

1
A: ð9Þ

The rotation matrix R, called also the matrix of the rotation

operator, is the same for all points. As a consequence, it can be

considered as the reference entity for any kind of para-

meterization of the rotation. We should distinguish between

equation (9) and the equations that relate the coordinates of a

fixed point in the initial basis and in the rotated basis, (xu, yu,

zu), namely2

xu

yu

zu

0
@

1
A ¼ R�1

xe

ye

ze

0
@

1
A and

xe

ye

ze

0
@

1
A ¼ R

xu

yu

zu

0
@

1
A: ð10Þ

It follows from equation (9) that two consecutive rotations,

first by R1 and then by R2, are equivalent to a rotation

described by the matrix R = R2 R1 with the matrices taken from

right to left (all matrices are in the same Cartesian basis):

x00e
y00e
z00e

0
@

1
A ¼ R2

x0e
y0e
z0e

0
@

1
A ¼ R2 R1

xe

ye

ze

0
@

1
A

2
4

3
5 ¼ R2R1ð Þ

xe

ye

ze

0
@

1
A: ð11Þ

APPENDIX B
Euler angles

B1. Extrinsic rotations (fixed coordinate axes)

As shown by Euler (1776), a rigid-body rotation can be

described by three consecutive rotations about the coordinate

axes axis1, axis2, axis3 by angles �1, �2, �3, respectively. In the

case of extrinsic rotations (rotations about fixed coordinate

axes), axis1, axis2, axis3 are selected from ex, ey, ez. The same

axis cannot be taken for two consecutive elemental rotations.

For elemental rotations by angle � about axes ex, ey or ez the

corresponding rotation matrices [equation (8)] are

teaching and education

J. Appl. Cryst. (2019). 52, 869–881 Ludmila Urzhumtseva et al. � py_convrot 877

2 In an orthonormal basis, the inverse matrix coincides with the transposed
one, R�1 ¼ R�.



Rx �ð Þ ¼

1 0 0

0 cos � � sin �

0 sin � cos �

0
B@

1
CA;

Ry �ð Þ ¼

cos � 0 sin �

0 1 0

� sin � 0 cos �

0
B@

1
CA;

Rz �ð Þ ¼

cos � � sin � 0

sin � cos � 0

0 0 1

0
B@

1
CA:

ð12Þ

Here each rotation is considered in its trigonometrical sense,

i.e. counterclockwise when looking against the rotation axis

[Fig. 1(a)]. According to equation (11) the total rotation

matrix is calculated as a product [equation (1)] of the indivi-

dual matrices.

B2. Intrinsic rotations (moving coordinate axes)

Alternatively, axis1, axis2, axis3 may be the axes of a

coordinate system rigidly associated with the rotating object

and moving with it. This is an intrinsic rotation. We denote this

rotating basis ux, uy, uz by U, distinguishing it from the original

immobile basis ex, ey, ez which we denote by E. The immobile

point O is the origin for both of them. Note that for both

extrinsic and intrinsic rotations, ultimately, we are interested

in the coordinates of a point with respect to the initial, fixed

coordinate system {O, ex, ey, ez}, while {O, ux, uy, uz} is simply

an intermediate tool to describe the rotation.

Let R1 correspond to a rotation of the object, together with

the basis U, from its initial position. For any point of a rotating

object, its coordinates in U do not change and are the same as

initially in basis E: ðxu; yu; zuÞ ¼ ðxe; ye; zeÞ. If R2 is the matrix

describing a following rotation with respect to the rotated

basis U,

x0u
y0u
z0u

0
@

1
A ¼ R2

xu

yu

zu

0
@

1
A; ð13Þ

the coordinates of the rotated point in E, according to equa-

tion (10), become

x0e

y0e

z0e

0
B@

1
CA ¼ R1

x0u

y0u

z0u

0
B@

1
CA ¼ R1 R2

xu

yu

zu

0
B@

1
CA

2
64

3
75 ¼ R1 R2

xe

ye

ze

0
B@

1
CA

2
64

3
75

¼ R1R2ð Þ

xe

ye

ze

0
B@

1
CA: ð14Þ

In other words, for intrinsic rotations the matrix product is

calculated in the reverse order to that for extrinsic ones:

matrices are taken from left to right. Generalizing this, the

matrix to calculate Cartesian coordinates after three conse-

cutive rotations about moving axes axis1, axis2, axis3 is

equation (2).

B3. Extrinsic versus intrinsic conventions

Table 2 shows the resulting matrix [equation (8)] for rota-

tions about all possible triplets of fixed axes. A direct

comparison of formula (2) with (1) shows that each extrinsic

rotation can be easily interpreted as an intrinsic rotation and

vice versa. In other words, each rotation matrix can be inter-

preted in terms of both conventions.

The convention most frequently used in the past few

decades in macromolecular crystallography (e.g. Collaborative

Computational Project, Number 4, 1994) is that described by

the matrix

R ¼ Rzð�1ÞRyð�2ÞRzð�3Þ: ð15Þ

It can be interpreted3 as an intrinsic rotation zyz (moving,

mobile axes) about axis1 = uz, axis2 = uy, axis3 = uz by angles

�1, �2, �3, respectively. This is equivalent to the consecutive

rotations about the fixed axes (extrinsic rotations) axis1 = ez,

axis2 = ey, axis3 = ez by angles �3, �2, �1. Note that, similarly to

other proper Euler angles, this convention is not optimal for

rigid-body refinement since in that case the original orienta-

tion corresponding to �2 = 0 is singular, defining the sum �1 +

�3 and not each of these angles individually (Urzhumtsev et al.,

1989; Afonine et al., 2009).

B4. Other rotation conventions

Inversion of the rotation direction corresponds to taking the

opposite sign for the corresponding rotation angle in

equation (1) or (2). In general, for two angles from the same

triplet of Euler angles, opposite directions can be considered

as positive, e.g. https://spider.wadsworth.org/spider_doc/spider/

docs/euler.html.

Rotating a system (basis) about the fixed object is opposite

to an equivalent rotation of the object with respect to a fixed

basis. Three consecutive rotations of the basis about the axes

axis1, axis2, axis3 (which by construction are moving axes) by

angles �1, �2, �3 are described by matrix (2). However, since an

opposite rotation is described by the inverse matrix, matrix (8)

to recalculate the Cartesian coordinates of a fixed point with

respect to the rotated basis, which is the final goal, becomes

R ¼ Raxis1 �1ð ÞRaxis2 �2ð ÞRaxis3 �3ð Þ
� ��1

¼ R�1
axis3 �3ð ÞR

�1
axis2 �2ð ÞR

�1
axis1 �1ð Þ

¼ Raxis3 ��3ð ÞRaxis2 ��2ð ÞRaxis1 ��1ð Þ: ð16Þ

APPENDIX C
Polar angles

C1. Definition of the axis direction

If we characterize a rotation in three-dimensional space by

a matrix R, a unit vector l along the rotation axis is its

eigenvector corresponding to its eigenvalue equal to 1. Such

an eigenvalue always exists and is unique except for the
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degenerate rotation by 0 radians; this value is characteristic for

a rotation. (The two other eigenvalues either are complex

conjugates of modulus 1 in a general case or are both equal to

1 for a rotation by 0, or are both equal to �1 for a rotation by

� radians.) Two independent parameters are required to

define l. Frequently, they are chosen as two angles that refer to

an orthonormal basis:

(a) The zenith angle 	 that l makes with a chosen basis

vector p that we call the polar or zenith axis; for example, but

not necessarily (e.g. Rossmann & Blow, 1962), p = ez.

(b) The azimuth angle 
 that the orthogonal projection of l

into the plane normal to p makes with one of two basis vectors

that belong to this plane; we call this basis vector the azimuth

axis, h.

It is more convenient to choose h so that p, h and the third

basis vector, n, and not its opposite, form a right-hand frame

(this means that n = p � h). For example, for p = ez, this

imposes h = ex, resulting in n = ey. With such a convention, the

three basic possible choices for p and h are (ez, ex), (ex, ey), (ey,

ez). In the literature, the term ‘polar angle’ is reserved

sometimes for the first, inclination angle, and sometimes for

the second angle, especially when working in plane. Also one

may find multiple notations for these angles, including some

that are opposite to each other, e.g. (�, �) and (�, �). For these

reasons we here use 	 (for ‘zenith’) and 
 (for ‘azimuth’),

differently from common notations, to avoid any confusion

and showing explicitly which angle is for which axis. We use

the term ‘polar angles’ for the set (	, 
, �), where � is the angle

of rotation about l. Recall that the rotation angle � is related to

the trace of the rotation matrix by expression

2 cos �þ 1 ¼ tr R ¼ r11 þ r22 þ r33: ð17Þ
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Table 4
Orthogonalization conventions.

a, b, c, �, �, � are cell parameters; �*, �*, �* are angles between the vectors of the dual basis calculated as �* = arccos [(cos� cos� � cos�)/(sin� sin�)], �* =
arccos [(cos� cos� � cos�)/(sin� sin�)], �* = arccos [(cos�cos� � cos�)/(sin� sin�)]. For the fourth orthogonalization convention, a0 = ||a + b|| = (a2 + b2 +
2ab cos�)1/2, �0 = arccos [(a cos� + b cos�)/a0], � 0 = arccos [(a cos� + b)/a0], cos�0* = (cos� 0 cos� � cos�0)/(sin� 0 sin�).

ex, ey, ez

along vectors Orthogonalization matrix B Deorthogonalization matrix A

a

c� � a

c�

a b cos � c cos�
0 b sin � �c sin� cos��

0 0 c sin� sin��

0
@

1
A

1=a �1=ða tan �Þ sin� cos��=ða sin� sin � sin��Þ
0 1=ðb sin �Þ 1=ðb sin � tan��Þ
0 0 1=ðc sin� sin��Þ

2
4

3
5

b

a� � b

a�

a cos � b c cos�
�a sin � cos�� 0 c sin�

a sin � sin�� 0 0

0
@

1
A

0 0 1=ða sin � sin��Þ
1=b �1=ðb tan�Þ sin� cos ��=ðb sin� sin � sin��Þ

0 1=ðc sin�Þ 1=ðc sin� tan��Þ

2
4

3
5

c

b� � c

b�

a cos� b cos� c

a sin� �b sin� cos �� 0

0 b sin� sin �� 0

0
@

1
A

0 1=ða sin�Þ 1=ða sin � tan ��Þ
0 0 1=ðb sin� sin ��Þ

1=c �1=ðc tan�Þ sin � cos��=ðc sin� sin� sin ��Þ

2
4

3
5

ðaþ bÞ

c� � ðaþ bÞ

c�

a0 b cos � c cos�0

0 b sin � �c sin�0 cos��

0 0 c sin�0 sin��

0
@

1
A

1=a0 �1=ða0 tan � 0Þ sin� cos�0�=ða0 sin�0 sin � 0 sin��Þ
0 1=ðb sin � 0Þ 1=ðb sin � 0 tan��Þ
0 0 1=ðc sin�0 sin��Þ

2
4

3
5

a�

c� a�

c

a sin� sin �� 0 0

�a sin� cos �� b sin � 0

a cos� b cos� c

0
@

1
A

1=ða sin� sin ��Þ 0 0

1=ðb sin� tan ��Þ 1=ðb sin�Þ 0

sin � cos��=ðc sin� sin� sin ��Þ �1=ðc tan�Þ 1=c

2
4

3
5

a

b�

a� b�

a b cos � c cos�
0 b sin � sin�� 0

0 �b sin � cos�� c sin�

0
@

1
A

1=a sin� cos ��=ða sin� sin � sin��Þ �1=ða tan�Þ
0 1=ðb sin � sin��Þ 0

0 1=ðc sin� tan��Þ 1=ðc sin�Þ

2
4

3
5

a�

b

a� � b

a sin � sin�� 0 0

a cos � b c cos�
�a sin � cos�� 0 c sin�

0
@

1
A

1=ða sin � sin��Þ 0 0

sin� cos ��=ðb sin� sin � sin��Þ 1=b �1=ðb tan�Þ
1=ðc sin� tan��Þ 0 1=ðc sin�Þ

2
4

3
5



C2. Rotation about an axis in a general orientation

To find the matrix describing the rotation by angle � about

axis l in a general orientation, a moving frame (basis) V is

defined with the vectors vh, vn, vp, which initially coincide with

h, n, p. It is rotated first by 
 about vp = p and then by 	 about

vn in its new position. This superposes vp and l; the corre-

sponding rotation matrix is

Rpl ¼ Rpð
ÞRnð	Þ: ð18Þ

According to equation (10), the coordinates of a given fixed

point expressed in the rotated basis V are

xv

yv

zv

0
B@

1
CA ¼ R�1

pl

xe

ye

ze

0
B@

1
CA ¼ Rp 
ð ÞRn

	ð Þ
� ��1

xe

ye

ze

0
B@

1
CA

¼ Rn �	ð ÞRp �
ð Þ

xe

ye

ze

0
B@

1
CA: ð19Þ

Rotation by � about vp = p in the rotated basis is described by

the product of the matrix Rp(�) and vector (19), where Rp(�) is

one of the elemental matrices (12). Finally, and also according

to (10), recalculating the resulting coordinates in the original

coordinate system gives the total rotation matrix (8) in the

form

R

xe

ye

ze

0
B@

1
CA ¼ RplRp �ð Þ

xv

yv

zv

0
B@

1
CA

¼ Rp 
ð ÞRn
	ð ÞRp �ð ÞRn �	ð ÞRp �
ð Þ

xe

ye

ze

0
B@

1
CA: ð20Þ

C3. Nonstandard choice for the azimuth axis

Table 3 shows the rotation matrices for all three possible

standard choices for the zenith and azimuth axes. However,

for the same axis p one may choose axis h coinciding with a

different coordinate axis; in other words, the new azimuth and

normal axes, h0 and n0, may correspond to n and �h from the

previous, standard choice. One may reduce such a situation to

the previous one since the angles (	0, 
0) for a non-conven-

tional choice are equivalent to the angles (	, 
 + �/2) defined

for the standard choice [Fig. 1(d)]. The program py_convrot

uses this approach even when other considerations are

possible.

APPENDIX D
Orthogonalization conventions and their relation to
rotations

In crystallography, three kinds of basis are used and are

involved in the definition of the rotation matrices in a crys-

tallographic environment [see for example Shmueli (2010) or

Rupp (2010)]. First, crystallographic (fractional) coordinates

are defined, representing each point (vector) r in a right-hand

basis composed of vectors defining the crystal periods a, b, c:

r ¼ xfaþ yfbþ zfc: ð21Þ

Generally speaking, these basis vectors are not unit vectors

and are not mutually orthogonal. The mixed product

V ¼ ða� bÞ � c ð22Þ

is the volume of the unit cell formed by the basis vectors. The

second basis, dual to the previous one, is composed of the

vectors

a� ¼ V�1b� c; b� ¼ V�1c� a; c� ¼ V�1a� b: ð23Þ

The third is a Cartesian orthonormal basis {O, ex, ey, ez} with

respect to which the rotation parameters are chosen. It is

defined by one of the standard conventions (Collaborative

Computational Project, Number 4, 1994) through a, b, c and

a*, b*, c* [see for example Giacovazzo et al. (1992) or Rupp

(2010)]. The crystallographic [equation (21)] and Cartesian

coordinates

r ¼ xeex þ yeey þ zeez ð24Þ

are related to each other by two mutually inverse matrices,

orthogonalization matrix B and deorthogonalization matrix

A = B�1:

xf

yf

zf

0
@

1
A ¼ A

xe

ye

ze

0
@

1
A;

xe

ye

ze

0
@

1
A ¼ B

xf

yf

zf

0
@

1
A: ð25Þ

Table 4 summarizes the expressions for matrices A and B for

different conventions. Changing the orthogonalization choice

changes the rotation matrix according to

AinRinBin ¼ AoutRoutBout: ð26Þ

Here both left-hand and right-hand parts of the equation

present the rotation matrix in the crystallographic basis.

While rotations in Euler or in polar angles are defined with

respect to a Cartesian basis, crystallographic transformations

are naturally defined in crystallographic coordinates. For

example, let a rotation described by matrix Rin in some input

Cartesian basis be followed by a symmetry rotation S.

According to equation (26), the matrix for the resulting

rotation expressed in another, output Cartesian basis is equal

to

Rout ¼ A�1
outS AinRinBinð ÞB�1

out ¼ BoutS AinRinBinð ÞAout: ð27Þ
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