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The section of the Bilbao Crystallographic Server (http://www.cryst.ehu.es)

dedicated to subperiodic groups includes a new tool called LSITESYM for the

study of materials with layer and multilayer symmetry. This new program, based

on the site-symmetry approach, establishes the symmetry relations between

localized and extended crystal states using representations of layer groups. The

efficiency and utility of the program LSITESYM is demonstrated by illustrative

examples, which include the analysis of phonon symmetry in Aurivillius

compounds and in van der Waals layered crystals MoS2 and WS2 .

1. Introduction

The interest in layered and multilayered materials such as

graphene (Geim & Novoselov, 2007; Randviir et al., 2014) and

van der Waals crystals, e.g. the transition metal dichalcogenide

crystal family MeX2 with Me = Nb, Mo, Ta, W, Ti, V, Zr, Hf and

X = S, Se, Te (Han et al., 2018; Manzeli et al., 2017; Choi et al.,

2017), is constantly growing owing to their interesting prop-

erties and possible technological applications. The symmetry

of single monolayers can be described by the ‘diperiodic’ or

‘layer groups’ (Kopský & Litvin, 2010), which are three-

dimensional crystallographic groups with two-dimensional

translations. There are 80 layer groups which, together with

the seven frieze groups (two-dimensional groups with one-

dimensional translations) and the 75 rod groups (three-

dimensional groups with one-dimensional translations),

constitute the ‘subperiodic groups’. The crystallographic data

for subperiodic groups are compiled in International Tables

for Crystallography, Volume E, Subperiodic Groups (here-

after referred to as ITE) and also offered online by the Bilbao

Crystallographic Server (Aroyo et al., 2011; Tasci et al., 2012)

(http://www.cryst.ehu.es).

While space groups and their representations describe the

symmetry of the bulk electron and phonon states, the layer

groups are essential for the description of the electronic

structure and the surface states of crystals. Depending on the

interaction between the layer and the bulk, materials with

layer symmetry can be classified into five different types: (i)

pure layered systems like free-standing films, with graphene

monolayers as a notable example of such films; (ii) single

layers in layered crystals which, owing to a weak van der Waals

interlayer interaction, can be separated from the bulk; (iii)

artificial nanolayers grown on substrates or between two bulk

materials where the interaction between the nanolayer and
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surrounding bulk materials is neglected; (iv) layers (or slabs)

which model atomically clean crystal surfaces where the slab

interaction with the rest of the semi-infinite crystal is

neglected; (v) interfaces between different crystals, including

domain walls approximated by atomically clean crystal

surfaces.

The site-symmetry approach (Evarestov & Smirnov, 1987,

1993; Hatch et al., 1988; Stokes et al., 1991; Kovalev, 1993) is a

powerful method which connects the local properties of atoms

in crystals with the symmetry of states of the whole crystalline

system, i.e. it establishes the symmetry relationships between

the localized states in the crystal (vibrations of atoms and

atomic orbitals) and crystal extended (phonon and electron)

states over the entire Brillouin zone. The site-symmetry

method is based on the procedure of induction of repre-

sentations of the crystal space group from the irreducible

representations (irreps) of the site-symmetry groups of the

constituent units (atoms, clusters and layers) according to

which the local excitations are transformed. In this way, the

symmetry of phonon, electron, exciton, biexciton etc. states

can be described by the crystal single- and double-valued

representations induced by the irreps of the site-symmetry

group. Tables of induced representations were deduced by

Evarestov & Smirnov (1987, 1993), Hatch et al. (1988), Stokes

et al. (1991) and Kovalev (1993), and later the programs

SITESYM and DSITESYM (Elcoro et al., 2017) available on

the Bilbao Crystallographic Server were developed to calcu-

late the site-symmetry induced representations of space and

double groups, respectively.

Even though layer groups were described for the first time

about a century ago (Weber, 1929; Alexander & Hermann,

1929), it was not until the paper by Zallen et al. (1971) that

they were applied for the first time for the description of

phonon states in layered As2S3 and As2Se3 crystals. After-

wards, they were also used for modelling atomically clean

crystal surfaces (Ipatova & Kitaev, 1985). However, these

studies did not involve the use of induced representations of

layer groups. To the best of our knowledge, the first use of

induced representations of layer groups was related to the

study of the phonon symmetry of high-temperature super-

conductors (Evarestov et al., 1993; Kitaev et al., 1994) and

thereafter to describe the phonon, electron, exciton and

biexciton states in artificially grown nanolayers (semi-

conductor quantum wells) (Tronc & Kitaev, 2001) and layered

crystals (Kitaev et al., 2007). Quite recently, induced repre-

sentations of layer groups have been applied in the analysis of

the Brillouin-zone centre phonons in layered MoS2 and WS2

crystals (Evarestov et al., 2017, 2018).

Note that the induced representations of layer groups, in

general, could be extracted by the existing tools of the Bilbao

Crystallographic Server for induced representations of space

groups, like SITESYM, but this procedure would be more

complex and prone to errors due to the essential differences

between space and layer groups (e.g. differences between the

sets of Wyckoff positions and their labelling schemes, between

the sets of representations etc.). The aim of this paper is to

present the site-symmetry approach applied to layer symmetry

groups for the study of materials with layer symmetry. On the

basis of this method, the program LSITESYM has been

developed and implemented on the Bilbao Crystallographic

Server. In the following sections, the procedure of the program

for the construction of the induced representations of layer

groups is described in detail, and its utility is demonstrated by

several examples.

2. Site-symmetry method

2.1. General procedure

The site-symmetry approach establishes the symmetry

relations between the crystal extended states induced by

localized states of some of the constituent structural units. The

procedure for the determination of such a relationship is very

useful, as it allows the prediction of the symmetry of the

possible extended states starting from the crystal structural

data. This task requires the derivation of the irreps of a space

group G at any point in reciprocal space (which classify the

extended states of the structure) induced by the irreps of the

site-symmetry group of a Wyckoff position (according to

which localized states are classified). In group-theoretical

terms, the procedure relating localized and extended crystal-

line states can be described by induction of a representation of

a space group G from the irreps of a finite subgroup H,

followed by its reduction into irreps of G. In other words, the

induction method permits the calculation of the symmetry of

the compatible extended states transforming according to

irreps of crystal space group G induced by a localized state

described by an irrep of the local or site-symmetry group H =

S. The induction procedure can be applied to any group–

subgroup pair H < G, but in the site-symmetry approach, as

its name suggests, a site-symmetry group S is taken as the

subgroup of G. The calculation of the space-group irreps

induced by the irreps of a site-symmetry group is not

straightforward, because the site-symmetry group S

(isomorphic with a point group) is a subgroup of infinite index

of G. This implies that the representation of G induced by an

irrep of S must be of infinite dimension and therefore difficult

to calculate directly. This problem is solved by applying the

‘Frobenius reciprocity theorem’ (Serre, 1977), which states

that the multiplicities of the irreps of a group G in the induced

representation from an irrep of a subgroup H of G can be

determined from the multiplicities of the irreps of H in the

representations subduced from G to H. Therefore, the site-

symmetry method is based on subduction and induction, two

basic concepts of representation theory, and on the Frobenius

reciprocity theorem.

The subduction procedure relates the representations of a

group G to those of its subgroups S < G. Consider an irrep

D� = fD�ðgÞ; g 2 Gg of a group G. The subduction of D� to the

subgroup S results in a representation of the subgroup, known

as the ‘subduced representation’ DSub, formed by the matrices

of those elements of G that also belong to the subgroup S, i.e.

DSub = ðD� # SÞ = fD�ðsÞ; s 2 S < Gg. This subduced
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representation DSub is in general reducible and is decom-

posable into irreps D� of S:

DSub
ðsÞ ¼ D� # S

� �
ðsÞ ’

M
�

mSub
� D�ðsÞ; s 2 S: ð1Þ

The multiplicities mSub
� of the irreps D� of S in the subduced

representation D� # S can be calculated by the reduction

formula (known also as the ‘magic’ formula):

mSub
� ¼

1

j S j

X
s

�SubðsÞ��ðsÞ
�; s 2 S; ð2Þ

where �Sub(s) is the character of the subduced representation

and ��(s) is the character of the irrep D� for the same element

s 2 S.

The induction procedure permits the construction of a

representation of G starting from a representation of S < G. If

D� = fD�ðsÞ; s 2 Sg is an irrep of S, then the matrices of the

induced representation DInd = (D� " G) of G are constructed

as follows:

DInd
ðgÞkt;jr ¼

D� q�1
k gqj

� �
tr

if q�1
k gqj 2 S;

0 if q�1
k gqj =2 S.

�
ð3Þ

Here, t, r = 1, . . . , m with m equal to the dimension of the irrep

D� of S and k, j = 1, . . . , n where n = jGj=jSj is the index of S

in G. The elements q1; . . . ; qn are the coset representatives of

the decomposition of G with respect to S.

The characters of DInd are given by

�Ind
� ðgÞ ¼

Pn
j¼1

�� q�1
j gqj

� �
; ð4Þ

where ��ðq
�1
j gqjÞ is the trace of the jth diagonal block of

DIndðgÞ and n is the index of the subgroup in the group (which

can be finite or infinite). In general, the induced representa-

tions are reducible, and as such it is possible to decompose

them into irreps D� of G:

DInd
¼ D� " Gð Þ ’

M
�

mInd
� D�; ð5Þ

where mInd
� are the multiplicities of the irreps of G in the

induced representations DInd and can be calculated by the

reduction formula [see equation (2)].

The dimension of the induced representation can be read

directly off the equation for its construction [equation (3)]:

dim D� " Gð Þ ¼ dim D�ð Þ
j G j

j S j
: ð6Þ

This result points out the difficulties for the direct calculation

of a representation of a space group G induced from an irrep

of a finite subgroup S of G. As the site-symmetry group is a

subgroup of an infinite index, this suggests that the dimension

of the induced irreps must be of infinite dimensions. By means

of the site-symmetry approach it is possible to determine the

multiplicities mInd
� of an irrep of G in the induced repre-

sentation without the necessity of constructing the infinite-

dimensional representation. The method is based on the

Frobenius reciprocity theorem, according to which the multi-

plicity of an irreducible irrep D� of G in a representation

(D� " G) of G induced by an irrep D� of S < G is equal to the

multiplicity of the irrep D� of S in the representation

(D� # S) subduced by D� of G to S, i.e. mSub
� = mInd

� . In other

words, it is sufficient to calculate the multiplicities mSub
� of D�

in the subduced representation (D� # S) in order to obtain

the frequencies mInd
� of D� in the induced representation

(D� " G).

2.2. Application of site-symmetry method to layer groups

The group–subgroup relations between layer and space

groups L < G are essential to extend the site-symmetry

method to layer groups. These relationships have been

considered in detail in the literature [see e.g. Wood (1964),

ITE and references therein]. The type of space group of which

a given layer group is a subgroup is not defined uniquely. The

‘simplest’ space group G to which L is related can be expressed

as a semi-direct product of L with the one-dimensional

translation group T3 of additional translations G ¼ T3 ^ L,

where T3 is a normal subgroup of G. Thus, the layer group L is

isomorphic with the factor group G=T3.

The isomorphism between L and the factor group G=T3

results in close relationships between the Wyckoff positions

and the irreps of L and G. One can show that the set of

Wyckoff positions of a layer group is contained in the set of

Wyckoff positions of the related space group (cf. Evarestov &

Smirnov, 1993). For example, consideration of the restrictions

imposed by the loss of periodicity in the third (z) direction

yields the following restrictions on the special-position coor-

dinates of layer groups: only the special positions of G whose z

coordinate does not involve a fraction of the unit-cell para-

meter are possible special positions of L, i.e. special positions

of G with z coordinates z,�z or 0. In that way, to each Wyckoff

position of L corresponds exactly one Wyckoff position of G,

specified by exactly the same site-symmetry group and

multiplicity, and by the same set of coordinate triplets of

equivalent positions. Thus, the description of the Wyckoff

positions of layer groups can follow the Wyckoff-position

descriptions used in space groups. Note, however, that

according to the conventions adopted in ITE the letter

labelling of the Wyckoff positions of layer groups is done

independently of that of space groups. As a result, the

Wyckoff letters of the corresponding space- and layer-group

Wyckoff positions might not coincide, in general.

The simple relationship between the irreps of L and G is

based on the isomorphism L ’ G=T3: the irreps of L are also

irreps of G and every irrep of L is related to a specific irrep of

G. In these irreps of G all elements of a given coset of the

decomposition of G with respect to T3 are mapped onto the

same matrix, i.e. the irreps of L coincide with those irreps of G

whose kernel is T3 (for details, see Evarestov & Smirnov,

1993). For example, the special k vectors of L can also be

deduced from the k vectors of G. The Brillouin zone of a layer

group L can be described as a projection of the Brillouin zone

of the corresponding space group G onto the layer plane.

Accordingly, the two-dimensional set of k vectors k(k1, k2) of
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L can be obtained from the three-dimensional k(k1, k2, k3)

vectors of G by ignoring the third component k3.

The above considerations indicate that the induced repre-

sentations of a layer group can be read off directly from the

induced representations of the corresponding space group. On

the basis of this observation, the procedure of the site-

symmetry method for layer groups can be summarized as

follows:

(i) Given the layer group L (specified by its number), the

Wyckoff position and the k vector (k1, k2), the program

identifies (a) the corresponding space-group number and

Wyckoff letter, and (b) the space-group wave vector

(k1, k2, k3) with k3 = 0, related to the layer-group k vector

(k1, k2).

(ii) The site-symmetry method for space groups is applied,

i.e. the site-symmetry induced representations are calculated

by the program SITESYM. [More detailed information on the

algorithm of SITESYM can be found in the work of Elcoro et

al. (2017).]

(iii) The site-symmetry induced representations of space

group G obtained by SITESYM are described with respect to

the layer group L.

2.3. The program LSITESYM

The computer program LSITESYM establishes symmetry

relations between localized and extended states in crystals

with layer symmetry. This algorithm calculates the multi-

plicities of the layer-group irreps in the representation induced

by the irreps of a site-symmetry group (S < L).

The necessary input steps of LSITESYM and its corre-

sponding output will be illustrated by the study of the

symmetry of the phonon states in the Aurivillius compounds

[Bi2O2]+2[An�1BnO3n+1]+2 (known for their ferroelectric

properties), a problem discussed in detail by Kitaev et al.

(2007). These compounds exhibit two types of layer symmetry:

for even n, the layers are described by the layer group p4mm

(No. 55), while for odd n there is one central layer with higher

symmetry described by the layer group p4/mmm (No. 61). The

output of the program will be illustrated by the specific

calculations of the symmetry relationships between the

phonon states at the point k = M(1
2,

1
2) of the layer group p4/

mmm and the localized states of atomic orbitals at the

Wyckoff position 2c (0, 1
2, 0) with site-symmetry group mmm..

The irreps of the layer group p4/mmm at the point k = M(1
2,

1
2)

with nonzero multiplicities, shown in the output of

LSITESYM, describe the transformation properties of the

extended phonon states induced by the irreps of the layer site-

symmetry group mmm. of the Wyckoff position 2c (0, 1
2, 0).

In the INPUT block of the program the user is expected to

provide the layer group, an occupied Wyckoff position with its

representative coordinate triplet and the k vector (specified by

its coordinates and label) of the layer-group irreps D� whose

induced-representation multiplicities are to be calculated. The

information is entered in three steps: in the first one, the layer

group is specified by its ITE sequential number; in the second

step, the occupied Wyckoff positions are to be selected from a

list produced by the program; and finally, the coordinates and

the label of the k vector of the irreps D� have to be introduced.

The OUTPUT block starts with a header that reproduces the

input data, followed by a display of tables with the results of

the intermediate steps of the procedure:

2.3.1. List of operations of the layer site-symmetry group S.

Each of the symmetry operations of the layer group that

leaves the Wyckoff position representative point invariant is

specified by its shorthand description (coordinate triplet) and

matrix-column representation. Labels (g1, . . . , gn), necessary

for later referencing, are assigned to each element of S.

The layer site-symmetry group mmm. of the position 2c

(0, 1
2, 0) of the layer group p4/mmm is formed by eight

symmetry operations, as shown in the screenshot (Fig. 1) of the

program LSITESYM.

2.3.2. Character table of the point group. This table

reproduces the character table of the irreps D� of the point
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Figure 1
A screenshot of the partial output of the program LSITESYM, showing
the eight symmetry operations of the site-symmetry group mmm. of the
Wyckoff position (WP) 2c (0, 1

2, 0) of the layer group p4/mmm (No. 61).
The symmetry operations are specified by their shorthand descriptions
(coordinate triplets) and matrix-column representations.



group isomorphic with the site-symmetry group S. The nota-

tions of Mulliken (1933) and Koster et al. (1963) are applied to

label the irreps [see also Bradley & Cracknell (1972)].

The site-symmetry group of the point (0, 1
2, 0) is isomorphic

with the point group mmm and has eight irreps. The character

table is reproduced in Fig. 2.

2.3.3. Table of characters of the subduced representations.
The characters of the elements of the site-symmetry group S

(obtained in the first step) for each of the irreps D� of G of the

selected wavevector are calculated internally by the program

REPRES (cf. Aroyo et al., 2006). In this way, the characters of

the subduced representations (D� # S) of S are obtained. The

notation of the layer-group irreps has been chosen to be the

same as for the corresponding irreps of the related space

group, and it follows that of Cracknell et al. (1979).

The layer group p4/mmm has ten irreps for the k vector M.

Fig. 3 shows the characters of the corresponding subduced

representations (*Mi # mmm) of the site-symmetry group. In

accordance with the notation of the space-group irreps, *Mi

and Mi denote the full group and the little group irrep of the

layer group, respectively.

2.3.4. Table of the decompositions of the subduced
representations. The multiplicities mSub

� of the irreps of S in

the subduced representations (D� # S) are obtained by the

application of the reduction formula [see equation (2)]. In the

example, the decompositions of the representations (*Mi #

mmm), i = 1, . . . , 10, into irreps of mmm are shown in Fig. 4.

2.3.5. Table of induced representations. According to the

Frobenius reciprocity theorem, the multiplicities mInd
� of the

irreps D� of G for a given k vector in the representations (D� "

G) (induced from the irreps D� of the site-symmetry group S)

are obtained by transposing the table of the decompositions of

the subduced representations (D� # S).

The table of representations of the layer group p4/mmm at

the point M induced by the irreps of the site-symmetry group

mmm. of the Wyckoff position 2c (0, 1
2, 0) is shown in Fig. 5.

The rows of the table correspond to the irreps D� of the site-

symmetry group mmm. (cf. Fig. 2); the entries in each row

indicate the multiplicities of the M irreps of p4/mmm in the

(infinite-dimensional) induced representation (D� " p4/

mmm):

ðAg " p4=mmmÞ 3 �M�5 ;

ðB1g " p4=mmmÞ 3 �M�5 ;

ðB2g " p4=mmmÞ 3 �M�1 �
�M
�

2 ;

ðB3g " p4=mmmÞ 3 �M
�

3 �
�M
�

4 ;

ðAu " p4=mmmÞ 3 �M�5 ;

ðB1u " p4=mmmÞ 3 �Mþ5 ;

ðB2u " p4=mmmÞ 3 �Mþ1 �
�M
þ

2 ;

ðB3u " p4=mmmÞ 3 �Mþ3 �
�M
þ

4 :

The obtained results coincide exactly with the corresponding

data of Table V in the work by Kitaev et al. (2007).

The URL of the program LSITESYM is http://www.cryst.

ehu.es/subperiodic/layer_sitesym.html.
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Figure 2
A screenshot of the partial output of the program LSITESYM, showing
the character table of the point group mmm, isomorphic with the site-
symmetry group of the Wyckoff position 2c (0, 1

2, 0) of the layer group
p4/mmm (No. 61). The irreps are labelled according to the notation of
Mulliken (1933) and Koster et al. (1963).

Figure 3
A screenshot of the partial output of the program LSITESYM, showing
the characters of the subduced representations of the site-symmetry
group S of the Wyckoff position 2c (0, 1

2, 0) of the layer group p4/mmm
(No. 61) at the k point M. The columns are specified by the symmetry
operations of the site-symmetry group S ’ mmm (cf. Fig. 1).

Figure 4
A screenshot of the partial output of the program LSITESYM, showing
the decompositions of the subduced representations (*Mi # mmm),
shown in Fig. 3, into irreps of mmm (cf. Fig. 2).



3. Transition metal dichalcogenide layer crystals

We now illustrate the use of the LSITESYM program

described in Section 2, taking as an example MoS2 and WS2

layered crystals which belong to the transition metal

dichalcogenide crystal family. Although the structure of MoS2

was determined about 100 years ago and this layered crystal

was used mainly as a dry lubricant, the new wave of interest in

transition metal dichalcogenides began after the discovery of

graphene. This interest, apart from the fundamental proper-

ties of monolayers, is connected with the observation of the

direct band gap of 1.8 eV at the K point in the MoS2 mono-

layer, even though the bulk MoS2 crystal is a semiconductor

with an indirect band gap of 1.2 eV. The transition to a direct

band gap makes the MoS2 monolayer an excellent candidate

as a solar photovoltaic material owing to the drastic

enhancement of photoluminescence in the monolayer

compared with the bulk. Other crystals of the transition metal

dichalcogenide family, like WS2, have similar electronic

properties.

Comprehensive reviews and many references to studies of

this material can be found in the work of Wang (2014),

Kolobov & Tominaga (2016) and Manzeli et al. (2017).

The space group of the MoS2 and WS2 bulk crystals is P63/

mmc (No. 194). In the bulk crystal, the metal atoms occupy the

2c (1
3 ;

2
3 ;

1
4) position and the sulfur atoms occupy the 4f (1

3 ;
2
3 ; z)

position (Lee et al., 2014). The layer group of a single layer L =

p6m2 (No. 78) (Milošević et al., 2000) is isomorphic with the

factor group G=T3, where G is the space group P6m2 (No. 187),

i.e. L is a subgroup of G. The crystal structure of a single layer

is shown in Fig. 6. Atoms in the primitive unit cell of the layer

occupy the following Wyckoff positions: Mo (W) 1c (2
3 ;

1
3 ; 0), S

2e (1
3 ;

2
3 ; z). Note that the layer group of a single layer is also a

subgroup of the space group of the bulk crystal.

The phonon symmetry in these crystals has been studied by

Molina-Sánchez & Wirtz (2011), Ribeiro-Soares et al. (2014)

and Saito et al. (2016). However, diperiodic groups were

introduced explicitly only by Evarestov (2015), Evarestov et

al. (2017) and Bocharov et al. (2019). In the work of Ribeiro-

Soares et al. (2014), the symmetry of single layers was

described in terms of the related space group P6m2 (No. 187)

and, in addition, the authors applied a non-standard irrep

notation, which hinders the use and comparison of their

results.

The results of LSITESYM, shown in Table 1, permit the

analysis of the phonon symmetry of a single MoS2 layer.

Table 1 is organized as follows. The L irreps describing the

symmetry of phonons at the 2D Brillouin-zone symmetry

points are induced by the irreps D� of the site-symmetry

groups S of the Wyckoff positions where the atoms given in

column 1 are located. The localized atomic displacements x, y

and z transforming according to the irreps D� are indicated in

brackets. The labels of layer group p6m2 irreps at the k vector

points of the two-dimensional Brillouin zone coincide with the

labels of the irreps of the corresponding points of the three-

dimensional Brillouin zone of the related space group P6m2.

From Table 1 it is seen that the Mo atom vibrations along

the z axis induce �3 modes, whereas vibrations in the xy plane

induce �5 modes. Similarly, S atom vibrations along the z axis

and in the xy plane induce �1 + �3 and �5 + �6 modes,

respectively. The vibrational representation at the � point can

be written down, summing the contributions of all the atoms in

the primitive unit cell. It is given by � = �ac + �opt = (�3 + �5) +

(�1 + �3 + �5 + �6), where the subscripts ac and opt indicate

acoustic and optical layer modes, respectively. Further, one
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Table 1
Phonon symmetry in the single MoS2 layer with L = p6m2 (No. 78).

Atom
Wyckoff
position D� � (0, 0) 62m K (1

3 ;
1
3) 6:: M (1

2 ; 0) m2m

Mo 1c A002 (z) 3 6 3

(2
3 ;

1
3 ; 0) E0 (x, y) 5 1, 3 1, 2

6m2

S 2e A1 (z) 1, 3 3, 4 1, 3

(1
3 ;

2
3 ; z) E (x, y) 5, 6 1, 2, 5, 6 1, 2, 3, 4

3m.

Figure 5
A screenshot of the partial output of the program LSITESYM, showing
the representations of the layer group p4/mmm (No. 61) at the point M
induced by the irreps of the site-symmetry group mmm. of the Wyckoff
position 2c (0, 1

2, 0).

Figure 6
(a) The crystal structure of a single layer of MoS2 (WS2), and (b) its
projection along [001].



can establish a correspondence between layer and bulk crystal

modes. Acoustic layer modes induce interlayer bulk modes,

whereas optical layer modes induce intralayer bulk ones. The

phonon symmetry in a bulk MoS2 crystal obtained by the

SITESYM program (Elcoro et al., 2017) is given in Table 2.

The notations in Table 2 are the same as those in Table 1.

Knowing the symmetry of bulk and layer phonons, one can

obtain the genesis of the bulk modes from the layer ones. This

could be determined using the CORREL program of the

Bilbao Crystallographic Server (Aroyo et al., 2006) for the

group–subgroup pair, namely P63/mmc and P6m2. The factor

group of the latter is isomorphic with the layer group p6m2.

When applying this procedure it is necessary to choose

correctly the transformation matrix relating the conventional

settings of the group and the subgroup. For the P63/mmc and

P6m2 pair, the transformation matrix is reduced to an origin

shift (0 0 � 1
4).

On the basis of the Frobenius theorem, the correspondence

between the layer irreps at the � point and the bulk irreps is

given in Table 3. It is seen that each layer mode generates a

pair of bulk modes at the � point, one odd and one even. The

splitting is due to a weak van der Waals interaction between

the layers. Therefore, the frequencies of the modes consti-

tuting a pair would be close.

Similarly, one can deduce the correspondence between

layer and bulk modes at other Brillouin-zone points. For

example, the correspondence between the layer (p6m2) modes

at the point Kð13 ;
1
3Þ and the bulk (P63/mmc) modes at

Kð13 ;
1
3 ; 0Þ and Hð13 ;

1
3 ;

1
2Þ are shown in Table 4.

4. Conclusions

A new computer tool which calculates the site-symmetry

induced representations of layer groups, called LSITESYM,

has recently been implemented on the Bilbao Crystallographic

Server. Like the rest of the programs on the server, this new

tool is freely available and can be accessed via user-friendly

web interfaces. The algorithm of LSITESYM, based on the

site-symmetry method applied to layer groups, is an extension

of the algorithm used in the program SITESYM for ordinary

space groups. The group–subgroup relation between layer and

space groups L < G is fundamental for the development of

the procedure for layer groups. On the basis of the

isomorphism between the layer L and the factor group G=T3, it

is possible to establish a simple connection between the

Wyckoff positions, k vectors and irreps of G and L, which is

essential to calculate the site-symmetry induced representa-

tions of layer groups.

The program LSITESYM, which is able to determine the

symmetry relations between localized and extended states in

crystals with layer symmetry, is also very useful in the

description of phonon states and electronic structure. The

capabilities of the program LSITESYM have been successfully

demonstrated in several examples. Moreover, the utility of the

program in combination with other tools of the Bilbao Crys-

tallographic Server to obtain the relation between bulk and

layer modes has also been shown.
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