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X-ray reflectivity (XRR) is a powerful and popular scattering technique that can

give valuable insight into the growth behavior of thin films. This study shows

how a simple artificial neural network model can be used to determine the

thickness, roughness and density of thin films of different organic semiconduc-

tors [diindenoperylene, copper(II) phthalocyanine and �-sexithiophene] on

silica from their XRR data with millisecond computation time and with minimal

user input or a priori knowledge. For a large experimental data set of 372 XRR

curves, it is shown that a simple fully connected model can provide good results

with a mean absolute percentage error of 8–18% when compared with the

results obtained by a genetic least mean squares fit using the classical Parratt

formalism. Furthermore, current drawbacks and prospects for improvement are

discussed.

1. Introduction

X-ray and neutron reflectometry are well established analy-

tical techniques for thin-film metrology. Reflectivity data

provide information about the material density via the scat-

tering length density (SLD), as well as the thickness and

interface roughness of thin films on an ångström scale. X-ray

reflectivity (XRR) is commonly used for crystalline and

amorphous films made by sputtering or molecular beam

deposition, but also for self-assembled monolayers, biological

thin films and even liquid surfaces (Tolan, 1999; Daillant &

Gibaud, 2009; Holý et al., 1999; Neville et al., 2006; Wasserman

et al., 1989; Braslau et al., 1988). Furthermore, reflectivity

measurements can frequently be performed in real time,

enabling in situ studies of film growth (Kowarik et al., 2006,

2009; Woll et al., 2011), which inherently is a non-equilibrium

process dominated by highly non-trivial statistics and kinetics

(Michely & Krug, 2004; Kowarik, 2017). As a result, important

dynamic processes, such as nucleation and diffusion, would be

missed by post-growth measurements alone, which makes

real-time and in situ observations indispensable for capturing

transient structures.

In recent years, a range of fast XRR techniques have been

developed that can acquire XRR curves on timescales as low

as 100 ms (Joress et al., 2018; Lippmann et al., 2016; Mocuta et

al., 2018), posing challenges to data handling if on-line

monitoring is required. Some of these methods employ

energy-dispersive measurements (Kowarik et al., 2007;
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Metzger et al., 1994; Mukherjee et al., 2002), which are also

used in neutron reflectometry (Cubitt et al., 2018). These

techniques allow the measurement of a large range of scat-

tering vector magnitudes q in one shot while maintaining a

fixed scattering angle, which increases the data acquisition

rate. Moreover, modern high-speed detectors enable the

collection of massive quantities of data which need to be

stored because of the time required for further treatment and

analysis. Clearly, to solve this problem, equally fast analysis

tools that can process data ‘on-line’ and give experiment

feedback in real time are desirable.

The thickness, roughness and SLD properties of thin films,

however, can generally not be extracted directly from reflec-

tivity data, but are instead refined during an iterative fitting

process. Various programs are available to accomplish this

task by assuming a model for the sample geometry, calculating

the resulting Fresnel reflectivity via the Parratt algorithm

(Parratt, 1954; Als-Nielsen & McMorrow, 2002) or optical

matrix formalism (Heavens, 1955), and iteratively varying the

parameters until a good fit is found. Even for a low number of

layers, the parameter refinement is laborious and time inten-

sive. Furthermore, a good initial guess of the sample model is

often necessary to ensure that the fit converges to a global

minimum. Advanced genetic and stochastic fitting algorithms

(Björck & Andersson, 2007; Danauskas et al., 2008) are more

tolerant towards non-optimal initial parameters and often find

a model that fits the measured data, but because of their

iterative nature they take much longer than a fast 100 ms XRR

curve acquisition. Also, for these algorithms, prior knowledge

is needed since there is ambiguity in the interpretation of

reflectivity data due to the loss of phase information during

the detection process.

Artificial neural networks or, in short, neural networks

(NNs) are an incredibly versatile tool in machine learning that

has been applied to a large variety of problems. Their recent

widespread use was made possible by the significant increase

in computing power by modern graphics cards and specialized

neural processing units, as well as the availability of optimized

and accessible programming libraries such as TensorFlow

(Abadi et al., 2016). NNs already enjoy great popularity in the

field of theoretical physics, and their application in physical

data analysis has also been successfully demonstrated for a

range of methods (Park et al., 2017; Urban et al., 1998).

However, implementations that harness the unique capabil-

ities of machine learning using the performance gain of

current programming libraries and graphics cards for experi-

mentalists are so far largely absent.

The goal of this work is to show as a proof of concept that

NNs not only can be used to reduce the user input and

computation time needed to extract thin-film properties from

XRR data but also promise to alleviate the requirement of a

priori knowledge about the studied system. This makes NNs

ideal for application in real-time measurements. In this study,

we demonstrate the performance of a fully connected NN with

six hidden layers trained with simulated XRR data and tested

on five real-time XRR data sets of growing organic thin films.

However, we emphasize that, in principle, any material

combination is possible. We also discuss possible extensions

and limitations of our approach.

2. Neural network design

2.1. Architectures and training

In this study, we employ a feed-forward neural network

using supervised learning with simulated training and valida-

tion data (code as used at https://doi.org/10.5281/zenodo.

3478344, interactive demonstration at https://doi.org/10.5281/

zenodo.3477582). In this architecture, information is processed

from a set of input neurons to a set of output neurons through

multiple ‘hidden layers’ of neurons. The term layers used to

describe these sets of neurons should not be confused with the

same term that is often used to describe the layered structure

of thin films. The input layer of the NN represents the

measured X-ray intensity values at different momentum

transfer values (qz) and the output layer corresponds to the

different thin-film properties, i.e. film and oxide thickness,

roughness, and density. A schematic of the architecture used in

this study is shown in Fig. 1. In the case of fully connected
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Figure 1
Schematic of the neural network architecture used in this work. The input
layer consists of 52 reflectivity values at discrete qz positions. The output
layer consists of four sample parameters: three film parameters
(thickness, roughness and SLD) and one substrate parameter (thickness
of the native silicon oxide). All layers are fully connected with the next by
weights that are randomly initialized and then optimized.



models, such as the one described herein, the value of each

neuron after the input layer is calculated by a weighted sum of

all neurons in the previous layer. Before being passed on to

the next layer, the summed values are passed through an

activation function. In our case, we use a linear rectifier

function, which is a common default setting that performs well

on many tasks.

This way, for any given reflectivity curve a corresponding

output can be calculated. During the training process, all

weights in the network are adjusted so that for an arbitrary set

of input values in the training data the correct set of output

values are obtained. This is achieved by randomly choosing a

small subset of the training data (called minibatch) and

calculating the average error between the obtained output and

the expected output known from the simulation using a cost

function, here the mean squared error. Once the error is

determined, a backpropagation algorithm based on stochastic

gradient descent is used to ascertain how the weights in the

network must be updated in order to minimize the error

(Bottou, 1991; Hecht-Nielsen, 1992). This process is repeated

for several full passes through the entire training data set,

called epochs. The optimization algorithm employed in this

work is adaptive moment estimation (Kingma & Ba, 2014).

The neural network model employed in this study (Fig. 1)

consisted of six fully connected hidden layers with 400, 800,

400, 300, 200 and 100 neurons. For the results discussed in this

work, the output of three independently trained neural

networks with the same hyperparameters and training data,

but random initialization, was averaged.

Both the simulated and the experimental data were

normalized to one and passed through a log function before

being used as input. This was done to reduce the number of

orders of magnitude over which the input data are distributed.

A wide distribution of input values is a common problem that

can inhibit training, since it produces strongly varying

weighted sums in the neural network. In more sophisticated

approaches, one may consider other weighting or normal-

ization methods. Furthermore, each output parameter of the

model was normalized to the minimum and maximum values

of the training data so that the mean square error cost function

is optimized for all thin-film parameters. To keep track of the

performance of the model during training and to judge its

ability to generalize and yield good results on data that are not

included in the training data, its accuracy was evaluated with

independently generated validation data. After every epoch,

the trained model computes the output of the validation data

and the validation error is calculated using the same error

function as for the training set. In general, a validation error

that is much higher than the training error signifies that the

network is overfitting to the training data. On the other hand,

if the validation and training errors are very similar, the

capacity of the model might be too low to capture important

features in the data.

The training and validation errors shown in Fig. 2 are

representative of a typical training session of the NN

described above. Even though the training and validation loss

could be further reduced by an order of magnitude through

longer training, we observed lower accuracies on experimental

data when the model was trained for more than 60 epochs. The

reason for this is that, even though we do not see any over-

fitting with respect to the validation data, there is likely to be

overfitting with respect to the experimental data when the

model is trained for too long. Thus, we used the model with the

lowest validation loss within 60 epochs to achieve a trade-off

between training loss and the ability to generalize experi-

mental data. While overfitting is a general issue of many

machine learning problems, the number of epochs after which

it occurs might vary strongly for different types of data and

NN architectures. Thus, the optimal number of epochs has to

be determined empirically for a given problem and is likely to

depend also on the quantity and quality of training data and its

similarity to the experimental data.

2.2. Data preparation

One of the most important factors that influence the

performance of a given neural network architecture is the

quality and choice of the training data. It is crucial to have a

sufficiently large and varied data set to allow the network to

generalize over the entire parameter space. Optimally, a large

training data set of measured data with precisely labeled thin-

film parameters should be available for training, validation

and testing of the NN model. However, since it is unfeasible to

perform the necessary number of independent experiments

and fit them manually for classification, we used simulated

training and validation data. We simulated 200 000 XRR

curves with a 4:1 training/validation split using an adaptation

of the optical matrix method (Heavens, 1955; Abelès, 1950),

which is a computationally more efficient alternative to the

recursive Parratt formalism (Parratt, 1954). For this purpose,

parts of the Refl1D source code (Copyright 2006–2011,

University of Maryland) were used. Furthermore, we assumed

a thin-film sample structure with three thin-film layers: two for

the substrate (silicon and native oxide) plus the deposited thin

film. The model for the interface roughness was assumed to

have a root mean square distribution (Névot & Croce, 1980).

The roughness of Si/SiOx substrates is known to be very low

and thus we assumed a constant roughness for the SiOx and Si

layers of 1 and 2.5 Å, respectively. Furthermore, the SLDs of

those layers were assumed to be constant with values of
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Figure 2
Characteristic training and validation errors during training of the neural
network demonstrated in this study. Since the validation error is very
close to the training error, there is not likely to be any overfitting with
respect to the validation data.



17.8� 10�6 and 20.1� 10�6 Å�2, respectively. The parameters

of thickness, SLD and roughness were uniformly distributed

within the generated training data. For the deposited film, the

ranges of thickness and SLD were 20–300 Å and 1–14 �

10�6 Å�2, respectively. Training data with a thickness below

20 Å were excluded since, owing to their ambiguity, they were

the most difficult for the NN, and by removing them, the

accuracy on the rest of the data could be improved. The range

of the roughness was up to half the film thickness, but limited

to 60 Å. The thickness of the native oxide layer was assumed

to be within 3–30 Å. The reflectivity curves were simulated in

a q range between 0.01 and 0.14 Å�1 at 52 equally spaced

points, which is comparable to the resolution of our experi-

mental data. The small q range was chosen to avoid conflicts

with Bragg reflections and corresponding Laue oscillations,

which are not part of our simple box model.

For performance evaluation of the NN, we used experi-

mentally measured XRR curves of real-time growth of diin-

denoperylene (DIP), copper(II) phthalocyanine (CuPc) and

�-sexithiophene (6T) on silicon substrates with a native oxide

layer. Appropriate footprint corrections and normalization

were applied to the data before further use. The output of the

model was judged against a conventional least mean squares

(LMS) fit that was performed manually on 20% of the curves.

The SLD profiles of each film at their final thickness are shown

in Section S2 of the supporting information. The rest of the

film parameters were linearly interpolated within one

measurement. The fit was performed with six open para-

meters: the thickness, roughness and SLD of the deposited

film, the thickness and roughness of the oxide layer, and the

roughness of the silicon substrate. For CuPc and 6T, we also

included a thin void layer with a thickness of 3 Å and a

roughness of 1 Å between the substrate and the film. This was

done because, for some organic thin films, the electron density

(and thus SLD) at the interface with the substrate is lower

than in the bulk and including a void layer with a finite

roughness improves the fit quality. In these cases, the NN

model is intentionally simpler than the manual fit, but since

the void layer is thin compared with the deposited film, we can

directly compare the film thicknesses obtained from both the

NN and the LMS fit. The densities of the silicon and its oxide

layer were assumed to be constant across all experiments as

described above. In order to make all XRR curves compatible

with the same fixed size of the input layer, the reflectivity

curves for all experiments were interpolated to the same 52 q

values without significant change in curve shape.

3. XRR fitting performance

To evaluate the accuracy of our NN model, we tested its

performance on 20 000 independently simulated curves with

the same parameter range as the training data, as well as on

each of the five experimental real-time XRR data sets. In the

case of the simulated data, the mean average percentage

errors of the film thickness, roughness and SLD were 8, 16 and

6%, respectively. Although already quite good, these metrics

reveal that for this NN model there is still a significant portion

of misclassified curves. Furthermore, within the given q range,

it seems to be intrinsically more difficult to correctly deter-

mine the roughness than the other two parameters. Since the

synthetic test data were generated using the same process as

the training data, we cannot expect better performance on

data that were generated using a different process, i.e.

experimental data. While reduction in the training and vali-

dation loss could be achieved in principle (for example,

through longer training sessions), we observed that this

generally leads to a decrease of the performance on experi-

mental data. This means that the training loss alone cannot be

used to estimate how the neural network will perform on

experimental data and the training process is ultimately

limited by the fact that the simulated data do not perfectly

match the experimental data.

For the performance evaluation on the experimental data,

the film properties determined by the model were compared

with a manual LMS fit using a genetic algorithm (GenX). The

studied systems were two DIP films, one CuPc film and one 6T

film, each grown at 303 K, as well a third DIP film, grown at

403 K. Three out of five of these data sets have already been

analyzed and published [DIP 303 K (Hinderhofer et al., 2010),

DIP 403 K (Kowarik et al., 2006) and 6T (Lorch et al., 2015)].

Figs. 3(a)–(c) show this comparison for a DIP film grown at
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Figure 3
Fitting performance of the neural network model on a DIP film grown at
303 K with a deposition rate of 1 Å min�1. (a)–(c) Comparison of the film
parameters determined by the neural network with results from LMS
fitting with human supervision at different times during growth. The
shaded area marks films with thicknesses below 20 Å, where the network
has not been trained and consistently yields thick films with high
roughness. (d) Overlay of the experimental XRR data with data
simulated using the parameters determined by the NN at different times
during growth.



303 K (all other data sets are shown in the supporting infor-

mation). It is immediately apparent that, for most of the series,

the determined values are close to the ones obtained via the

manual LMS fit. We note that this achievement is already

remarkable, since the network has no concept of any temporal

correlation between the XRR curves, which is the kind of

knowledge a researcher would use when selecting bounds and

starting points for an LMS fit. Furthermore, the output for

each XRR curve was obtained on average within 77 ms when

using a single curve as input and 0.03 ms when using 20 000

curves at once. Compared with a manual fit, this is orders of

magnitude faster and can compete with the speed at which

modern 2D detectors operate. Also, after training, no addi-

tional input was necessary. This makes it possible to determine

film properties during measurements in real time without the

need for human supervision.

Fig. 3(d) shows an overlay of experimental reflectivity data

with simulated curves using the determined film parameters at

different times during growth. In general, the curves show a

good agreement, which indicates that the determined para-

meters are close to the real ones. Among all the tested data,

the NN performed worst on films with low thickness and thick

films with high roughness. This is a general problem that

affects all fitting methods, since the corresponding XRR

curves do not have pronounced features, such as Kiessig

oscillations, and are thus difficult to distinguish from each

other. In a conventional LMS fit, this situation can usually be

remedied by imposing strict boundaries which limit the fit

parameters to what is experimentally expected. This tool,

however, is only indirectly available to neural networks, for

example, by tuning the range and distribution of the training

data. Though it is ultimately desirable to also reliably fit these

curves using our NN approach, it is clear that any result based

on data with a higher amount of ambiguity will also have a

higher level of uncertainty.

Table 1 shows the mean average percentage error of the NN

output when compared with the values determined via the

manual fit, excluding films with thicknesses below 20 Å.

Similar to the results for simulated data, the error is highest

for the film roughness and lowest for the SLD. However, on

average, the accuracy on experimental data is 2–3 percentage

points lower in all three categories. There are probably several

reasons for this: Firstly, the accuracy on real data is expected

to be lower than that on simulated data since there is already

an error attached to the parameters which were extracted via

the manual fit before comparison with the NN results.

Therefore, the errors of both the LMS and NN fit contribute to

the deviation. This is not the case for the simulated test data,

where we have perfect knowledge about underlying simula-

tion parameters. Secondly and most importantly, it is probable

that the simulated training data differ from the experimentally

measured data with regards to a finite experimental resolution

and noise and, as a result, the model is trained on subtle

features in the simulated data that may be different or not

present in the real data. Also, the simulation model with a

single film layer may not describe the real system accurately

enough, or there may be some systematic artifacts of the

measurement setup that are difficult to account for in the

simulation.

Apart from relying on these metrics, we also confirmed the

physical validity of the determined parameters by taking

experimental conditions into consideration. Out of the three

parameters, the thickness is the easiest to verify, since in all

experiments the films were grown at a constant rate. This

expected linear behavior is obtained for all experiments and

coincides perfectly with the LMS fit. The obtained thickness

values can also be verified to a high degree of certainty by

considering the periodicity of the Kiessig fringes. In addition,

the obtained SLD shows the qualitatively expected behavior

of a continuous increase during the beginning of the thin-film

growth with saturation at a value that is somewhat lower than

the SLD of the solid-state crystal. This indicates the transition

from a bare substrate to an organic thin film with a constant in-

plane-averaged electron density.

Among the three determined properties for each experi-

ment, the roughness evolution is arguably the most difficult to

judge since it strongly depends on the specific molecular

system and on several important experimental parameters,

such as the growth rate and the substrate temperature

(Michely & Krug, 2004; Kowarik, 2017). In the studied

systems, however, we generally expect an overall increase in

roughness for higher film thicknesses and this behavior is

obtained by the NN model for all data sets shown.

4. Conclusions

In this work, we demonstrated how a straightforward neural

network model with fully connected layers can be used to

extract the film thickness, roughness and density parameters

from real-time reflectivity data of thin films. The small but

deep neural network model was trained on simulated data and

tested on simulated and experimental data. Although the

accuracy was lower on the experimental data, it still achieved

high accuracies with a mean absolute percentage error of 8–

18% with respect to the result determined via a manual fit.

Importantly, among the three parameters, the film roughness

was the most difficult to determine for the model in both the

synthetic and the experimental data. While the accuracy on

synthetic data could in theory be increased by training the

model for longer, this so far did not translate to improved

accuracy for the experimental predictions. Thus, future efforts

should focus on generating better training data that more
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Table 1
Mean absolute percentage error and standard deviation of the NN output
for experimental XRR curves with respect to the values obtained via a
conventional LMS fit with manually set bounds and starting points.

Films with a thickness below the training range of the NN (<20 Å) and high
roughness (>30 Å) were excluded. DIP 303 K (1) is shown in Fig. 3; all others
are shown in the supporting information.

DIP
403 K

DIP
303 K (1)

DIP
303 K (2)

CuPc
303 K

6T
303 K Total

Thickness (%) 17 � 20 4 � 4 6 � 9 16 � 13 14 � 3 11 � 10
Roughness (%) 20 � 14 12 � 11 15 � 11 26 � 18 16 � 11 18 � 13
SLD (%) 11 � 9 3 � 2 9 � 8 6 � 5 10 � 6 8 � 6



accurately represent the experiment in order to allow longer

training times without overfitting to features that are only

present in the simulation. Another possibility is to define a loss

function that places a higher weight on the relevant para-

meters such as roughness or the parameter range that is prone

to high errors. Nevertheless, it is important to understand and

improve the results on simulated data, since they essentially

represent the upper limit of what can be expected in terms of

accuracy. Possible strategies for improvement should involve

optimizing the quantity, quality and distribution of training

data as well as testing more sophisticated neural network

models, such as convolutional models, that may capture the

required features in the training data more easily. Further-

more, exhaustive optimization of hyperparameters, such as the

learning rate or the model capacity, are likely to be necessary

to achieve higher accuracies, especially for thin or very rough

films.

While we expect significant improvements of NN-based

models in the future, the current performance is already useful

for a preliminary screening of reflectivity data before further

analysis. It may also potentially be used directly within the live

view of the diffractometer control software. In addition, the

extremely fast computation times of 0.03–77 ms per curve and

the fact that, after training, no further user input is needed

mean that this approach is perfectly suited for in situ appli-

cations, such as monitoring film parameters during real-time

measurements.

We also emphasize that the extension of this model to more

complex systems such as multilayers and layers with internal

structures is, in principle, possible if appropriate training data

are available in sufficient quantity. In the same way, this

approach is easily transferrable to neutron reflectivity data;

however, some important differences such as the different

cross sections of neutrons (coherent as well as incoherent)

need to be taken into account. Addressing these complications

might require some adjustments to the current neural network

architecture, which should be part of future studies.
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Learning in Science for our fruitful discussions.

Funding information

The following funding is acknowledged: Bundesministerium

für Bildung und Forschung.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu,
Y. & Zheng, X. (2016). arXiv: 1603.04467.

Abelès, F. (1950). J. Phys. Radium, 11, 307–309.
Als-Nielsen, J. & McMorrow, D. (2002). Elements of Modern X-ray

Physics, 2nd ed. Chichester: Wiley & Sons.
Björck, M. & Andersson, G. (2007). J. Appl. Cryst. 40, 1174–1178.
Bottou, L. (1991). Stochastic Gradient Learning in Neural Networks.

In Proceedings of Neuro-Nimes. Nanterre: EC2.
Braslau, A., Pershan, P. S., Swislow, G., Ocko, B. M. & Als-Nielsen, J.

(1988). Phys. Rev. A, 38, 2457–2470.
Cubitt, R., Segura Ruiz, J. & Jark, W. (2018). J. Appl. Cryst. 51, 257–263.
Daillant, J. & Gibaud, A. (2009). X-ray and Neutron Reflectivity:

Principles and Applications. Berlin, Heidelberg: Springer-Verlag.
Danauskas, S. M., Li, D., Meron, M., Lin, B. & Lee, K. Y. C. (2008). J.

Appl. Cryst. 41, 1187–1193.
Heavens, O. S. (1955). Optical Properties of Thin Solid Films. London:

Butterworths Scientific Publications.
Hecht-Nielsen, R. (1992). Neural Networks for Perception, pp. 65–93.

San Diego: Academic Press.
Hinderhofer, A., Gerlach, A., Kowarik, S., Zontone, F., Krug, J. &

Schreiber, F. (2010). EPL, 91, 2–6.
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