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The methods used to extract chord-length distributions from small-angle

scattering data assume a structure consisting of spatially uncorrelated and

disconnected convex regions. These restrictive conditions are seldom met for a

wide variety of materials such as porous materials and semicrystalline or phase-

separated copolymers, the structures of which consist of co-continuous phases

that interpenetrate each other in a geometrically complex way. The significant

errors that would result from applying existing methods to such systems are

discussed using three distinct models for which the chord-length distributions

are known analytically. The models are a dilute suspension of hollow spheres,

the Poisson mosaic and the Boolean model of spheres.

1. Introduction

Small-angle scattering (SAS) data analysis is challenging for

two reasons. The first difficulty is that a scattering pattern is

mathematically equivalent to a two-point correlation function,

which is an incomplete characterization of a structure

(Gommes et al., 2012). The second difficulty stems from the

variety and geometrical complexity of the structures investi-

gated by SAS, which calls for versatile – and occasionally non-

intuitive – descriptors (Serra, 1982; Torquato, 2002; Ohser &

Mücklich, 2000). The concept of chord-length distribution

(CLD) is one such descriptor. In addition to their geometrical

interest, CLDs are physically relevant to radioactive processes

(Dirac, 1943) as well as to a variety of phenomena happening

in porous materials in the Knudsen regime (Levitz, 1993).

Methods are described in the SAS literature to derive CLDs

from scattering data, but they are based on equations with

stringent conditions of validity. Namely, one of the phases of

the investigated material has to consist of spatially uncorre-

lated and disconnected convex regions. For colloidal suspen-

sions, these conditions are often reasonably met. However,

this is not the case for a wide variety of materials investigated

by SAS, the structures of which consist of co-continuous

phases that interpenetrate each other in a geometrically

complex way. Examples of such structures are found in porous

materials, semicrystalline or phase-separated polymers, etc.

The purpose of this paper is to discuss and illustrate with

theoretical examples the errors to be expected when SAS is

used to determine chord-length distributions of such materials.
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2. Theory

Fig. 1 illustrates a few geometrical concepts related to chord-

length distributions using the example of a porous material

with solid and pore phases (respectively designated with

subscripts S and P), but the same concepts apply to any

biphasic system. In order to understand the limits of the

structural information that can be obtained from scattering, it

is conceptually helpful to think of all structural descriptors as a

hierarchy (Matheron, 1967; Torquato, 2002). In that hierarchy,

the crudest information one can have is the volume fractions

of the pore and solid phases �P and �S. These are one-point

characteristics because they are equal to the probability that

any randomly chosen point belongs to the pores or the solid,

respectively. The hierarchy is continued with two-point char-

acteristics such as the covariance CSSðrÞ, which is defined as the

probability that any two points at distance r from one another

belong to the solid (see Fig. 1). We also define the pore

covariance CPPðrÞ and the pore–solid cross-covariance CSPðrÞ.

However, in the case of a two-phase system all the two-point

functions are equivalent because they can be expressed in

terms of the Debye correlation function:

�ðrÞ ¼ CSSðrÞ � �
2
S

� �
= �S � �

2
S

� �
: ð1Þ

The covariances are occasionally referred to as two-point

correlation functions or simply correlation functions.

The hierarchy of structural descriptors is continued to

higher orders: three-point correlation functions are defined as

the probability for the vertices of randomly positioned trian-

gles to belong to specific phases; four-point functions are

defined similarly with tetrahedra, etc. Each of these descrip-

tors convey a specific type of geometrical information that

lower-order descriptors are blind to (Aubert & Jeulin, 2000;

Jiao et al., 2009). A structure is comprehensively characterized

if all its n-point correlation functions are known. In the case of

small-angle scattering, the hierarchy is interrupted at two-

point functions because the measured scattering intensity is

the Fourier transform of the Debye correlation function �ðrÞ
(Guinier & Fournet, 1955; Porod, 1982; Sivia, 2011). As a

consequence, no structural characteristic of order higher than

two can be measured by SAS, unless geometrical assumptions

are made about the structure. This notably applies to chord-

length distributions, because they are concerned with the

probability that entire segments – containing an infinite

number of points – belong to specific phases.

The geometrical definition of chord lengths is sketched in

Fig. 1: a line is drawn randomly through a porous material and

solid and pore chords are, respectively, defined as the

segments intersecting phases S and P. Their mean lengths lS

and lP can be calculated from the two-point functions because

they quantify how often one crosses an interface, on average,

when travelling along the line. As expected, this is related to

how often two points close to each other belong to different

phases, that is to the small-r values of the cross-covariance

CSPðrÞ. In the isotropic case, the actual relation is (Dirac, 1943)

lS=P ¼ 4�S=P=aSP; ð2Þ

where the subscripts S/P highlight that the equation applies

both to the solid and to the pore phase. In equation (2), aSP is

the specific area of the solid/pore interface, which is obtained

from the correlation function as

aSP ¼ �4�S�P�
0ð0Þ: ð3Þ

Here the prime denotes the first derivative (Debye et al.,

1957).

The chord-length distribution function gSðrÞ [or gPðrÞ] is

defined such that the probability for finding a solid (or a pore)

chord with length between r and rþ dr is given by gSðrÞ dr [or

gPðrÞ dr]. Unlike the mean chord lengths, the distributions

gSðrÞ and gPðrÞ are high-order structural descriptors because

they are concerned with the probability that entire segments –

containing an infinite number of points – belong to specific

phases. Yet, chord-length distributions are often discussed in

the small-angle scattering literature (Guinier & Fournet, 1955;

Glatter & Kratky, 1982; Feigin & Svergun, 1987; Gille, 2000).

The discussion is based on the following formula:

gðrÞ ¼ l� 00ðrÞ; ð4Þ

where the double prime denotes the second derivative and l is

a normalization constant having the dimension of a length.

Numerical methods have also been developed to invert

equation (4) and calculate chord-length distributions from

scattering patterns, for both isotropic (Burger & Ruland,

2001) and anisotropic structures (Stribeck, 2001). As a

consequence of Babinet’s principle, scattering methods cannot

discriminate between two phases, which explains why equa-

tion (4) cannot be specific about whether it applies to the solid

or the pore chords.

In spite of warnings in textbooks – e.g. Porod mentioning

‘serious difficulties’ when applying the concept of chords to

‘complicated cases, such as hollow or composite particles, or

densely packed systems’ (Porod, 1982) – many users of

equation (4) seem unaware of its very limited range of validity.

The classical derivation of this equation – e.g. Guinier &

Fournet (1955, Section 2.1.2.4), Glatter & Kratky (1982,

Section III.A) or Feigin & Svergun (1987, Section 2.4.3) –

considers small-angle scattering by a single particle, which is
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Figure 1
Sketch of a porous material as a general example of biphasic structure,
with the solid (S) in grey and pores (P) in white. The red dashes and dots
are events that contribute to the covariance CSSðrÞ; the blue segments are
events that contribute to the lineal-path function LSðrÞ, and the black line
intersecting the structure is used to define the solid and pore chords.



equivalent to assuming that particles are spatially uncorre-

lated. Moreover, the derivation implicitly assumes that the

particles are convex. Equation (4) was also derived on more

general grounds by Méring & Tchoubar (1968, Section 2.1) in

the particular case where all the chord lengths of one of the

phases are equally probable. Because the geometrical signifi-

cance of the latter assumption is unclear, we find it preferable

to discuss the validity of equation (4) based on the concept of

lineal paths (see Fig. 1).

The lineal-path function LSðrÞ [or LPðrÞ] is a structural

descriptor defined as the probability for a randomly posi-

tioned and oriented segment of length r to belong entirely to

phase S (or P). Contrary to correlation functions, lineal-path

functions have a direct relation to CLDs, namely

gS=PðrÞ ¼
lS=P

�S=P

L00S=PðrÞ; ð5Þ

which applies independently to both phases S and P, without

any geometrical assumption. This is a classical result of

theoretical materials science (Matheron, 1967) and a self-

contained derivation is given by Torquato & Lu (1993). Note

that lineal-path functions are distinctly different from corre-

lation functions because lineal paths demand that all the

points of the segment belong to the considered phase, not only

its two end points (see Fig. 1). In the case of convex regions the

lineal-path and correlation functions coincide because

convexity ensures that an entire segment is embedded in one

region if its end points belong to it. Moreover, if the convex

regions are spatially uncorrelated the correlation function is a

constant for distances larger than the linear size of the indi-

vidual regions, so that the second derivative in equation (4)

vanishes. It is only if these two conditions are met – convex

and uncorrelated regions – that equation (4) follows from

equation (5) for the considered phase.

3. Three examples

3.1. Hollow spheres

To illustrate the importance of convexity for the

validity of equation (4) we shall first consider the case

of a dilute suspension of hollow spherical particles,

for which the second derivative � 00ðrÞ of the Debye

correlation function and the solid chord-length

distribution gSðrÞ can be calculated independently of

each other.

The Debye correlation function �ðrÞ of a dilute

suspension is proportional to the geometrical covar-

iogram KðrÞ of the particles, defined as the volume of

the intersection of a particle with a copy of itself

translated by a distance r (Glatter & Kratky, 1982;

Serra, 1982) A hollow sphere with inner and outer

radii Ri and Ro, respectively, can be seen as the

intersection of the outer sphere with the comple-

mentary of the inner sphere. The covariogram can

therefore be calculated as

KðrÞ ¼ KiðrÞ þ KoðrÞ � 2KoiðrÞ; ð6Þ

where KoðrÞ and KiðrÞ are the geometrical covariograms of

spheres with radii Ro and Ri, respectively, and KoiðrÞ is the

intersection volume of two spheres of radii Ro and Ri at a

distance r from one another.

The covariograms KiðrÞ and KoðrÞ are calculated in the usual

way, with the following formula that applies to a sphere of

radius R and volume V ¼ 4�R3=3, namely

KðrÞ ¼ V 1�
r

2R

� �2

1þ
r

4R

� �
ð7Þ

for r � 2R, and KðrÞ ¼ 0 for r> 2R. As for the function KioðrÞ,

one has to consider several ranges of r. For r<Ro � Ri the

smallest sphere fits entirely in the largest so that

KioðrÞ ¼
4
3�R3

i : ð8Þ

For Ro � Ri � r< ðR2
o � R2

i Þ
1=2 the intersection volume can be

decomposed into two spherical caps, which leads to

KioðrÞ ¼
4
3�R3

i �
1
3 hið3Ri � hiÞ þ

1
3 hoð3Ro � hoÞ ð9Þ

with

hi ¼
ðRi þ rÞ

2
� R2

o

2r
and ho ¼

R2
i � ðRo � rÞ

2

2r
: ð10Þ

For ðR2
o � R2

i Þ
1=2
� r<Ro þ Ri, a similar procedure leads to

KioðrÞ ¼
1
3 hið3Ri � hiÞ þ

1
3 hoð3Ro � hoÞ ð11Þ

with

hi ¼
R2

o � ðRi � rÞ
2

2r
and ho ¼

R2
i � ðRo � rÞ

2

2r
: ð12Þ

Finally, for Ro þ Ri � r the two spheres do not touch each

other so that KioðrÞ ¼ 0. The Debye correlation function is

then obtained as

�ðrÞ ¼
KðrÞ

4�ðR3
o � R3

i Þ=3
; ð13Þ
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Figure 2
(Left) Debye correlation function �ðrÞ of a hollow sphere with outer radius
Ro ¼ 50 nm and inner radius Ri ¼ 25 nm. The solid red line is the analytical
expression and the crosses are obtained numerically from the discretized hollow
sphere in the inset. (Right) Solid chord-length distribution gSðrÞ of the discretized
hollow sphere (bars) compared with the second derivative � 00ðrÞ (red shading); the
solid black line is the analytical expression of gSðrÞ given by Gille [2000, equation
(13)].



where the denominator is the volume of the hollow sphere.

The Debye correlation function �ðrÞ of the dilute suspen-

sion of hollow spheres and its second derivative � 00ðrÞ are both

plotted in Fig. 2 (left and right). In the same figure, the chord-

length distribution is shown (right). The histogram is obtained

numerically from a hollow sphere discretized on a

256� 256� 256 grid (shown in inset), and the solid black line

is the exact expression (Gille, 2000). To ascertain the accuracy

of the numerical procedure, the correlation function of the

discretized hollow sphere (left: crosses) is also compared with

the analytical value (left: solid red line).

The second derivative of �ðrÞ differs from gSðrÞ in several

respects. First � 00ðrÞ takes negative values for lengths r between

50 and 75 nm, while solid chords clearly exist in that interval of

lengths. Moreover, the longest solid chord in the hollow

sphere is the one tangent to the inner sphere, and its length is

2ðR2
o � R2

i Þ
1=2. On the other hand, � 00ðrÞ takes non-vanishing

values for r as large as 2Ro. Because the longest chord can be

made arbitrarily short by decreasing the shell thickness

Ro � Ri while keeping Ro constant, one concludes that � 00ðrÞ
and gSðrÞ are independent quantities.

3.2. Poisson mosaic

The second example we consider is that of the Poisson

mosaic, for which the correlation function and the chord-

length distributions are known analytically for arbitrary

densities (Jeulin, 2000). The model is built in two steps. First a

random 3D tessellation of space is created, based on Poisson

planes with density �, which divides space into convex cells

[Fig. 3(a)]. As a second step, each cell of the tessellation is

independently assigned to the solid phase with probability �S

and to pores with probability �P ¼ 1� �S. Realizations of the

model are shown in Figs. 3(b) and 3(c), corresponding to �S =

0.1 and 0.5, respectively. Higher solid fractions, say �S ¼ 0:9,

are not shown because of the phase-inversion symmetry of the

model: all geometrical properties of the solid at �S ¼ 0:9 are

statistically identical to those of the pores at �S ¼ 0:1, and vice

versa.

The solid and pore chord-length distributions of the Poisson

mosaic are given by the following exponential functions:

gS=PðrÞ ¼ ð1� �S=PÞ�� exp �ð1� �S=PÞ��r
� �

; ð14Þ

which are plotted in Figs. 3(b1) and 3(c1) for the solid chords,

and in 3(b2) and 3(c2) for the pore chords, together with CLDs

measured on the realizations. The Debye correlation function

of the model is also known and is given by

�ðrÞ ¼ exp ���rð Þ; ð15Þ

independent of the volume fractions. An uncritical application

of equation (4) would lead to the following CLD:

gðrÞ ¼ �� exp ���rð Þ; ð16Þ

which is distinctly different from the correct result in equation

(14) for finite values of �S=P, as also illustrated in Fig. 3. The

difference between the actual pore and solid chord lengths of

the Poisson mosaic and those estimated wrongly through

equation (4) is also apparent when comparing the mean

values, which are shown as vertical lines in the figure.

Interestingly, in the particular case of small values of �S,

equation (4) accurately predicts the CLD of the solid gSðrÞ [see

Fig. 3(b1)]. In that case, the structure is a dilute collection of

convex solid regions because Poisson polyhedra are convex, so

that the conditions of validity of equation (4) are met. On the

basis of the phase-inversion symmetry of the mosaic model,

the same applies to the pore chord distribution gPðrÞ for high

values of �S (not shown). In the case where the two phases

have comparable volume fractions, equation (4) does not hold,

not even as an approximation.
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Figure 3
Realizations of a Poisson mosaic model: first a Poisson tesselation is created with density � ¼ 0:05 nm�1 (a), and each cell is then assigned to the solid
phase with probability �S ¼ 0:1 (b) and �S ¼ 0:5 (c). The corresponding chord-length distributions are shown in (b1) and (c1) for the solid, and in (b2)
and (c2) for the pores. The bars are measured from the realizations, the solid black lines are equation (14) and the red shading shows the distribution
estimated from equation (4). The black and red vertical lines are the mean chord lengths calculated from equtions (2) and (4), respectively.



3.3. Boolean model of spheres

To illustrate further the errors to be expected when equa-

tion (4) is uncritically applied, we consider now the case of a

Boolean model of penetrable spheres. This is a classical model

of theoretical materials science (Jeulin, 2000; Torquato, 2002),

which is also regularly used in small-angle scattering studies

(Sonntag et al., 1981; Gille, 2011; Gommes, 2018). As illu-

strated in Fig. 4 the model is fully specified by the radius of the

spheres R and their density �. For small densities (Fig. 4) the

model yields a structure that consists of almost disconnected

particles, which satisfies approximately the conditions of

validity of equation (4) for the solid phase. For increasing

densities, the spheres overlap each other more often so as to

create a complex structure, in which neither the solid nor the

pore space is made up of convex regions.

The correlation function and the two chord-length distri-

butions (solid and pore) can be rigorously derived analytically

for the Boolean model. In particular, the Debye correlation

function is

�ðrÞ ¼
exp½�KðrÞ� � 1

expð�VÞ � 1
; ð17Þ

where V is the volume of individual particles and KðrÞ is their

covariogram, given by equation (7) in the case of spheres. The

lineal-path functions are also known analytically (Matheron,

1967; Serra, 1982). In particular, the pore function LPðrÞ is a

decreasing exponential,

LPðrÞ ¼ �P exp �K0ð0Þr½ �; ð18Þ

which results in the pore chord-length distribution

gPðrÞ ¼ ��R2 exp ���R2r
� �

ð19Þ

in the specific case of spheres. The solid lineal-path function

LSðrÞ of the Boolean model is also know analytically. For any

convex grain it is related to the covariance CSSðrÞ by the

following relation:

C0SSðrÞ ¼ L0SðrÞ þ
1

1� �S

Zr

0

L0SðhÞC
0
SSðr� hÞ dh: ð20Þ

Using the covariance in equation (17), this equation can be

solved for LS (and for gS) via a Laplace transformation

(Quintanilla & Torquato, 1996). For the purpose of discussing

the validity of equation (4) it is instructive to evaluate the

derivative of equation (20) with respect to r, which yields

L00SðrÞ ¼ C00SSðrÞ �
1

1� �S

Zr

0

L0SðhÞC
00
SSðr� hÞ dhþ L0SðrÞC

0
SSð0Þ

2
4

3
5:
ð21Þ

It follows from this analytical result that equation (4) cannot

be satisfied for the Boolean model because L00SðrÞ is propor-

tional to the solid chord-length distribution gSðrÞ and C00SSðrÞ is

proportional to � 00ðrÞ.
To illustrate further the magnitude of the error that would

result from applying equation (4) to structures like the

Boolean model of spheres, we use it together with equation

(17) to predict CLDs and compare them with those measured

on realizations of the model for the solid and the pores. This is

done in Figs. 4(a1), 4(b1) and 4(c1) for the solid chords, and in

Figs. 4(a2), 4(b2) and 4(c2) for the pore chords. In the case of

Fig. 4(a2) many pore chords are longer than the size of the

simulation domain, which explains why the CLD estimated

from the realization is biased towards short chords compared

with the analytical result in equation (19). The mean chord

lengths calculated from equation (2) are also shown in the

figures and compared with the average value calculated from

equation (4). Equation (4) fails to predict the chord-length
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Figure 4
Realizations of a Boolean model of spheres with radius R ¼ 15 nm and solid fractions �S ¼ 0:2 (a), �S ¼ 0:5 (b) and �S ¼ 0:8 (c). The corresponding
chord-length distributions are shown in (a1), (b1) and (c1) for the solid, and in (a2), (b2) and (c2) for the pores. The bars are measured from the
realizations, the solid black lines in the pore chord distributions are equation (19) and the red shading shows the distribution estimated from equation
(4). The black and red vertical lines are the mean chord lengths calculated from equations (2) and (4), respectively.



distributions of the Boolean model, as already expected from

analytical results.

In two very specific cases, however, equation (4) provides a

reasonable approximation. The first is that of small densities

[Fig. 4(a)], for which the overlap of spheres is so low that the

structure almost consists of disconnected convex particles. In

that case the solid chord-length distribution is reasonably

approximated [Fig. 4(a1)]. The second case is that of very high

densities, for which equation (4) approximates well the pore

chord-length distribution [Fig. 4(c2)]. In that case, it is the

pores that are almost disconnected from one another. The

pores are not convex because their surface is locally spherical

inwards, but they are apparently compact enough for equation

(4) to be of practical interest. For all intermediate densities,

one would be ill-advised to trust equation (4) and to derive

chord-length distributions from small-angle scattering data.

4. Conclusion

Chord lengths are defined as the length of the segments of a

line embedded in specific phases of a material (Fig. 1). Their

probability distribution provides a general structural

descriptor that can be applied to statistically characterize any

type of structure, no matter how complex. Because the defi-

nition of chords is based on segments, containing an infinite

number of points, their length distribution is equivalent to a

high-order correlation function. As such, one does not expect

chord-length distributions for a general complex material to

be measurable by any scattering means, which can only

provide second-order correlation functions.

The formula that is widely discussed in the small-angle-

scattering literature to calculate chord-length distributions

[equation (4)] is based on two strong geometrical assumptions,

which are often left implicit in its textbook derivations. Using

the general concept of lineal-path function, we show that the

formula holds only for a phase consisting of spatially uncor-

related and convex regions. This assumption is often reason-

ably met for colloidal suspensions, but not for the type of

complex and co-continuous structures that one might be

tempted to characterize through chord-length distributions.

The three examples discussed in the paper – hollow spheres,

Poisson mosaic and Boolean model of spheres – show that

significant errors result from applying equation (4) when its

conditions of validity are not met. The formula might be of

practical interest for very dilute pores or very dilute solids. In

general, however, one cannot calculate chord-length distri-

butions from small-angle scattering.
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