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A hitherto unrecognized resolution effect in neutron Larmor diffraction (LD) is

reported, resulting from small-angle neutron scattering (SANS) in the sample.

Small distortions of the neutron trajectories by SANS give rise to a blurring of

the Bragg angles of the order of a few hundredths of a degree, leading to a

degradation of the momentum resolution. This effect is negligible for single

crystals but may be significant for polycrystalline or powder samples. A

procedure is presented to correct the LD data for the parasitic SANS. The latter

is accurately determined by the SESANS technique (spin–echo small-angle

neutron scattering), which is readily available on Larmor diffractometers. The

analysis technique is demonstrated on LD and SESANS data from �-Fe2O3

powder samples. The resulting d-spacing range agrees with experimental data

from high-resolution synchrotron radiation powder diffraction on the same

sample.

1. Introduction

Neutron Larmor diffraction (LD) is a high-resolution tech-

nique which permits the measurement of lattice spacings dhkl

and their range �dhkl. The latter arises, for example, from

microstrains, magnetostriction, or structural and magnetic

domains, or from a small splitting of Bragg peaks resulting

from distortions of the crystal lattice. The resolution of current

Larmor diffractometers is �10�6 (relative) of the lattice

spacing. Further improvement by one order of magnitude is

possible by an optimized instrument design.

The present work is related to a review of the symmetry

properties and subsequent revision of the crystal structures of

numerous compounds. Synchrotron radiation (SR) powder

diffraction studies of the multiferroic BiFeO3 (Sosnowska et

al., 2012), CaCO3, calcite (Przeniosło et al., 2016), the transi-

tion metal oxides V2O3, Al2O3 and Cr2O3 (Fabrykiewicz et al.,

2018), and hematite (�-Fe2O3) (Przeniosło et al., 2014) have

shown monoclinic symmetry instead of the previously estab-

lished trigonal one. Similar studies have shown distortions of

the cubic symmetry of chromium (Przeniosło et al., 2018) and

MnO (Fabrykiewicz & Przeniosło, 2016). The monoclinic

distortion observed in �-Fe2O3 is of the order of �d/d ’

2 � 10�4, i.e. close to the detection limit of SR powder

diffraction methods. The LD experiments in this work were

conducted in order to confirm this small lattice distortion with

a complementary technique and thus to validate the SR data.

LD is based upon the Larmor precession of the neutron

spins in parallelogram-shaped magnetic fields along the inci-

dent and scattered beams. The geometry of these fields,

sometimes labelled precession devices (PDs), was first

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S160057671901611X&domain=pdf&date_stamp=2020-02-01


proposed by Rekveldt (Rekveldt, 2000; Rekveldt et al., 2001).

Tuning of the field boundaries of the PDs parallel to the

diffracting lattice planes yields a Larmor precession phase

�LD / dhkl, where �LD is decoupled from the spectral width

and collimation of the neutron beam. The characteristic

limitation of conventional diffractometers imposed by the

inverse proportionality between intensity and resolution is not

effective in LD, and so excellent momentum resolution

without excessive loss of intensity is achieved. In this respect,

LD is similar to neutron spin–echo, where the energy reso-

lution is decoupled from the monochromaticity of the incident

neutron beam.

Experimental studies taking advantage of LD include

thermal expansion under hydrostatic and uniaxial pressure

(Pfleiderer et al., 2007; Niklowitz et al., 2010; Bourdarot et al.,

2011), the formation of structural and antiferromagnetic

domains (Náfrádi et al., 2016), and the splitting of Bragg peaks

by lattice distortions (Inosov et al., 2013; Hu et al., 2015; Wang

et al., 2018). For thermal expansion only relative changes in

the lattice constants are relevant, but LD can also provide

absolute values of dhkl when the instrument is calibrated with a

reference monocrystal, such as silicon or germanium. In this

way, dhkl values for polycrystalline Inconel alloys were accu-

rately measured to determine residual stresses (Repper et al.,

2010), and in spin–ice materials the exact values of the lattice

constants allowed quantification of the emergent magnetic

monopole charge (Ruminy et al., 2016).

The Larmor diffractometers TRISP at the Heinz Maier-

Leibnitz Zentrum (Keller et al., 2002; Keller & Keimer, 2015),

FLEXX at the Helmholtz-Zentrum Berlin (Groitl et al., 2015)

and ZETA at the Institut Laue–Langevin (Martin et al., 2012)

were originally designed as three-axis spin–echo spectro-

meters optimized for the spectroscopy of phonons and spin

excitations. These instruments take advantage of the resonant

neutron spin–echo technique (NRSE) to define the paralle-

logram-shaped field regions by radio frequency (RF) spin-flip

coils (Golub & Gähler, 1987; Gähler & Golub, 1988). A recent

development uses Wollaston prisms, triangular-shaped DC

magnetic fields bounded by superconducting sheets (Li et al.,

2017), as PDs. The advantages of the latter technique are the

compact geometry and the increased flexibility achieved by

tuning the inclination angles of the magnetic fields by elec-

trical currents, instead of mechanical rotation as in the case of

NRSE.

The resolution of LD depends only weakly on the sample

mosaic, and for polycrystalline samples no significant reduc-

tion in the resolution compared with single crystals is

expected. This was confirmed experimentally on polycrystal-

line aluminium (Rekveldt et al., 2001) and Inconel alloy

(Repper et al., 2010). If the size of the crystallites is in the sub-

micrometre range, small-angle neutron scattering (SANS) of

the incident and diffracted beams might lead to a blurring of

the Bragg angles. This effect is typically small, with SANS

angles of the order of a few hundredths of a degree, and there

will be no SANS intensity at the large Bragg angles �B ’ 50�

used in LD experiments. Initial LD measurements performed

with �-Fe2O3 polycrystalline samples in cylindrical vanadium

containers have shown d-spacing ranges considerably broader

than those obtained with SR diffraction. This broadening

results from small-angle scattering in the sample, which is

negligible in the SR experiments, as it increases with sample

diameter and neutron or X-ray wavelength. Both parameters

are more favourable in the case of SR, with a sample diameter

(capillary) of 0.5 mm and an X-ray wavelength of 0.4 Å,

compared with a sample width of several millimetres and a

neutron wavelength of �2 Å in LD.

In this paper we discuss the resolution of LD including

SANS. The effect can be corrected for, if the SANS scattering

probability S(�) is known. Calculation of S(�) is possible, but it

requires detailed knowledge of the powder grain morphology

and scattering length density profiles. In addition, strong

multiple scattering is expected for the large sample diameters

of several millimetres typically used in neutron diffraction

experiments. Accurate modelling of this multiple scattering is

difficult. Thus, a measurement of S(�) is preferable. This can

be efficiently performed on the Larmor diffractometer, which

is readily converted into a spin–echo small-angle scattering

(SESANS) instrument by changing the field polarities and

inclination angles of the PDs (Rekveldt, 1996; Rekveldt et al.,

2003; Keller et al., 1995). Both LD and SESANS data are then

consistently collected on the same sample in one experimental

run.

In the following we first review LD including parasitic

SANS. We discuss the properties of the SESANS technique

and derive a method for correcting LD data for SANS effects.

Finally, we work out an example of the analysis technique

using experimental data from �-Fe2O3 powder samples.

2. Larmor diffraction including SANS

In this section we review the principles of LD and then include

the effect of SANS.

Rekveldt proposed the field geometry shown in Fig. 1, a

uniform DC magnetic field B0 with boundaries oriented

parallel to the diffracting lattice planes (Rekveldt, 2000;

Rekveldt et al., 2001). The neutron spins are initially polarized

perpendicular to B0 and cross the field twice, before and after

being diffracted at the lattice planes of a crystal with inter-

planar spacing dhkl and corresponding reciprocal-lattice vector

G = 2�/dhkl. The Larmor phase �LD = !Ltt accumulated by a

neutron spin after passing both fields is proportional to the

Larmor frequency !L = �B0, with � = 2� � 2.916 kHz gauss�1

and the transition time tt = L/v? that the neutron spends in the

field. The parameter v? is the velocity component perpendi-

cular to the field boundary, with v? = ðh- =mÞk?, m the neutron

mass and k? = G/2 = �/dhkl:

�LD ¼ !L

2L

v?
¼

2m

�h-
!LLdhkl: ð1Þ

�LD only depends on the field integral J0 = 2!LL and the

lattice spacing dhkl, and is independent of the Bragg angle. The

resonant spin–echo technique offers an easy way of defining

the required flat-field boundaries by radio-frequency spin–flip

coils (Fig. 1).
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A shift in dhkl, for example by thermal expansion, is

measured by tracking the phase shift ��(T) = �LD �hkl versus

the temperature T, where

�hkl ¼ dhkl=d�hkl � 1: ð2Þ

d�hkl is the mean or unperturbed value of dhkl. dhkl is typically

spread, for example by the effect of microstrains. Then the

phase is also spread as

��LD ¼ �
�
LD �hkl: ð3Þ

��LD is related to d�hkl via equation (1). The final beam polar-

ization is given by the average

PLDð�LDÞ ¼ cosð��LDÞ
� �
¼

Z
Dð�hklÞ cosð�LD�hklÞ d�hkl: ð4Þ

D(�hkl) is a normalized distribution function. P(�LD) is

measured for a series of values �LD(B0), where for each �LD

the position �L of coil C4 is scanned through one Larmor

period as sketched in Fig. 1. P is then obtained from the

amplitude of the cosine-shaped I(�L). (The integration limits

of all integrals in this section can be chosen as �1.)

For the measurement of thermal expansion it is important

to note that ��(T) is affected by D(�hkl), if the latter is

asymmetric and if the asymmetry changes with T. This might

result from an asymmetric splitting of a Bragg peak related to

a structural phase transition. In cases where D(�hkl) is

symmetric, even if the width or shape changes with T, there

will be no effect on ��(T).

We now include the distortion of the neutron trajectories by

SANS, and the misalignment between the lattice planes and

the boundaries of B0, which necessarily happens for mosaic or

polycrystalline samples. Both effects disturb the correlation

between the lattice vector G and k?, such that k? 6¼ G/2. This

distortion of the trajectories by SANS leads to an accumula-

tion of additional Larmor phase, resulting in a reduction in P

in equation (4). The calculation of the phase change depends

on whether SANS happens before or after Bragg diffraction.

SANS in the incident beam changes the Bragg angle, whereas

the path length in the first precession field stays the same, so

that the Larmor phase changes. SANS in the diffracted beam

does not affect the Bragg angle, but the path length in the

second precession field changes.

We first calculate �LD for single SANS events in the incident

and diffracted beams, and then take the average assuming a

range of SANS angles, which will be quantitatively determined

in a separate SESANS experiment. The geometry is defined in

Fig. 2, with the following relations:

�1 ¼ �0 � �1 þ �; ð5aÞ

�2 ¼ �1 þ �2 þ �; ð5bÞ

L1 ¼ L= sinð�0Þ; ð5cÞ

L2 ¼ L= sinð�2Þ; ð5dÞ

	 ¼ 2dhkl sinð�1Þ; ð5eÞ
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Figure 1
Sketch of a Larmor diffractometer. A polarized neutron beam crosses the
uniform field B0 twice. The boundaries of B0 are oriented parallel to the
lattice planes dhkl, G = 2�/dhkl. In the resonant spin–echo configuration
(NRSE), instead of a uniform field B0 four RF spin flippers C1–C4 define
the boundaries of the precession regions, and there is no field along the
flight path between the flippers and in the sample region. C1–C4 are
double coils, each consisting of two single RF spin-flip coils with opposite
field direction (known as the ‘bootstrap’ technique; Gähler & Golub,
1988). The Larmor phase shift ��LD and the polarization are obtained
from the count rate I versus the position �L of the coil C4 (�L in the
inset is in units of millimetres): I(�L) = I0{1 + P cos [2�(�L � �L0)/
Lper]}, where the period is Lper = 2�vn/!L, vn is the neutron velocity and
!L the Larmor frequency. With the offset �L0, the phase is ��LD =
2��L0/Lper.

Figure 2
(a) SANS in a powder sample before and after Bragg diffraction at a
crystallite. (b) A single Bragg diffraction event at a crystallite. L1,2 are the
path lengths in the precession field B. L is the width of the field area B0.
�1,2 are the SANS angles. �0 and �2 are the angles of the trajectories with
the field boundaries, and �1 is the Bragg angle. � is the angle between the
field boundary and the diffracting lattice plane. The signs of �0, �1 and �2

are positive. �1, �2 and � have a negative sign for clockwise rotation, as
shown in the sketch.



v ¼
�h-

mdhkl sinð�1Þ
; ð5f Þ

dhkl ¼ d�hklð1þ �hklÞ: ð5gÞ

[The last equation is identical to equation (2) and is repeated

here for better readability.] m and v = h- k/m are the neutron

mass and velocity, respectively. The Larmor phases �1,2 accu-

mulated before and after Bragg diffraction are

�1;2 ¼
!LL1;2

v
: ð6Þ

The total phase is

�LD ¼�1 þ �2

¼
!LðL1 þ L2Þ

v

¼
m

�h-
!LLd�hklð1þ �hklÞ

sinð�1Þ

sinð�0Þ
þ

sinð�1Þ

sinð�2Þ

� �
: ð7Þ

Expanding equation (7) with the definitions of equations (5)

to first order in �, �1,2 and � gives

��LD ¼ �
�
LD �hkl �

�1 þ �2

2
cotð�0Þ

h i
; ð8Þ

where

��LD ¼ �LDð�hkl ¼ 0; �1 ¼ �2 ¼ �0Þ; ð9Þ

��LD ¼ �LD � �
�
LD: ð10Þ

The first-order term in � is zero. The second-order terms of the

preceding expansion are summarized in Appendix A. The

leading term is �cot2ð�0Þ�
2, which is negligible for the

experimental parameters in this work. The first term in

equation (8) is the usual LD phase related to variations in dhkl,

while the second term describes the small-angle scattering.

The polarization P(�LD) is given as a generalization of

equation (4) by the average

Pð��LDÞ ¼ cosð��LDÞ
� �
¼

ZZZ
Dð�hklÞ Sð�1ÞT1ð�1Þ Sð�2ÞT2ð�2Þ

� cos ��LD �hkl �
�1 þ �2

2
cotð�0Þ

h in o
d�1 d�2 d�hkl:

ð11Þ

S(�1) and S(�2) are the normalized ranges of the SANS angles

before and after scattering, respectively, and T1,2(�1,2) are

angular transmission functions of the diffractometer, given by

the collimations of the incident and scattered beams, respec-

tively. The cosine term in equation (11) splits according to

cos(a + b + c) = cos(a) cos(b) cos(c) + sin . . . , and the sine

terms integrate to zero, as the S and T distribution functions

are symmetric. The polarization is then

Pð��LDÞ ¼ PS1PS2PLD; ð12Þ

PS1 ¼

Z
S1ð�1ÞT1ð�1Þ cos ��LD cotð�0Þ�1=2

� �
d�1; ð13Þ

PS2 ¼

Z
S2ð�2ÞT2ð�2Þ cos ��LD cotð�0Þ�2=2

� �
d�2; ð14Þ

where PLD is given by equation (4). The first two factors, PS1

and PS2, describe the effect of SANS before and after

diffraction, respectively. These factors differ in the beam

collimation T1,2 and the width of the small-angle scattering

S1,2. The widths of S1,2 will typically be much smaller than the

widths of T1,2, such that the latter have only a small influence

on the value of the integral. Thus we will simplify T1 = T2 = T.

The widths of S1 and S2 are only identical for symmetric

scattering configurations, such as cylindrical sample cross

sections, or flat samples in a symmetric configuration with

respect to k1,2, and might be quite different for asymmetric

sample shapes.

One aim of an LD experiment is to measure the distribution

width of the lattice spacing D(�hkl). To extract PLD from the

experimental data Pð��LDÞ in equation (12), the SANS inte-

grals PS1, PS2 have to be known. In the following section we

show that PS can be determined experimentally by taking

advantage of the SESANS technique, and thus for the data

analysis there is no need to use an analytical expression for PS.

Nevertheless, an analytical formula is often helpful. As a

simple model, we take Gaussians for the distributions D, S1,2

and T, with FWHMs of �FW, �S1;2 and �T , respectively. These

Gaussians have the form

exp
�4 lnð2Þ x2

x2
FWHM

� �
: ð15Þ

Using the tabulated integral

Zþ1

�1

expð�a2x2Þ cosðbxÞ dx ¼
�

a2

� 	1=2

exp
�b2

4a2


 �
; ð16Þ

we obtain for the polarization [equation (12)]

PLD ¼ exp �C1�
2
hkl FW

� 

; ð17Þ

PS1 ¼ exp
�C2

��2
S1 þ �

�2
T


 �
; ð18Þ

PS2 ¼ exp
�C2

��2
S2 þ �

�2
T


 �
; ð19Þ

C1 ¼
��LDð Þ

2

16 lnð2Þ
; ð20Þ

C2 ¼
��LDð Þ

2

16 lnð2Þ

cot2ð�0Þ

4
: ð21Þ

3. The SESANS technique

We briefly review the principles of SESANS and give scaling

formulas for flat and cylindrical samples to convert SESANS

data to the LD geometry. SESANS uses two identical field

regions (or precession regions defined by RF spin flippers)
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with opposite signs of the magnetic field, with boundaries

inclined by an angle � (Fig. 3). Unscattered neutrons gain

equal precession phases in both regions (�1 =��2), even if the

path is inclined with respect to the central axis. If the neutron

is scattered by a small angle �, the path length in the second

field changes (Rekveldt, 1996; Rekveldt et al., 2003; Keller et

al., 1995):

�L ¼ L0 tanð�Þ�: ð22Þ

The phase difference �� = �1 � �2 is

�� ¼ �1 tanð�Þ�; ð23Þ

where �1 is the Larmor phase accumulated in one precession

region,

�1 ¼
m!LL0

h- k
: ð24Þ

The polarization P(�1) is given by an integral similar to PS1,

PS2 in equation (12):

PSESð�1Þ ¼ cosð��Þ
� �
¼

Z
Sð�ÞTð�Þ cos½�1 tanð�Þ�� d�: ð25Þ

It is not necessary to model S(�) for subsequent analysis of the

LD data, but it is often convenient to have an analytical

expression. As a simple model we again take Gaussian

distributions [equation (15)] for S(�) and T(�) with FWHMs

of �S and �T, respectively. Using equation (16) we get

PSESð�1Þ ¼ exp �
�2

1 tan2ð�Þ

16 lnð2Þ ð��2
S þ �

�2
T Þ

� �
: ð26Þ

Typically �S 	 �T, so that the latter is negligible in equation

(26).

It is useful to express the SESANS phase [equation (23)] in

terms of the spin–echo length z and the momentum transfer Q:

�� ¼ z Q; ð27Þ

where

z ¼
�1 tanð�Þ

k
ð28Þ

or

z ðÅÞ ¼ 0:2531 ðm�1 kHz�1 Å�1Þ tanð�Þ � L0 ðmÞ

� 
L ðkHzÞ � 	2
ðÅ

2
Þ; ð29Þ

with 
L = !L/(2�).

We now show how PSES cyl for a cylindrical sample can be

calculated using SESANS data PSES flat from a flat sample, and

vice versa. We will take advantage of a scaling relation for PSES

with respect to k and the sample width t derived by Rekveldt

and Andersson (Rekveldt et al., 2003; Andersson et al., 2008),

which is valid even in the presence of strong multiple scat-

tering:

PSESðz; k; tÞ ¼ PSESðz; k0; t0Þ
ðk0=kÞ2 ðt=t0Þ: ð30Þ

The transformation PSES flat ! PSES cyl is useful to verify

equation (30) experimentally. The transformation

PSES cyl ! PSES flat is needed in the next section to analyse LD

data collected on a cylindrical sample.

PSES cyl is obtained from PSES flat by averaging and scaling the

latter for the different path lengths t(y) of a neutron beam

crossing a cylindrical sample [see Figs. 4(a) and 4(c)]. The

polarization of individual trajectories is weighted by the

transmission Tr = exp[��kt(x)], where �k and �th are the

total absorption cross sections for neutrons with wavevectors

k and kth (th for thermal), with kth = 2�/	th and 	th = 1.8 Å. For

most isotopes there is 1/k scaling if k 
 kth:

�k ¼
�th kth

k
: ð31Þ

With the path length t = 2(R2
� y2)1/2, the width of the flat

sample t0 and the cylinder radius R we get

PSES cylðzÞ ¼ A�1 I PSES flatðzÞ
� �

; ð32Þ
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Figure 3
Spin–echo small-angle scattering configuration. The fields B of the two
precession regions have opposite signs, as opposed to the LD
configuration.

Figure 4
(a), (b) Rectangular sample. (a) In the SESANS configuration, the
sample is oriented perpendicular to the incident neutron beam. A
scattering event changes the direction of the neutron trajectory by an
angle �. (b) In the LD configuration, a neutron is Bragg-diffracted at a
crystallite located at a distance x from the sample face. In the symmetric
reflection configuration, the angles of the incident and outgoing neutron
trajectories with the sample face are equal to the Bragg angle (�1 = �2 =
�B). A small misalignment � of the sample face leads to �1 = �B � �, �2 =
�B + �. (c), (d) Cylindrical sample in (c) the SESANS and (d) the LD
configuration.



I PSES flatðzÞ
� �

¼

ZR

0

PSES flatðzÞ
� �ðk0=kÞ2 ð1=t0Þ expð��kÞ

n o2 R2�y2ð Þ
1=2

dy; ð33Þ

A ¼

ZR

0

exp �2�k R2 � y2
� 
1=2

h i
dy: ð34Þ

Calculating PSES flat from PSES cyl data corresponds to an

inversion of equation (32). This is easily achieved numerically

by searching for solutions for PSES flatðzÞ that satisfy the

equation

A�1 I PSES flatðzÞ
� �

� PSES cylðzÞ ¼ 0: ð35Þ

A and I are the same as in equation (32). Suitable algorithms

for finding roots of nonlinear functions, such as fzero() in

MATLAB (The MathWorks Inc., Natick, MA, USA), are

available in many numerical libraries.

4. Scaling of SESANS data to the LD geometry

In this section, we will determine the integrals PS1,2 in equa-

tion (12) from the previously measured SESANS data, for

both flat and cylindrical sample geometries. For the flat

sample, there are two symmetric configurations, reflection and

transmission, with the sample surface perpendicular and

parallel to Q, respectively. As the effective path length in a flat

sample of width t0 at the Bragg angle �B is Lr = t0/sin(�) in

reflection and Lt = t0/cos(�) in transmission, Lt > Lr for � > 45�.

For the LD experiments we used � = 55�, such that Lt /Lr’ 1.4,

leading to increased SANS in the transmission configuration.

This configuration is unfavourable in our case and we will not

include it in the following discussion.

PS1, PS2 [equation (12)] and PSES [equation (25)] are very

similar expressions, if the field inclination angles � in both

SESANS and LD are set to � = 90� � �B, so that tan(�) =

cot(�B). However, the ranges of SANS angles S(�) in SESANS

and S1,2(�1,2) in LD are not equal, as the geometries for the

two experimental configurations are different, and thus the

effective neutron path lengths inside the sample are not the

same.

In the SESANS configuration [Fig. 4(a)], the faces of the flat

sample are aligned perpendicular to the beam. The effective

neutron path length corresponds to the sample width t0. Small

variations in the neutron path length resulting from finite

beam collimation �T ’ 1� and from small-angle scattering of

the order of t0/t ’ 1 � cos(�T/2) can be neglected in equation

(30).

In the LD configuration, the path lengths vary with the

location of the diffraction event. For a symmetric setup in

reflection geometry as shown in Fig. 4(b), the path lengths of

the incident and diffracted neutron trajectories are equal, with

t1,2(x) = x/sin(�1,2). We obtain the polarization PS1, PS2 by

averaging and scaling the SESANS polarization

PSES flatðz; k0; t0Þ measured for a flat sample of width t0

according to equation (30). The weight of an individual

neutron trajectory is given by the transmission Tr1,2(x) =

exp[��kt1,2(x)].

PS1;2ðk; zÞ ¼
1

B

Zt0

x¼0

P
ðk0=kÞ2½1=t0 sinð�1;2Þ�

SES flat exp �
�k

sinð�1;2Þ

� �� �x

dx

¼
1

B

At0 � 1

lnðAÞ
; ð36Þ

A ¼ P
ðk0=kÞ2½1=t0 sinð�1;2Þ�

SES flat exp �
�k

sinð�1;2Þ

� �
; ð37Þ

B ¼
sinð�1;2Þ

�k

1� exp �
�kt0

sinð�1;2Þ

� �� �
: ð38Þ

In symmetric reflection geometry with �1 = �2, we get PS1 =

PS2. A detuning � as shown in Fig. 4(b) increases t1(x) and

decreases t2(x), so that the product PS1 � PS2 changes in

second order in �, and a small detuning of the order of a few

degrees is not significant.

The cylindrical sample geometry [Figs. 4(c) and 4(d)] is

treated in a similar way by taking the average of the SESANS

polarization PSES flatðz; k0; t0Þ with the transmission as a weight

factor. In the case of a cylindrical sample, the SESANS data

should be measured on the same sample. Then PSES cyl has to

be converted to PSES flatðz; k0; t0Þ [equation (35)] with a specific

but arbitrary t0. For a neutron diffracted at a crystallite located

at (x, y), the length of the incident trajectory inside a sample of

radius R is t1 = x + (R2
� y2)1/2.

PS1 ¼
1

C

�

ZR

x¼�R

ZðR2�x2Þ
1=2

y¼�ðR2�x2Þ
1=2

P
ðk0=kÞ2ð1=t0Þ
SES flat exp ��kð Þ

h i½xþðR2�y2Þ
1=2
�

dx dy;

ð39Þ

with

C ¼

ZZ
exp ��k xþ R2 � y2

� 
1=2
h in o

dx dy: ð40Þ

The integration boundaries are the same as in equation (39).

For symmetry reasons, PS2 = PS1.

5. Experimental

The LD measurements were conducted on the TRISP spec-

trometer at the FRM II. TRISP was designed as a thermal

three-axis spectrometer incorporating the resonant spin–echo

technique for the high-resolution spectroscopy of phonons

and spin excitations (Keller et al., 2002), and it also operates

efficiently as a Larmor diffractometer and SESANS instru-

ment. The primary spectrometer includes a V-cavity polarizing

neutron guide, a velocity selector and a pyrolytic graphite

(002) monochromator. The spin–echo precession devices and

the sample are housed in a mu-metal shield with a residual
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magnetic field of <5 mOe to avoid parasitic spin precession.

For the LD measurements, the scattering angle 2�B was kept

constant at 110� and the incident wavevector was varied in the

range 2.08 < ki < 2.66 Å�1 to access various Bragg peaks. In

LD mode, the RF coil rotation angles were set to � = 90� � �B

= 35� to align the field boundaries parallel to the lattice planes.

The same angles � = 35� with opposite sign in the second

precession field were used in SESANS mode.

The sample was hematite, �-Fe2O3 (powder), as used in

earlier studies (Stekiel et al., 2015; Fabrykiewicz et al., 2017).

Hematite is a promising material for such studies because of

the negligible incoherent neutron scattering of iron and

oxygen. The powder was annealed at 1100 K for 5 h in air to

reduce internal strain. This annealing step reduced �hkl by

�30%. We used two sample cells, a cylindrical vanadium

container (labelled ‘cylinder’), inner diameter 12 mm and wall

thickness 0.2 mm, and a flat quartz glass cell (labelled ‘flat’),

inner dimensions 30 � 30 � 2 mm and 0.5 mm glass width.

The flat cell produced an unstructured background (glass

peak) in the LD measurement. LD was measured for (024),

(116), (214) and (300) at the ki values given in Table 1 using

both cylindrical and flat containers.

For the SESANS experiments, the scattering angle was set

to zero and the neutron beam was shaped by a cadmium mask

to the sample size. PSES was measured for both empty and

filled sample cells at k = 2.30 Å�1, which is roughly in the

centre of the k range used for LD, and in addition at k =

1.70 Å�1 for the flat sample to test the scaling with k according

to equation (30). All measurements are shown in Fig. 5, where

the data with sample were normalized to the empty cell

measurements. (See also Table 1 for a summary of all data

collected on �-Fe2O3).

In LD mode, first the instrumental resolution Pinstr(�LD)

was determined with a Ge monocrystal as reference sample

with a negligible range of dhkl, where for a perfect instrument

we expect Pinstr = 1. The instrument configuration for this

reference measurement was the same as for the subsequent

LD experiment on the powder samples, with fixed 2� = 110�

and � = 35�. The Ge (220) and (004) Bragg reflections were

accessible at k = 1.92 and 2.72 Å�1, respectively. Fig. 6 shows

these data for two different operation modes, where one

(RFM = 4) or both RF coils (RFM = 8) in the individual coil

sets C1–C4 (Fig. 1) were energized. These two modes differ in

the effective Larmor frequency, which is two (four) times the

RF for RFM = 4 (8), and they are used to cover the range of

low (high) Larmor phase. The k dependence of Pinstr is a

property of the polarizing neutron guide. The dependence on

frequency and RFM, especially the scatter of the data points at

low frequency, results from field inhomogeneities in the RF

coils and from stray fields in between the coils.

Fig. 7 shows the LD data for the (024) reflection of �-Fe2O3

measured at k = 2.08 Å�1 for the flat container (solid lines)
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Table 1
Experimental data on �-Fe2O3 powder.

LD experiments were performed using four Bragg peaks. The flat container
was set to reflection geometry.

No. k (Å�1) (hkl) Mode Container Contents

1 2.082 (024) LD Flat, reflection Filled
2 2.082 (024) LD Cylindrical Filled
3 2.263 (116) LD Flat, reflection Filled
4 2.263 (116) LD Cylindrical Filled
5 2.581 (214) LD Flat, reflection Filled
6 2.581 (214) LD Cylindrical Filled
7 2.639 (300) LD Flat, reflection Filled
8 2.639 (300) LD Cylindrical Filled
9 1.70 SESANS Flat Empty
10 1.70 SESANS Flat Filled
11 2.30 SESANS Flat Empty
12 2.30 SESANS Flat Filled
13 2.30 SESANS Cylindrical Empty
14 2.30 SESANS Cylindrical Filled

Figure 5
SESANS data for �-Fe2O3 powder. (a) PSES flat for k = 1.7 and 2.3 Å�1 for
the flat quartz glass container without sample (empty), and with sample
normalized by the empty container data. The maximum z for a given
maximum precession field B scales �1/k2. The blue open circles show the
k = 2.3 Å�1 data scaled to k = 1.7 Å�1 by equation (30). These scaled data
coincide with the experimental data for k = 1.7 Å�1. (b) PSES for the flat
and cylindrical containers at k = 2.3 Å�1. Pflat calc is the polarization
calculated for the flat sample geometry by taking the PSES cyl data
[equation (35)], and vice versa for PSES cyl calc [equation (32)]. The data for
the cylindrical (flat) container are plotted as blue triangles (red circles).
Solid symbols show measured data, while open symbols are calculations.
The error bars in the measured values are smaller than the symbols.



and the cylindrical container (dotted lines). Data for the other

Bragg peaks are shown in the supporting information. The

SANS contribution PS is much smaller for the flat container.

Normalizing the raw data by PS and by the instrumental

polarization Pinstr (identical for both containers) leads to very

similar intrinsic PLD.

The results of LD measurements for �-Fe2O3 are compared

with the results obtained by Stekiel et al. (2015) on the high-

resolution SR powder diffractometer ID22 at the ESRF

(Fitch, 2004). The observed SR diffraction peak shape was

described using a pseudo-Voigt function. The instrumental

contribution of ID22 was estimated by measuring a reference

LaB6 sample.

6. Results and discussion

In this section we discuss the analysis of LD data from �-Fe2O3

powder. The analysis steps include (i) determination of the

instrumental resolution by means of a monocrystal reference

sample, (ii) measurement of the small-angle scattering by the

SESANS technique, (iii) scaling these data to the LD

geometry including absorption and (iv) determination of

D(�hkl).

In LD, SESANS and other neutron spin–echo techniques,

the measured signal, that is the polarization versus the Larmor

precession phase, is a product of intrinsic and instrumental

effects. This is in contrast with conventional diffraction and

spectroscopy, where the measured signals are convolutions of

the instrumental resolution and sample-related effects (Mezei,

1980; Mezei et al., 2003). This is explained, in brief, by the fact

that the polarization is a probability, namely the expectation

value of the neutron spinor. The probabilities of instrumental

effects, such as non-perfect RF coils, and sample intrinsic

effects, such as the range of D(�hkl), are statistically indepen-

dent, so that the probabilities (polarizations) are multiplied. A

second qualitative argument is that LD and spin–echo tech-

niques provide cosine-Fourier transforms of distribution

functions [equations (11) and (25)], such that convolutions are

converted to products. In the present case of an LD experi-

ment, the measured polarization Pexp is

Pexp ¼ P0PinstP
2
SPLD; ð41Þ

where PS and PLD are defined in equations (12) and (17). A

constant factor P0 accounts for additional effects leading to a

loss of polarization, independent of the Larmor phase,

including non-polarized background from the sample and spin

precession resulting from small randomly distributed ferro-

magnetic moments in the sample. Pinst is taken from Fig. 6 and

is independent of the sample. The same argument holds for

the SESANS experiment, where

Pexp SES ¼ P0Pinst SESPSES: ð42Þ

The factor PS in equation (41) is calculated from Pexp SES in

equation (42) by applying equations (36) and (39) for the flat

and cylindrical samples, respectively. The instrumental reso-

lution Pinst is measured by means of a ‘perfect’ sample with no

intrinsic effects, such as a monocrystal with no range of dhkl in

the case of LD, an empty container in the case of SESANS,

and a purely elastic scatterer in the case of energy-resolved

spin–echo spectroscopy. In the current experiment, we used as

reference samples a Ge single crystal for LD or an empty cell

for SESANS. Pinst(freq, RFM, k) from the Ge crystal is shown

in Fig. 6. The polarization depends on the frequency, the

number RFM of energized RF coils, and the wavevector k. We

use the smoothed curves in Fig. 6 to average the small parasitic

oscillations, and a linear interpolation in k between the two

data sets taken at k = 1.92 and 2.72 Å�1. For the following
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Figure 6
Instrumental resolution in LD mode measured on a Ge monocrystal
using the (220) and (004) reflections with k = 1.92 Å�1 and k = 2.72 Å�1,
respectively. The scattering angle was 110� and the coil inclination angle
� = 35�. RFM = 4 (8) is the number of active RF coils. The lines are
obtained by smoothing the data. Error bars are smaller than the symbols.

Figure 7
LD data for the (024) reflection of �-Fe2O3 for the flat quartz glass sample
container (width 2 mm, solid symbols, solid lines) and the cylindrical
vanadium container (diameter 12 mm, open symbols, dotted lines). The
counting time per point was 20 min. Pinstr is the same for both containers.
The fit (blue line) to Pexp is a product of the instrumental Pinstr, SANS P2

S

and PLD [see equation (41)]. The latter depends on the range of dhkl. A
constant factor P0 takes unpolarized background into account.



analysis, Pinst(freq, RFM, k) has to be converted to Pinst(�LD),

shown as a line in Fig. 7. This conversion is ambiguous, as there

are two data sets with different RFMs for Pinst. Thus, we

always use the data with the same RFM as used for the LD

measurement Pexp of the powder sample.

Fig. 5 shows SESANS data normalized by the corre-

sponding empty cell scans to eliminate instrumental effects

[equation (42)], such as SANS in the coils close to the sample

and non-ideal performance of the RF coils. The width �S

(FWHM) for the small-angle distributions obtained by fitting

the Gaussian model equation (26) to the normalized data gives

0.0650 (5), 0.1138 (5) and 0.1427 (5)� for the flat cell at k = 2.3

and 1.7 Å�1 and for the cylindrical cell at 2.3 Å�1, respectively.

The parameter �S depends strongly on k and on the sample

width, but is still much smaller than the angular transmission

of the instrument �T ’ 1�, so that the latter has no effect in

equation (26).

The LD experiment is usually performed at many Bragg

reflections, each with a different k. The SESANS measure-

ment should at least be done at the lowest of these k values.

Scaling of the SESANS data to other k is possible using

equation (30), as is demonstrated in Fig. 5(a) by scaling the k =

2.3 Å data to k = 1.7 Å. These scaled data coincide with the

measured data. Scaling of SESANS data between flat and

cylindrical sample shapes by equations (32) and (35) also

works, as is shown in Fig. 5(b), where again the scaled and

measured data coincide. The absorption of the �-Fe2O3

powder was included in these plots, although it is small and has

no visible effect (�th = 0.10 cm�1 for bulk �-Fe2O3; the powder

density is roughly 40% less). The scaling relation (30) might

not hold for unconventional SANS processes, such as multiple

Bragg scattering (MBS), which might contribute significantly

to the SANS cross section (Barker & Mildner, 2015). Our

analysis technique is also valid for such unconventional SANS

processes, if the scaling equation (30) holds. The latter can be

experimentally tested by taking SESANS data at several

different k values.

The LD data for a (024) reflection (k = 2.08 Å�1) of the

�-Fe2O3 powder are shown in Fig. 7. This peak was measured

at the smallest k = 2.08 Å�1 and thus has the largest SANS

contribution. PS shows a more pronounced decay for the

cylinder due to the increased path length and increased SANS

of the cylinder compared with the flat sample. The raw data

without any corrections correspond to �024 raw values of

13.5 (5) � 10�4 for the cylinder and 8.80 (11) � 10�4 for the

flat container. Including all corrections, PLD is obtained from a

fit to equation (17), corresponding to �024 of 7.1 (2) � 10�4 and

7.2 (4) � 10�4 for the flat and cylindrical samples, respectively.

(The errors are statistical errors from the fit.) This means that,

after correction, the values for flat and cylindrical samples

agree, where for the flat sample the SANS correction is much

smaller. The polarization offsets P0 are 0.89 (1) for the

cylinder and 0.74 (1) for the flat cell, indicating the increased

background from the flat quartz glass container. Data for the

other Bragg peaks are shown in the supporting information.

The flat sample shape is superior to the cylinder, since for a

given beam diameter (typically 20 mm) a larger sample

volume at a smaller width can be used. As a rule of thumb, the

SANS should be limited to PSES >� 0.5 for the maximum z and

minimum k, as the relative error usually increases with

decreasing P. This condition is roughly met in the present

experiment for the flat sample, but not for the cylinder,

although the sample mass is the same in both cases. The only

disadvantage of the flat sample is an additional decay of the

polarization in the case of an offset � [Fig. 4(b)] from the

symmetric reflection geometry. For the present data, we

numerically calculated that for � < 10� the variation ��024 <

0.07, i.e. only 1/3 of the statistical error. These errors can be

avoided by a precise alignment of the sample cell.

In Fig. 8 the �hkl obtained by LD for four Bragg peaks (flat

sample) are compared with the d-spacing distribution widths

observed on ID22. The latter were determined by numerical

deconvolution of the instrumental resolution function (LaB6

reference) from the observed raw-data Bragg peaks. The

agreement of SR diffraction with LD confirms our earlier

findings about the monoclinic deformation of the �-Fe2O3

lattice (Przeniosło et al., 2014). The widths calculated for the

monoclinic structure model (Przeniosło et al., 2014) are �024 =

2.22 � 10�4, �116 = 1.67 � 10�4, �214 = 0.95 � 10�4 and �300 =

1.12 � 10�4. The measured values are much larger, but their

variation follows the variation of the calculated values. The

increased width is probably due to microstrains in the powder

grains.

The measured �hkl are close to the resolution limit of SR

diffraction. For LD, it is not straightforward to define the

resolution. Variations in �hkl are detected as a change in the

polarization PLD. In typical experiments with monocrystalline

samples without SANS, the error in �hkl is close to 10�5. The

situation is more complicated for powder samples, where in

the case of the flat container at the (024) reflection SANS

contributes a broadening of 1 � 104 to �hkl. Thus, the statistical
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Figure 8
�d/d spacing distribution width �hkl (FWHM) versus Q = 1/dhkl for four
Bragg peaks of �-Fe2O3 obtained from LD (flat container) and SR
diffraction. The data correspond from left to right to the reflections (024),
(116), (214) and (300).



errors of the order of�1.5 � 10�4 shown in Fig. 8 as a result of

the fit are also a good estimate for the resolution. The good

agreement between LD and SR diffraction validates the

related data analysis techniques, i.e. the measurement of the

instrumental resolution with the LaB6 reference sample in SR

diffraction and the determination of the instrumental resolu-

tion by a monocrystal and the correction for SANS in the case

of LD.

7. Summary

In this work we have shown that small-angle scattering makes

a significant contribution to the range of dhkl measured by

neutron Larmor diffraction. We have described a quantitative

procedure to measure the SANS by means of the spin–echo

small-angle neutron scattering technique, and derived scaling

expressions to include the SESANS data in the analysis of the

LD data collected on flat or cylindrical samples. We have

shown that using a flat sample in reflection geometry is

preferable to using cylindrical samples, as for a given sample

mass the effective neutron path length, and thus the effect of

SANS, is minimized for the flat sample. Finally, we have

applied the new analysis method to LD data from hematite

and calcite powder (for the latter see the supporting infor-

mation). These LD data confirm the hkl-dependent d-spacing

range previously observed by high-resolution SR diffraction.

APPENDIX A
Second-order terms of ����LD

The preceding discussion was based on the first-order

expansion [equation (8)] of �LD in equation (7). Here, we

show that the second-order terms of this expansion are

negligible for the analysis of the experimental data in the

present work.

The expansion of equation (7) to second order in �1, �2, �
and �hkl gives

�LD ¼�
�
LD 1þ �hklð Þ �

��LD

2
ð�1 þ �2Þ cotð�0Þ

þ
��LD

2

X
ij

MijXiXj; ð43Þ

with the parameter vector X = ð�1; �2; �; �hklÞ and the coeffi-

cients

M ¼

� 1
2 �1� cot2ð�0Þ � cot2ð�0Þ � cotð�0Þ

0 1
2þ cot2ð�0Þ 2þ 3 cot2ð�0Þ � cotð�0Þ

0 0 1þ 2 cot2ð�0Þ 0

0 0 0 0

0
BB@

1
CCA:

ð44Þ

The polarization in equation (41) gains an additional factor

PSO from the second-order terms:

PSO ¼
Q
ij

Pij SO; ð45Þ

with

Pij SO ¼

ZZ
FiðXiÞFjðXjÞ cos

��LD

2
Mij Xij


 �
dXi dXj: ð46Þ

Fi(Xi) are Gaussian distribution functions for the parameters

Xi, with FWHM �S1 = �S2 = 0.09�, �FW = 7 � 10�4 and �FW =

0.33�. This last parameter was obtained from the width of the

rocking scan of a single perfect crystal with the same spec-

trometer configuration as used for LD. �FW is smaller than the

collimation (�1�), as the wavelength bands of the incident and

diffracted beams are limited by the monochromator and

analyser, and thus the range of Bragg angles for a given dhkl is

limited. Calculation of �FW is in principle possible, but a

suitable resolution formalism for Larmor diffractometers

taking all spectrometer parameters into account, similar to the

work of Habicht et al. (2003) and Groitl et al. (2018) for three-

axis spin–echo spectrometers, is not yet available.

The second-order terms in equation (43) are very small,

except the �2 term (�M33�
2). Fig. 9 shows the polarization

equation (46) including all terms, and the �2 term P33 SO

separately, for the experimental parameters of this work. This

dominant term changes the resulting range of �hkl =

7.1 (4) � 10�4 by 1.7 � 10�6, more than one order of magni-

tude less than the statistical error in �hkl. Thus we neglected

this term in the present analysis. If no monochromator or

analyser is used, P33 SO is large and should be included in the

analysis as an additional factor in equation (41), such that

Pexp ¼ P0PinstrP
2
SP33 SOPLD: ð47Þ
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