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Crystallographic textures, as they develop for example during cold forming, can

have a significant influence on the mechanical properties of metals, such as

plastic anisotropy. Textures are typically characterized by a non-uniform

distribution of crystallographic orientations that can be measured by diffraction

experiments like electron backscatter diffraction (EBSD). Such experimental

data usually contain a large number of data points, which must be significantly

reduced to be used for numerical modeling. However, the challenge in such data

reduction is to preserve the important characteristics of the experimental data,

while reducing the volume and preserving the computational efficiency of the

numerical model. For example, in micromechanical modeling, representative

volume elements (RVEs) of the real microstructure are generated and the

mechanical properties of these RVEs are studied by the crystal plasticity finite

element method. In this work, a new method is developed for extracting a

reduced set of orientations from EBSD data containing a large number of

orientations. This approach is based on the established integer approximation

method and it minimizes its shortcomings. Furthermore, the L1 norm is applied

as an error function; this is commonly used in texture analysis for quantitative

assessment of the degree of approximation and can be used to control the

convergence behavior. The method is tested on four experimental data sets to

demonstrate its capabilities. This new method for the purposeful reduction of a

set of orientations into equally weighted orientations is not only suitable for

numerical simulation but also shows improvement in results in comparison with

other available methods.

1. Introduction

Microstructure characterization of polycrystalline material

performed using diffraction experiments provides information

regarding the crystallographic orientations. Depending on the

resolution and the size of the scanned area, a diffraction

experiment like electron backscatter diffraction (EBSD) may

consist of thousands and sometimes millions of measurement

points of crystallographic orientations. A non-uniform distri-

bution of these crystallographic orientations is represented

with the help of a probability density function commonly

referred to as the orientation density function (ODF) (Kocks

et al., 2000). The ODF can then be estimated by superposition

of radially symmetric kernel functions centered at each crys-

tallographic orientation (Hielscher, 2013).

Texture plays an important role in material behavior and is

mainly responsible for anisotropy (Hielscher et al., 2014).

Numerical predictions of the anisotropic mechanical response

in metals have been of special interest. In view of this, many

macroscopic numerical models have been proposed [a few
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examples of such models are given by Hill (1948) and Barlat et

al. (1991)]. However, these models lack a clear connection to

the important microstructural features like texture, grain size

etc. that influence the mechanical response. Micromechanical

modeling approaches address these limitations by incorpor-

ating the important microstructural features into the numer-

ical model.

To properly characterize the crystallographic orientations

of grains in a polycrystalline material, EBSD measurements

are usually performed with high spatial resolution

(Humphreys, 2004). This inevitably results in a large number

of measurement points. For micromechanical modeling of

polycrystalline materials in the crystal plasticity finite element

method (CPFEM) framework (Roters et al., 2010), an optimal

number of orientations that closely represent the material

characteristics are required. There are two main approaches

for modeling polycrystals. In the first approach the grain

volume fractions are considered equal and fixed, which

requires a set of equally weighted orientations. In this regard,

various ODF reconstruction strategies have been proposed.

One such method is the ‘hybrid integer approximation’, which

has been introduced for discrete ODFs by Eisenlohr & Roters

(2008). This method combines the probabilistic sampling

approach of Tóth & Houtte (1992) with the deterministic

integer approximation of Leffers & Jensen (1986).

In the second modeling approach, grain volume statistical

distributions are considered, and thus the reconstruction of

the ODF is done by a set of weighted orientations. Recent

work by Schaeben et al. (2017) introduces such a method,

which utilizes the Dirichlet kernel to provide an unbiased

estimate of the Fourier coefficient up to any finite order. The

corresponding weights are estimated numerically and can be

related to the Fourier transform due to the linearity of both

the spatial and spectral domains. Further information about

other reconstruction methods can be found in the work of

Eisenlohr & Roters (2008), Schaeben et al. (2017) and refer-

ences therein.

In the following, we introduce a method for reconstructing

the ODF estimated from a given set of experimentally

measured orientations by a smaller number of equally

weighted orientations (sample orientations). The method

begins with an initial guess of an equi-spaced SO(3) grid. The

experimentally measured orientations are superimposed on

this grid. The orientations lying within a distance of half grid

spacing from a given grid point are defined as a cluster around

that grid point. By utilizing an iterative scheme based on the

work of Leffers & Jensen (1986), the number of required

sample orientations is divided among the grid points in

proportion to the size of the cluster of input orientations and it

is represented by an integer value. Any cluster of orientations

around a grid point with an associated integer value greater

than one is further divided into smaller groups of orientations

from which mean orientations are sampled. These mean

orientations collectively form the reduced set of orientations.

The ODF is estimated from the reduced set of orientations by

employing a kernel function with an optimized shape para-

meter. The error function is the L1 norm of the difference

between the ODFs from the experiments and the reduced set

of orientations. This process is continued iteratively with the

intention of minimizing the error function by optimizing the

SO(3) grid. This algorithm is implemented using the MTEX

(Bachmann et al., 2010) toolbox in MATLAB.

The capability of this method is demonstrated by imple-

menting it on three cubic crystal cases in the form of cold-

rolled OFHC copper (Rolled-Cu) (Anand, 2004), additively

manufactured 316L stainless steel produced by two different

laser powers – 1000 W (316L-1000W) and 400 W (316L-400W)

(Biswas et al., 2019) – and one orthorhombic case, forsterite,

which is available as an EBSD example in MTEX (Bachmann

et al., 2010). The orientations for Rolled-Cu are generated by

plane strain compression simulation as suggested in the work

of Anand (2004) and by extracting the grain orientations at

every integration point in the last time step. The simulation is

then repeated five times with different sets of random input

orientations and the results from all simulations are combined

to obtain 27 000 orientations.

2. Method

2.1. Problem setup

Estimation of an ODF f : SOð3Þ ! R from crystallographic

orientation measurements gi, i ¼ 1; . . . ;N, is a classical

problem in crystallographic texture analysis (see Table 1 for

notation). The most common method is called kernel density

estimation (cf. Hielscher, 2013) and uses a kernel function

 : ½0; �� ! R to estimate an ODF as

f ðgÞ ¼
1

N

XN

i¼1

 �½ffðgi; gÞ�; g 2 SOð3Þ; ð1Þ

where ffðgi; gÞ denotes the disorientation angle between the

orientations gi and g. Note that the estimated ODF f heavily

depends on the choice of the kernel function  . Here we
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Table 1
Inventory of symbols and notations.

N Number of input orientations

gi, i ¼ 1; . . . ;N Input orientations

 � Kernel function used for density estimation from the
input orientations

f Orientation density function estimated from the input
orientations

~NN Target number of orientations of the reduced set

~ggi, i ¼ 1; . . . ; ~NN Reduced set of orientations
~  ~�� Kernel function used for density estimation from the

reduced set of orientations
~ff Orientation density function estimated from the

reduced set of orientations
M Number of cells of the subdivision of the orientation

space

nj, j ¼ 1; . . . ;M Number of input orientations that fall into each of the
cells

~nnj, j ¼ 1; . . . ;M Number of reduced orientations that fall into each of the
cells

qk, k ¼ 1; . . . ;K Equally spaced grid of orientations used for estimating
the error between two ODFs



restrict ourselves to the de la Vallée Poussin kernel  � (cf.

Schaeben, 1997), the half-width of which can be controlled by

the parameter �> 1.

The objective in this work is to find for a given N a much

smaller number ~NN � N of orientations ~ggi; i ¼ 1; . . . ; ~NN, and a

kernel parameter ~�� such that the ODF

~ff ðgÞ ¼
1

~NN

X~NN

i¼1

 ~��½ffð~ggi; gÞ�; g 2 SOð3Þ ð2Þ

is a good approximation of the ODF f estimated from the full

data set, i.e. ~ff ’ f . As an error measure we consider the L1

norm, which has been used previously in texture analysis by

Schaeben et al. (2017) and Bozzolo et al. (2007).

k f � ~ffk1 ¼
R

SOð3Þ

f ðqÞ � ~ff ðqÞ
�� �� dq ð3Þ

measures the volume of differently oriented orientations

between the initially estimated ODF f and its approximation ~ff .

In the extreme case when the ODFs f and ~ff are concentrated

around disjoint orientations the error approaches 2. On the

other hand, when ~ff approximates f better the error approaches

zero.

2.2. Outline of the algorithm

The idea of our algorithm can be summarized in the

following steps:

(1) Estimate an initial ODF f from the input orientations gi,

i ¼ 1; . . . ;N, using a fixed kernel function  � (Section 2.1).

(2) Fix a subdivision of the orientation space into M cells

with resolution �� (Section 2.3).

(3) Determine the numbers nj, j ¼ 1; . . . ;M, of input

orientations gi, i ¼ 1; . . . ;N, that fall into each of the M cells

(Section 2.3).

(4) Find a scaling factor � (0<�< 1) such that the

integers ~nnj ¼ roundð�� njÞ satisfy the condition
PM

j¼1 ~nnj ’
~NN,

where ~NN is the target number of orientations of the reduced

set (Section 2.4).

(5) For each cell j, j ¼ 1; . . . M, randomly subdivide the

corresponding input orientations gi, i ¼ 1; . . . ; nj , into ~nnj � nj

groups and compute the mean orientations ~ggj
1; . . . ; ~ggj

~nnj
corre-

sponding to each group (Section 2.5).

(6) Compute an ODF ~ff from the reduced set of orientations

~ggj
1; . . . ; ~ggj

~nnj
, j ¼ 1; . . . ;M, using a kernel function ~  ~��

(Section 2.1).

(7) Optimize the kernel function shape parameter ~�� such

that the misfit k f � ~ffk1 is minimized (Section 2.6).

(8) Repeat steps 2 to 7 for different subdivisions of the

orientation space and find the optimal resolution �� with

respect to the final misfit k f � ~ffk1 (Section 2.7).

2.3. Subdivision of the input orientations

The process begins with fixing a resolution �� and a

corresponding decomposition of the Euler angle space into M

cells of approximately equal volumes corresponding to each

grid point (cf. Fig. 1). Next, we count the number nj,

j ¼ 1; . . . ;M, of orientations that fall into each of these cells.

An illustration of this process is shown in Fig. 1 for the test

case of Rolled-Cu orientations. For ease of visualization, a grid

spacing of �� = 15� is selected. The equi-spaced SO(3) is

represented by black dots and the input orientations by red

dots.

2.4. Integer approximation

In the second step of this algorithm, the target number of

samples ~NN is distributed among the cells in proportion to their

counts nj, j ¼ 1; . . . ;M. This step is based on the work of

Eisenlohr & Roters (2008), which utilized the original idea of

Leffers & Jensen (1986). It is referred to as ‘integer approx-

imation (IA)’ in the work of Eisenlohr & Roters (2008).

Henceforth, we will use this term accordingly. This iterative

scheme estimates a scaling factor �, using a binary search

algorithm as suggested by Eisenlohr & Roters (2008), which is

then multiplied with the counts nj and rounded to the closest

integer:

~nnj ¼ roundð�� njÞ; j ¼ 1; . . . ;M; ð4Þ

subject to the condition that
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Figure 1
(a) Input orientations (red dots) on an SO(3) grid (black dots) for the test
case of Rolled-Cu, with grid points with resolution �� = 15�; here
’1;�; ’2 are the Bunge Euler angles. (b) An individual grid point with
corresponding input orientations within a distance of ��=2 for the case
n = 117.



PM

j¼1

~nnj ’
~NN: ð5Þ

2.5. Determination of the downsampling

The IA provides an integer number ~nnj of orientations that

need to be computed for each subdivision cell. The objective

of this step is to reduce the nj orientations in each cell to only

~nnj orientations such that the mean of the new orientations is

similar to the mean of the original orientations. Hence, if

~nnj ¼ 1, we simply take the mean of all orientations within the

cell as the new orientation ~ggj.

For cases with ~nnj > 1, we subdivide the original orientations

g
j
i, i ¼ 1; . . . ; nj, within each cell j, j ¼ 1; . . . ;M, into ~nnj clus-

ters and compute the new orientations ~ggj
1; . . . ; ~ggj

~nnj
as the mean

orientations of each of the clusters. The subdivision is

performed randomly; other non-random subdivision methods

like sequential sampling were also tested for all of the test

cases, but the error k f � ~ffk1 in all cases varied within 1%. To

keep the subdivision process unbiased, the random method is

chosen.

This is visualized in Fig. 1, in which a grid point is shown

with a cluster of orientations (red dots). In this case, there are

117 orientations in the cell; if we suppose that the corre-

sponding ~nnj ¼ 4, then these orientations are randomly subdi-

vided into four approximately equal clusters containing 29, 30,

29, 29 orientations. The 117 original orientations are then

approximated by the ~nnj ¼ 4 mean orientations of each cluster.

Let us further illustrate this process on a 1D example. Here

the input data consist of 200 points ranging from 0 to 1. The

corresponding density function f is visualized in Fig. 2 (plotted

in black). The input data are subdivided into 20 equally spaced

bins and the number of data points corresponding to each bin

is fed to the IA method which reduces the data set to only 25

points. The density function estimated from this downsampled

data set is plotted in green in Fig. 2. At this stage

k f � ~ffk1 ¼ 0:29 for the 1D example. This 1D example is used

in the later sections for the purpose of illustration.

2.6. Optimal shape parameter of the kernel function

In the above 1D example we observe that the density

function recovered from the reduced data set is much too

oscillatory. This is because we have chosen the kernel function
~  shape parameter ~�� for the reduced data set to be equal to

the shape parameter � of the kernel function  that we used

for the original data set. However, in general, a smaller sample

size requires a broader kernel function. Hence, the objective

of this section is to optimize ~�� such that the corresponding

ODF,

~ff ðgÞ ¼
1

~NN

X~NN

i¼1

~  ~��½ffð~ggi; gÞ�; ð6Þ

fits best the original ODF,

f ðgÞ ¼
1

N

XN

i¼1

 �½ffðgi; gÞ�: ð7Þ

The optimization process of ~�� starts with the initial guess

equal to � and progresses in fixed steps selecting the least

value of k f � ~ffk1. The effect of this optimization for the 1D

example is shown in Fig. 3, in which k f � ~ffk1 reduces from

0.29 (Fig. 2) to 0.17 (plotted in blue). The kernel optimization

affects the shape of the error function k f � ~ffk1 which shifts

the minimum value. This results in a different value of

optimum ��, as shown by the curve with a dashed line (with

both optimum kernel and optimum subdivision) and the curve

with a dotted line (with only optimum subdivision) in Fig. 4.
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Figure 2
Kernel density estimate (KDE) of the 1D example and the reconstructed
data with 25 points using a Gaussian kernel. Results from various stages
of optimization are shown as stems on the x axis which are sampled data
( ~NN ¼ 25) from various stages of optimization. Initially from only integer
approximation k f � ~ffk1 ¼ 0:29 shown in green, after kernel optimization
k f � ~ffk1 ¼ 0:17 in blue and finally after subdivision optimization
k f � ~ffk1 ¼ 0:12 in red.

Figure 3
Effect of kernel shape parameter ~�� on k f � ~ffk1 between the input ( f )
and output ( ~ff ) kernel density estimates for the 1D example.



This comparison justifies the kernel shape optimization in the

proposed algorithm.

The results of kernel optimization for various test cases and

different ~NN are shown in Table 2. As explained earlier, these

results show that as ~NN increases the kernel function becomes

finer (indicated by smaller values of ~��).

2.7. Optimum grid spacing

In the previous sections, we have found a subsampling of

our input orientations for a given subdivision of the orienta-

tion space into cells and an optimal kernel function to recover

an ODF ~ff. In this section, we aim to optimize the subdivision

of the orientation space to obtain an optimal fit between the

ODF f computed from the input orientations and the ODF ~ff
computed from the reduced set of orientations.

Fig. 4 indicates the dependency of k f � ~ffk1 on �� for the

1D problem, and the optimization of �� to minimize k f � ~ffk1

further yields a result of 0.12 shown in Fig. 2 (plotted as a red

line). The optimization procedure is similar to the kernel

optimization performed in Section 2.6. The algorithm

proceeds in steps of 1 unit of �� and selects the least value of

k f � ~ffk1 estimated over a range of ��.
Similarly, the effect of �� on k f � ~ffk1 for various ~NN is

shown in Fig. 5 for an actual EBSD data set (test case 316L-

1000W).

We observe that the error increases in both directions, i.e. if

the subdivision becomes too fine or if the subdivision becomes

too coarse. On the one hand, if the subdivision becomes too

coarse orientations within one cell may have a large misor-

ientation angle and replacing them by their mean value

increases the error. On the other hand, if the subdivision is too

fine, the integer approximation will result in severe rounding

errors.

3. Results

In this section the results of the reconstruction process

(Table 3) are shown in the form of contour plots (Figs. 6–9) for

all of the test cases. The results in Table 3 show that k f � ~ffk1

reduces with rising ~NN value; however, the corresponding

computational time also increases. In these figures, the

contour plots of the ODF from input orientations and the

reconstructed ODF (for ~NN = 150, 400, 1000) are shown. In

these contour plots, the peaks and contours in the input ODF

are successfully captured by the reconstructed ODF, closely

maintaining the intensity of the contours.

To further analyze the effect of sample size ~NN on error

k f � ~ffk1, in Fig. 10 the k f � ~ffk1 values are compared by

varying ~NN for all test cases. As the value of ~NN increases,

k f � ~ffk1 reduces and saturates to an almost constant value.

Depending on the input orientations this saturation may be

achieved at different values of ~NN.
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Figure 5
Effect of grid spacing �� on k f � ~ffk1 between input ( f ) and output ( ~ff )
ODFs for the test case of additively manufactured 316L stainless steel
produced with a 1000 W laser (316L-1000W), for various ~NN values.

Table 2
~�� optimization result for various test cases.

~NN 216 400 512 1000 2197 3375 4913 8000 10648

Rolled-Cu (� = 10�) 11� 11� 10.5� 10� 10� 10� 10� 10� 10�

316L-1000W (� = 4.7�) 5.7� 5.2� 5.2� 4.7� 4.7� 4.7� 4.7� 4.7� 4.7�

316L-400W (� = 5.9�) 6.4� 6.4� 6.4� 6.4� 5.9� 5.9� 5.9� 5.9� 5.9�

Forsterite (� = 11.9�) 13.4� 12.4� 11.9� 11.9� 11.9� 11.9� 11.9� 11.9� 11.9�

Table 3
Application of the reconstruction algorithm to various test cases.

The values shown in the table are k f � ~ffk1 and the values within parentheses
show computation time in seconds.

~NN Rolled-Cu 316L-1000W 316L-400W Forsterite

400 0.0221 (176) 0.0715 (82) 0.0645 (119) 0.0442 (80)
512 0.0183 (189) 0.0618 (107) 0.0557 (153) 0.0383 (120)
1000 0.0217 (221) 0.0545 (173) 0.0466 (201) 0.0206 (140)
3375 0.0117 (309) 0.0267 (182) 0.0236 (275) 0.0071 (154)
8000 0.0074 (504) 0.0201 (248) 0.0135 (541) 0.0046 (262)
10648 0.0082 (699) 0.0169 (324) 0.0120 (669) 0.0038 (319)

Figure 4
Effect of grid spacing �� on k f � ~ffk1 between the input ( f ) and output
( ~ff ) kernel density estimates for the 1D example.
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Figure 8
ODF plot comparison of 316L-400W from the input orientation set (N = 46 310) shown in (a) and the reduced orientations ~NN ¼ 150; 400; 1000 shown in
(b), (c) and (d), respectively.

Figure 7
ODF plot comparison of 316L-1000W from the input orientation set (N = 118 848) shown in (a) and the reduced orientations ~NN ¼ 150; 400; 1000 shown
in (b), (c) and (d), respectively.

Figure 6
ODF plot comparison of Rolled-Cu from the input orientation set (N = 27 000) shown in (a) and the reduced orientations ~NN ¼ 150; 400; 1000 shown in
(b), (c) and (d), respectively.



For a more detailed comparison between the ODFs f and ~ff
the power plots estimated from the ODFs of the test cases are

shown in Fig. 11. These power plots are estimated by summing

the squared Fourier coefficients of a given harmonic order,

which shows the contribution of each harmonic order to the

texture index; a detailed mathematical description is given in

the work of Schaeben et al. (2017). The harmonic contribution

from the ODF ~ff closely matches the value from f. This is also

observed in Fig. 10 in which the error k f � ~ffk1 reduces as ~NN
increases.

4. Application

One of the main applications of this method is numerical

modeling like micromechanical modeling. Here, an example of

this process is presented for Rolled-Cu. The input is in the

form of 27 000 crystallographic orientations. We choose a local

crystal plasticity (CP) model without the effect of the strain

gradient as described by Ma & Hartmaier (2014) for numerical

modeling of material behavior. The material is assumed to be

constructed of periodically repeating volume elements known

as the representative volume element (RVE) (refer to Fig. 12).

For details of the applied periodic boundary conditions and

homogenization scheme, please refer to Vajragupta et al.

(2017).

A virtual uniaxial test is performed for all the RVEs by

applying displacement along the z or 33 direction. The CP

parameters are fitted by comparing the homogenized virtual

uniaxial tensile test from the RVE consisting of 27 000 grains

with experimental data; therefore the entire input orientation

set was used for this test, and no reconstruction process is used

for this RVE. Keeping the CP parameters the same, smaller

RVEs comprising 64, 216, 512, 1000, 3375, 4913, 8000 and

10 648 grains are generated and corresponding grain crystal-

lographic orientations are generated with the reconstruction

algorithm (Table 4) and hybrid IA method. The results from

the smaller RVEs created using both the methods are

compared with the reference RVE, i.e. the RVE with 27 000

grains.

To exclude the influence of the grain boundary misor-

ientation on the mechanical response of the material, the
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Figure 10
Comparison of k f � ~ffk1 between input ( f ) and output ( ~ff ) ODFs for the
test cases: Rolled-Cu, 316L-1000W, 316L-400W and forsterite calculated
for a number of extracted samples.

Figure 9
ODF plot comparison of forsterite from the input orientation set (N = 152 345) shown in (a) and the reduced orientations ~NN ¼ 150; 400; 1000 shown in
(b), (c) and (d), respectively.

Table 4
ODF reconstruction data for Rolled-Cu.

~NN k f � ~ffk1

64 0.07760
216 0.03458
512 0.02317
1000 0.03100
2197 0.02387
3375 0.01911
4913 0.01522
8000 0.02242
10648 0.01788



method for fitting the grain boundary misorientation angle

distribution introduced in the work of Biswas et al. (2019) was

implemented by using the extracted samples and the RVE

geometry; the target distribution followed can be found in the

work of Mackenzie (1964).

Since these orientation sets reconstruct the same input

ODF, the output from the virtual tensile test data should be

comparable to the results obtained with the model consisting

of 27 000 orientations. The finite element method (FEM)

simulations are performed with ABAQUS (Simulia, 2012).

Each grain in the RVE is discretized using a single C3D8

hexahedral element (Fig. 12).

The homogenized true stress–strain plot shown in Fig. 13

indicates the difference between the results of the RVEs

consisting of discrete orientations generated by the recon-

struction algorithm and the hybrid IA method. This mismatch

can be attributed to the different input data set. In the case of

the hybrid IA, the input is the discrete ODF calculated on

predefined SO(3) grid spacing, which may not be optimum for
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Figure 12
Representative volume elements with ~NN ¼ [64, 216, 512, 1000, 3375, 8000]
grains. Each grain is represented by one cube corresponding to one finite
element.

Figure 11
Power plots of ODFs f and ~ff for ~NN ¼ ½150; 400; 1000� for the test cases:
Rolled-Cu, 316L-1000W, 316L-400W and forsterite.

Figure 13
Homogenized CPFEM result comparison for the case of Rolled-Cu for a
few selected RVEs constructed using orientations from the reconstruc-
tion algorithm and the hybrid IA method; experimental data are obtained
by digitizing Fig. 13(a) of Knezevic & Landry (2015).



the deterministic IA, whereas the proposed reconstruction

algorithm starts with the experimental data set.

Referring to the generated RVEs, the results indicate that

the RVE with 216 grains is sufficient to predict the homo-

genized mechanical properties; a detailed examination of the

local stress values (calculated at integration points) gives a

different outlook in comparison with the homogenized

mechanical properties. The local stress values can be impor-

tant for modeling phenomena like fracture, damage etc.

The distribution of the local stress values in smaller RVEs is

shown in Fig. 14 and compared with the local stress distribu-

tion in the reference RVE, and the difference is illustrated in

Fig. 15 as the root-mean-square difference. Evidently, as the

number of grains in the RVE increases, the difference between

the stress distribution from the smaller RVE and the reference

RVE also decreases. These results indicate that the value

k f � ~ffk1 only specifies a minimum requirement, and the

strategy for numerical modeling should be decided by the

objective of modeling. If the objective in this test case (Rolled-

Cu) is to model damage, perhaps an RVE with a minimum of

1000 grains should be considered.

Another important aspect of textured materials is the

anisotropy in material properties. This study is performed for a

hypothetical test case of copper with fiber texture in which the

110 fiber is parallel to the Y direction of the RVE. The

CPFEM parameters are the same as those in the work of

Anand (2004) and the RVEs with N = [216, 512, 1000, 10 648]

research papers

186 Abhishek Biswas et al. � Reconstruction of the orientation density function J. Appl. Cryst. (2020). 53, 178–187

Figure 14
Comparison of stress components along the tensile load direction (�33) (distribution in the form of a histogram) for RVEs with 64, 216, 512, 1000, 3375,
4913, 8000 and 10 648 grains with the reference RVE (27 000 grains). The bin width of the histogram is 10 MPa.

Figure 15
Root-mean-square difference between the stress distribution from the
reference RVE (27 000 grains) and smaller RVEs consisting of ~NN = [64,
216, 512, 1000, 2197, 3375, 4913, 8000, 10 648].



are similar to those shown in Fig. 12. The boundary conditions

are similar to the previous test case of Rolled-Cu. However, in

this test case, the uniaxial tensile test is performed in all three

sample directions for all the RVEs to study the anisotropy in

homogenized stress–strain behavior. The input orientation

consists of 500 000 orientations generated analytically using

MTEX (Bachmann et al., 2010); the results of the recon-

struction process are shown in Table 5.

Fig. 16 shows the comparison between the stress–strain plot

of the RVEs. Since the 110 fiber is aligned along the Y

direction the stress values are much higher than in the other

two directions. All the RVEs show a similar stress–strain

behavior. This indicates that the extracted samples can

successfully reconstruct the input ODF and are also able to

capture the mechanical behavior.

5. Conclusion

In this work, an algorithm for the reconstruction of the ODF

from an EBSD experiment by a set of equally weighted

orientations has been proposed. It is based on the determi-

nistic integer approximation method introduced by Leffers &

Jensen (1986), but the previously reported problem of over-

weighting is tackled by optimizing the SO(3) grid and kernel

function used for the reconstruction. The quality of the

reconstruction is judged not only by the L1 norm of the

difference between the input and the reconstructed ODF but

also by the ODF power plot. The application of this method in

the prediction of mechanical behavior using CPFEM provides

further insight into the importance of precise representation

of the reduced orientation set in CPFEM simulations. This

study shows that the L1 norm of the difference between the

input and the reconstructed ODF estimated from the sample

orientations gives only a minimum criterion for the number of

samples to be incorporated in the RVE. However, the influ-

ence of sample size on the local mechanical output like stress

can be observed and should be considered during micro-

mechanical modeling. In addition to this, we also demonstrate

the ability of the reduced orientation set to predict anisotropy

in yield strength and hardening behavior, through micro-

mechanical simulations of the RVE with fiber texture. This

case study shows a good agreement for the prediction of these

mechanical behaviors between the various sample sizes

ranging from 216 to 10 648 orientations.
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Figure 16
Homogenized CPFEM result comparison for the case of copper with fiber
texture.

Table 5
ODF reconstruction data for fiber texture (110 fiber parallel to the Y
direction).

Orientation samples k f � ~ffk1

216 0.01498
512 0.01131
1000 0.00605
10648 0.00019
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