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A method of simulating the neutron scattering by a textured polycrystal is

presented. It is based on an expansion of the scattering cross sections in terms of

the spherical harmonics of the incident and scattering directions, which is

derived from the generalized Fourier expansion of the polycrystal orientation

distribution function. The method has been implemented in a Monte Carlo code

as a component of the McStas software package, and it has been validated by

computing some pole figures of a Zircaloy-4 plate and a Zr–2.5Nb pressure tube,

and by simulating an ideal transmission experiment. The code can be used to

estimate the background generated by components of neutron instruments such

as pressure cells, whose walls are made of alloys with significant crystallographic

texture. As a first application, the effect of texture on the signal-to-noise ratio

was studied in a simple model of a diffraction experiment, in which a sample is

placed inside a pressure cell made of a zirconium alloy. With this setting, the

results of two simulations were compared: one in which the pressure-cell wall

has a uniform distribution of grain orientations, and another in which the

pressure cell has the texture of a Zr–2.5Nb pressure tube. The results showed

that the effect of the texture of the pressure cell on the noise of a diffractogram

is very important. Thus, the signal-to-noise ratio can be controlled by

appropriate choice of the texture of the pressure-cell walls.

1. Introduction

Neutron and X-ray scattering are extensively used in materials

science for many purposes, in particular to analyse the struc-

ture of phases, quantifying their volume fractions and deter-

mining the state of stress and the crystallographic texture. The

continuous demand for these techniques by the technological

and scientific community gave rise to the construction of

dedicated instruments at neutron and synchrotron facilities.

Because of the low flux of neutrons compared with X-rays, in

neutron laboratories the instruments are optimized for a

particular set of scientific applications, which implies looking

for the highest flux on the sample while keeping the resolution

required by the technique to ensure a reasonable signal-to-

noise ratio (SNR). The experimental setup determined by the

optimization defines the characteristics of the beam impinging

on the sample, which in turn influences the measurements, for

instance the shape and position of the diffraction peaks

(Mikula et al., 1997; Stoica et al., 2001).

Knowing how the instrument configuration affects the

measurements is important not only during the design process

of the instrument but also during operation, to interpret the

bias of the experimental observations. The large number of

variables that define the instrument configuration gives rise to

an increasing use of Monte Carlo simulations. In these models,
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the neutron travels from the source to the detector and in its

path interacts with the different components of the instrument

and, eventually, with the sample. Examples of such software

are the McStas package (Lefmann & Nielsen, 1999), the

VITESS project (Zsigmond et al., 2002), IB (Zhao, 2011) and

IDEAS (Lee & Wang, 2002), among others. Monte Carlo

engines have also been added to some analysis programs like

RESTRAX (Šaroun & Kulda, 1997) and have been used to

estimate the corrections needed to extract physical quantities

from experimental measurements (Vickery et al., 2013). A

good example is the estimation of pseudo-stresses in neutron

diffraction experiments (Šaroun et al., 2013). Attempts at

realistic simulations by combining detailed instrument and

sample modelling were presented by Farhi et al. (2009) and by

Lin et al. (2016).

Monte Carlo simulations are particularly important for

neutron instruments due to the large gauge volume necessary

to have a significant signal, the reason being the low brightness

of neutron sources compared with synchrotron or even

laboratory X-ray instruments. This large volume brings about

unwanted spatial resolution effects called pseudo-strains,

which are caused by perturbation of the instrumental gauge

volume due to the heterogeneous distribution of the scattering

probability in the sample. The surface effect when the gauge

volume is only partially immersed in the material is a well

known special case. In general, any heterogeneity or beam

extinction mechanism which causes significant variation of the

scattering probability on a distance comparable to the gauge

size may give rise to pseudo-strains, for example gradients in

phase composition and texture, or a strong variation in beam

attenuation with wavelength near a Bragg edge. The pseudo-

strains are often of the same magnitude as the measured

lattice strain and need to be properly treated. Monte Carlo

models proved to be useful for this objective since they can

account for beam attenuation, multiple scattering, divergence

effects etc.

Another important application of Monte Carlo modelling is

related to estimation of the SNR. In some cases, for example

when using sample environment devices like furnaces or

pressure cells, the neutron travels through the device wall

before reaching the sample and/or the detector. In its path, it

may suffer multiple scattering, either elastic or inelastic,

increasing the instrument background. This is particularly

important in high-pressure neutron instruments, where the

pressure cell has a thick wall (Rodrı́guez-Velamazán et al.,

2011; Rodrı́guez-Velamazán & Noguera, 2011). To reduce the

background as much as possible, the selection of materials and

their fabrication processes are critical. Alloys that minimize

the background, such as TiAlV or CuBe, have been proposed

(Kibble et al., 2019). However, to lower the background

further, the crystallographic texture can be considered a

design variable.

The scattering of neutrons by textured polycrystals,

including a detailed description of texture, has not yet been

fully incorporated into the available Monte Carlo programs.

The nxs library to compute the neutron total scattering cross

sections (Boin, 2012), which uses the March–Dollase model

(Dollase, 1986) to include the effect of preferred grain

orientations in the amplitude of Bragg edges, was imple-

mented in McStas Release 2.5. Concerning the analysis of

transmission (Bragg edge) spectra in textured materials, the

total coherent cross sections have been implemented in terms

of integration of the pole figures (Santisteban et al., 2012;

Malamud et al., 2014), but these are not suitable for imple-

mentation in an efficient Monte Carlo code due to the

demanding computational cost. Other tools for analysing

transmission data through polycrystalline samples which

implement approximations to the total cross section are Sinpol

(Dessieux et al., 2018, 2019) and RITS (Sato et al., 2011), and

earlier work includes that of Vogel (1999).

In this work, we present expressions for the differential and

total elastic coherent cross sections in terms of the generalized

Fourier coefficients of the orientation distribution function

(ODF), which are suitable for implementation in Monte Carlo

programs. A closed expression for the total cross section

derived here allows a time-efficient evaluation of this quantity,

a necessary condition for its use in Monte Carlo simulations.

As mentioned above, other expressions for this quantity were

obtained earlier (Santisteban et al., 2006, 2012). In our case,

the truncation of the generalized Fourier series of the ODF

renders the Monte Carlo simulations feasible, although they

are computationally much more expensive than the standard

simulations with single crystals or powder materials. The

efficiency can be greatly improved by using variance reduction

techniques. These developments have been implemented in a

Monte Carlo code as a new component of the McStas package.

The paper is organized as follows: in Section 2 we give a

brief description of the ODF, to state clearly the conventions

used in this work; in Sections 3 and 4 we present, respectively,

the expressions used to compute the differential and total

neutron cross sections for coherent elastic scattering by a

polycrystalline material; in Section 5 we describe in detail how

the method is implemented in the McStas Monte Carlo code;

in Section 6 we analyse the effects of the truncation of the

Fourier series; in Section 7 we present the results of simula-

tions performed to validate the code; and in Section 8 we

discuss, as a first application, an estimation of the SNR of an

experiment involving a pressure cell with a sharp texture,

comparing it with the SNR associated with a pressure cell of

the same characteristics and a uniform texture. Finally, the

methods and results are summarized in Section 9. Some details

of the computations and other useful information are

provided in the appendices.

2. Orientation distribution function

The crystallographic texture of a polycrystalline sample is

characterized by its ODF, which gives the relative number of

crystal grains that have a particular orientation. The neutron

scattering cross section can be computed from the ODF, under

some approximations to be discussed in the next section. Let

us recall here the basic properties of the ODF, which serves

also to fix the notation.
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Let fx̂x; ŷy; ẑzg be a right-handed orthonormal triad defining a

reference frame attached to the sample, and {a, b, c} a system

of three independent crystal lattice vectors that generate the

whole lattice, oriented in some fixed specified way with respect

to the sample frame. The vectors, G, of the reciprocal lattice

are determined by the Miller indices hkl through

G ¼ h
2�

v0

b� cþ k
2�

v0

c� aþ l
2�

v0

a� b; ð1Þ

where v0 = a � (b � c) is the volume of the crystal unit cell.

A polycrystal is a material composed of crystalline grains

with different orientations at different sample points. The

orientation of a grain at a point r in the sample is described by

a rotation g(r) 2 SO(3) (the three-dimensional rotation

group), so that the crystal orientation at a point r is given by

the triad

fgðrÞ a; gðrÞ b; gðrÞ cg; ð2Þ

and the vectors of the corresponding reciprocal lattice are

given by g(r)G.

The ODF of the polycrystal is a real function f : SOð3Þ ! R

that gives the volume fraction of grains having an orientation

with respect to the sample determined by the rotation g

(Bunge, 1993). The ODF satisfies f(g)� 0 and is normalized so

that R
SOð3Þ

dg f ðgÞ ¼ 1; ð3Þ

where dg is the Haar (invariant) measure on SO(3), normal-

ized so that R
SOð3Þ

dg ¼ 1: ð4Þ

A rotation g can be expressed in terms of the three Euler

angles (�, �, �) as

g ¼ gẑzð�Þ gŷyð�Þ gẑzð�Þ; ð5Þ

where gn̂nð’Þ denotes the rotation by an angle ’ about the n̂n

axis. Note that the Euler angles are defined here in terms of

rotations about the fixed sample axes fx̂x; ŷy; ẑzg, and � and �
take values in [0, 2�] and � in [0, �]. In terms of the Euler

angles, the invariant measure has the form

dg ¼
1

8�2
sin � d� d� d�: ð6Þ

The ODF is the key point of the present work, as it uniquely

determines the neutron scattering cross sections in a poly-

crystalline material, within reasonable assumptions (see next

section). In neutron and X-ray diffraction experiments, the

ODF is not directly measurable and has to be computed from

measurements of related quantities like pole figures. The

mathematical problem of extracting the ODF from pole figure

measurements is called the pole figure inversion problem and

was first addressed in the pioneering work of Bunge (1965)

and Roe (1965). Since then, several methods have been

proposed and perfected by several authors (Pospiech & Jura,

1974; Jura et al., 1974, 1976; Matthies & Pospiech, 1980;

Pospiech et al., 1981; Houtte, 1983; Imhof, 1983; Pawlik, 1986;

Schaeben, 1988; Matthies, 1988; Helming & Eschner, 1990;

Houtte, 1991; Vadon & Heizmann, 1991; van den Boogaart et

al., 2007; Bernier et al., 2006; Hielscher & Schaeben, 2008).

The ODF can be expanded in a generalized Fourier series as

(Bunge, 1993)

f ðgÞ ¼
P1
l¼0

Pl

m¼�l

Pl

n¼�l

Cmn
l Dl

mnðgÞ; ð7Þ

where Dmn
l ðgÞ are the Wigner D matrices and

Cmn
l ¼ ð2l þ 1Þ

R
SOð3Þ

dg Dl�

mnðgÞ f ðgÞ: ð8Þ

The star superscript stands for complex conjugation. For

conciseness, here we call Cmn
l the Fourier coefficients and

equation (7) the Fourier series of the ODF, although it is an

abuse of language. The relation

Cmn�

l ¼ ð�1Þm�nC�m�n
l ð9Þ

holds by virtue of the reality of the ODF. In terms of the Euler

angles, the Wigner matrices are given by

Dl
mnð�; �; �Þ ¼ exp ð�im�Þ d l

mnðcos �Þ exp ð�in�Þ; ð10Þ

where d l
mnðxÞ are the Wigner d functions, an explicit expres-

sion of which is given in Appendix A. Given an ODF

measured on a discrete mesh of SO(3), its Fourier coefficients

can be computed with texture analysis software, such as

MTEX (Hielscher & Schaeben, 2008).

The Fourier expansion of the ODF is currently used in some

Rietveld refinement programs that deal with crystallographic

texture, for instance MAUD (Lutterotti et al., 1997, 1999;

Wenk et al., 2010).

3. Neutron scattering differential cross section

Let us obtain the coherent elastic scattering differential cross

section of a neutron propagating through a polycrystalline

material. We use the following notation: Nc is the number of

unit cells in a crystal, v0 the volume of the unit cell, G a

reciprocal-lattice vector attached to the fixed crystal frame

{a, b, c} and FG the corresponding structure factor. The

wavevectors of the incident and scattered neutrons are k and

k0, respectively, and the scattering vector is q = k� k0. We deal

only with elastic scattering, so that k0 = k.

The coherent elastic differential cross section for the scat-

tering by a perfect single crystal, small enough that the kine-

matical approximation (disregarding primary extinction)

holds, is given by (Squires, 1996)

d�

d�k0

� �el;coh

k!k0
¼ Nc

ð2�Þ3

v0

X
G

FG

�� ��2�ðk� k0 �GÞ: ð11Þ

In a polycrystal there is no interference between the scattering

produced by different grains, since they are very large in

comparison with the neutron wavelength and highly dis-

oriented, and thus the cross section is merely the sum of the

cross sections due to the individual grains (Sears, 1989).

Furthermore, the grains can be considered as perfect single

crystals, since the effect of mosaicity is completely masked by
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the effect of orientation disorder and can in principle be

neglected. Taking all this into account, and given that the

number of unit cells with orientation determined by g is

Nc f(g)dg, the cross section can be written as

d�

d�k0

� �el;coh

k!k0
¼

Z
SOð3Þ

dg f ðgÞNc

ð2�Þ3

v0

X
G

FG

�� ��2�ðk� k0 � gGÞ:

ð12Þ

The integral over g can be performed before the sum over G,

and thus we have to compute

IGðqÞ ¼
R

SOð3Þ

dg f ðgÞ �ðq� gGÞ: ð13Þ

An explicit expression for IG(q) can be obtained by using the

Fourier expansion of the ODF given by equation (7). Details

of the computations are given in Appendix B. The result is the

following expression for the differential cross section:

d�

d�k0

� �el;coh

k!k0
¼ Nc

ð2�Þ3

v0

X
G

FG

�� ��2
G2

1

4�
�ðq�GÞ�ðĜG; q̂qÞ: ð14Þ

Here, q̂q = q/q is the unit vector along the scattering vector

direction, ĜG = G/G and

�ðĜG; q̂qÞ ¼
X1
l¼0

4�

2l þ 1

Xl

m¼�l

Xl

n¼�l

Cnm
l Yn

l ðĜGÞY
m�

l ðq̂qÞ; ð15Þ

with Ym
l ðn̂nÞ being the spherical harmonics evaluated at the

point n̂n on the unit sphere. Some properties of the spherical

harmonics and the conventions used in this work are

summarized in Appendix A.

For a uniform ODF (a ‘powder’) �ðĜG; q̂qÞ = 1, since the only

non-vanishing Fourier coefficient is C00
0 = 1, and the well

known expression for the scattering by a powder is recovered

(Sears, 1989). Note that �ðĜG; q̂qÞ is proportional to the corre-

sponding pole function (Bunge, 1993): they differ only by the

4� factor entering equation (15). We prefer this normalization

because in this way the �ðĜG; q̂qÞ factor is the modulation in q̂q of

the powder scattering cross section originating from the

texture.

Formulas (14) and (15) for the differential scattering cross

section were used previously in models for Rietveld refine-

ment programs for textured polycrystals (Popa, 1992).

4. Total cross section

The total elastic coherent cross section is obtained by inte-

grating the differential cross section over the direction of the

scattered neutron, k̂k0:

�coh
el ðkÞ ¼

Z
d�k̂k0

d�

d�k0

� �el;coh

k!k0
: ð16Þ

For a textured polycrystal the differential cross section is given

by (12). Hence, equation (16) actually involves a double

integration over dg and d�k̂k0 . To get an explicit expression in

terms of the Fourier coefficients of the ODF we find it

convenient to perform the integral over d�k̂k0 first, and then

the integral over g, instead of using equation (14). Details of

the computations are given in Appendix C. The resulting

expression is

�coh
el ðkÞ ¼ Nc

ð2�Þ3

v0k3

X
G

FG

�� ��2 k

2G
H 1�G=2kð Þ�ðG; kÞ; ð17Þ

where H(x) is the Heaviside step function, which is 0 for x < 0

and 1 for x > 0, and

�ðk;GÞ ¼
X1
l¼0

4�

2l þ 1
Pl G=2kð Þ

Xl

m¼�l

Xl

n¼�l

Cnm
l Yn

l ðĜGÞY
m�

l ðk̂kÞ;

ð18Þ

where Pl(x) is the Legendre polynomial of order l. Again, for a

uniform ODF �(G, k) = 1, and the well known total elastic

coherent cross section for the scattering by a powder is

recovered (Sears, 1989). To our knowledge, the above

expressions for the total cross section in terms of the Fourier

coefficients of the ODF [equations (17) and (18)] have not

been derived before, although a similar expression for the

angular distribution function is given in the book by Bunge

(1993) when deriving an expression for the inverse pole figure

in terms of the series expansion.

Expressions (17) and (18) can be very useful for analysing

transmission experiments involving polycrystalline materials.

In particular, in neutron imaging experiments with energy

resolution, the elastic coherent term contributes to the

appearance of the Bragg edges. The position and shape of

these edges will depend on the spacing between the diffraction

planes of the grains and on the crystallographic texture,

respectively. From equation (17), it is clear that the edge for a

particular plane G starts to contribute to the total cross section

when the Heaviside function becomes nonzero, i.e. when G =

2k. Thus, in principle, provided the instrument has sufficient

energy resolution, the position of the edge will serve to

determine the state of strain of those grains whose reciprocal

vector G is parallel to the direction of incidence. The shape of

the Bragg edge as a function of the incident energy is

controlled by the product of three factors: the square of the

structure factor, |FG|2, the term k/2G and � given by

equation (18). This last term depends on the direction of the

incident beam and the scattering plane G, and carries all the

information regarding the crystallographic texture through the

Fourier coefficients, Cmn
l . In principle, from a mathematical

point of view, the summation over l, m and n in equation (18)

prevents the possibility of reconstructing the full ODF of a

material from a single transmission experiment, even if it is

done with energy resolution. However, it is also clear that,

from the combined analysis of a set of transmission experi-

ments with different k, some of the Cmn
l can be approximated

by inverting equation (18). This can be useful to obtain from

imaging experiments integrated quantities that depend on

texture, such as Kearns factors for hexagonal crystals (Kearns,

2001) or average elastic constants, which only depend on Cmn
l

with low l.

The total cross section computed from pole figures has been

used to analyse transmission experiment data (Santisteban et
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al., 2006; Malamud et al., 2014), but the Fourier expansion

presented here may have some advantages. First, for neutron

wavelengths of the order of 2 Å or less, several planes

contribute to the total cross section, as indicated by the

Heaviside function of equation (17). In these cases, integration

of the pole figure demands the evaluation of several pole

figures, while in equation (17) the contributions of all planes

are obtained from the same Fourier coefficients. Second, a

good description of the total cross section can be obtained

using only a few terms in the case of materials with a soft

texture, improving computing times. As a by-product, equa-

tion (18) can be used as the basis for ODF inversion problems

from transmission experiments. This will be studied in more

detail in future work.

Finally, it is worth stressing that both expressions for the

differential and total cross section [equations (14) and (17)]

are valid for any crystal and sample symmetry. All this infor-

mation is conveyed by the Fourier coefficients.

5. Code implementation

We have developed code to simulate the scattering of thermal

neutrons by a polycrystal using expressions (14) and (17). In

order to make it available to the community, we have imple-

mented it in the widely used McStas software package

(Lefmann & Nielsen, 1999; Willendrup et al., 2004, 2019). The

McStas component, called Texture.comp, uses the Union

development of McStas (Bertelsen, 2017), which is very

convenient as it allows the separation of physical processes

and geometry.

The strategy for simulating the scattering of a neutron of

wavevector k in a material comprises three steps: (i) sampling

the neutron free path to get an interaction point; (ii) sampling

the interaction process according to a probability proportional

to the scattering cross section of the process; and (iii) sampling

the wavevector k0 of the outgoing neutron as determined by

the differential cross section corresponding to the selected

interaction process.

In a homogeneous material, the free path, �, is distributed

according to an exponential function, Pnfpð�Þ = 	 expð�	�Þ,
where 	 is the linear attenuation coefficient (or macroscopic

cross section), given by

	ðkÞ ¼



A

1

Nc

�totðkÞ: ð19Þ

Here, 
 is the density of the material and A the mass contained

in the crystal unit cell, so that 
/A is the number of unit cells

per unit volume, and �tot/Nc is the total cross section per unit

cell. The density can be written as 
 = pA/v0, where p 2 [0, 1] is

the packing factor, which can be used instead of 
/A. Thus, for

step (i) only 	 is required, which, in general, depends on k.

The Monte Carlo simulation requires that the polycrystal be

statistically homogeneous (i.e. homogeneous after averaging

over grain disorder). If it is not, it has to be divided into

statistically homogeneous pieces. Moreover, only the value of

	 averaged over the grain disorder enters the free path

distribution, Pnfp(�). This is one further approximation that

amounts to neglect of the spatial correlations of the grain

orientations. Note, however, that this approximation is not

specific to the polycrystals with non-uniform texture consid-

ered here: it is also used for the simulation of powder samples

in the current Monte Carlo codes, although spatial correla-

tions in powders are not expected to be very important.

The linear attenuation coefficient receives additive contri-

butions from the different interaction processes available to

the neutron (incoherent elastic, coherent elastic, inelastic etc.).

Step (ii) selects the interaction process according to the rela-

tive probabilities given by the fractional contribution of each

process to 	. Thus, for step (ii) only the relative contributions

to 	 of the available processes are necessary. At step (iii), k0 is

sampled according to the differential cross section of the

interaction process selected at step (ii). The strategy for this

sampling depends strongly on the form of the corresponding

differential cross section.

In the Union development of McStas, the geometry and the

interaction processes are separated into different components,

and multiple scattering is taken into account automatically by

the union master component, which calls the functions of the

components that deal with geometry to perform the ray

tracing, and the functions of the components that deal with the

interaction processes to sample the free path, the interaction

process and k0. Two functions provide the interface of an

interaction process component, such as Texture.comp, with

the McStas union master. One receives k as input and returns

the contribution of the interaction process to 	. The other one,

which is called if and only if the interaction process described

by the component is selected by the master at step (ii), again

receives k as input and returns k0.

Let us describe Texture.comp in some detail. It has to

compute the functions � and �, for which a cut-off, lmax, on l

has to be used, so that the sum over l runs from 0 to lmax .

Although the number of terms in the sum is (lmax + 1)2, the

computation speed does not depend crucially on lmax , since

the main ingredients necessary to obtain � and � are

precomputed in dense two-dimensional grids of k̂k and q̂q and

interpolated as needed in the course of the simulation. This is

one of several optimization strategies implemented in the

code.

The evaluation of � and � is computationally expensive

and some strategies to improve the efficiency have been

developed. All the terms that do not depend on k or q can be

precomputed and stored in data structures for use in the

simulations. The sums entering equations (15) and (18) can be

reordered as follows. First we define

Vn
l ðĜGÞ ¼

Pl

m¼�l

Cmn
l

~PP
m

l ðcos �ĜGÞ exp ðim’ĜGÞ: ð20Þ

Here, in general �n̂n and ’n̂n denote the polar coordinates of the

unit vector n̂n in the sample reference system and

~PP
n

l ðxÞ ¼
ðl � nÞ!

ðl þ nÞ!

� �1=2

Pn
l ðxÞ; ð21Þ
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where Pn
l ðxÞ are the associated Legendre functions defined in

Appendix A. It is convenient to work with the polar compo-

nents of Vn
l , defined by

Vn
l ðĜGÞ ¼ Rn

l ðĜGÞ exp½i�n
l ðĜGÞ�; ð22Þ

where Rn
l ðĜGÞ and �n

l ðĜGÞ are the modulus and the argument of

the complex number Vn
l ðĜGÞ, respectively. Then, equations (15)

and (18) can be expressed as

�ðĜG; q̂qÞ ¼
Plmax

l¼0

UlðĜG; q̂qÞ ð23Þ

and

�ðG; kÞ ¼
Plmax

l¼0

Pl G=2kð ÞUlðĜG; k̂kÞ; ð24Þ

where

UlðĜG; n̂nÞ ¼
Pl

m¼�l

Rm
l ðĜGÞ ~PP

m

l ðcos �n̂nÞ cos �m
l ðĜGÞ �m’n̂n

h i
: ð25Þ

To derive the above equations we have used the fact that the

cross sections are real numbers. The vanishing of the

imaginary parts of � and � can be readily proved using

relation (9) and was used as a test for the code, since an

expression similar to (25), with cos½. . .� replaced by sin½. . .�,
has to vanish.

The computation of � and � is too expensive if lmax is large,

even using expressions (23) and (24), with precomputed

Rm
l ðGÞ and �m

l ðGÞ. As mentioned above, to speed up the

computations UlðG; n̂nÞ is precomputed, for each G and l, on a

dense two-dimensional grid of cos �n̂n 2 ½�1; 1� and

’n̂n 2 ½0; 2��. The Legendre polynomials entering (24) are also

precomputed on a dense grid of [�1, 1]. Thus, the computa-

tion time for � scales as lmax , since it amounts to performing

the sum over l with the values of the terms obtained by

interpolation. In the case of �, the whole sum over l can be

precomputed, and thus its computation time is independent of

lmax . That is, �ðĜG; q̂qÞ is precomputed, for each G, on a dense

two-dimensional grid of cos �q̂q and ’q̂q.

The contribution to 	 of the coherent elastic scattering by

the textured polycrystal, denoted here by 	coh , is given by

	coh = ðp=v0NcÞ�
coh
el , and thus it is numerically computed from

equations (17) and (24). The union master component uses it

to obtain the interaction point and to sample the interaction

process. If the coherent scattering by the polycrystal is

selected, Texture.comp has to sample the value of the

scattered wavevector, k0. This sampling is explained in what

follows.

First, note that, according to equation (17), the probability

that the scattering is due to the set of lattice planes perpen-

dicular to G is

PSðGÞ ¼
1

NS

FG

�� ��2 k

2G
H 1�G=2kð Þ�ðG; kÞ ð26Þ

where

NS ¼
X

G

FG

�� ��2 k

2G
H 1�G=2kð Þ�ðG; kÞ ð27Þ

is the normalization factor. The values of PSðGÞ are computed

and stored when calculating the contribution of the coherent

elastic scattering to 	 and need not be computed again. A

vector G is selected according to the probability PSðGÞ. This

sampling is standard, since the set of G that satisfy the

condition G < 2k imposed by the Heaviside function (the

Bragg cut-off) is finite. For the selected G, the delta function in

equation (14) determines the scattering angle, �s, which is

given by

cos �s ¼ k̂k � k̂k0 ¼ 1�G2=2k2: ð28Þ

Thus, as is well known, k̂k0 lies on the surface of a cone whose

axis is given by k̂k and whose angle is �s (the Debye–Scherrer

cone). It only remains to sample the azimuthal angle,

’0 2 ½0; 2��, around the cone axis. Introducing two unit vectors

t̂t1 and t̂t2 so that ft̂t1; t̂t2; k̂kg forms a right-handed orthonormal

triad, we have

k̂k0 ¼ sin �s cos ’0 t̂t1 þ sin �s sin ’0 t̂t2 þ cos �s k̂k ð29Þ

and

q̂q ¼
k

G
� sin �s cos ’0 t̂t1 � sin �s sin ’0 t̂t2 þ ð1� cos �sÞ k̂k
h i

:

ð30Þ

Let us denote by PGðk; ’
0Þ the probability density of ’0. Note

that this probability density gives the modulation of intensity

of the diffracted beam along the Debye–Scherrer cones.

According to equation (14), it is obtained, except for a

normalization factor, by substituting the above expression

for q̂q into �ðĜG; q̂qÞ, which is computed numerically from

equation (23). Hence, given G and k, the first step is to obtain

cos �s, sin �s, and the two vectors t̂t1 and t̂t2. Then, ’0 is sampled

according to its probability distribution, for which a simple

rejection method is convenient. However, rejection methods

need an upper bound for the probability density maximum,

and their efficiency is worse the higher the upper bound. In

our case, global upper bounds can be obtained from equation

(23) but, although they work reasonably well in most

instances, they are so bad in some cases that the rejection

method becomes useless. The solution, although not very

efficient, is to compute PGðk; ’
0Þ in a sufficiently dense grid in

[0, 2�] using equation (23). Its maximum is obtained from the

discrete values. This computation has to be performed each

time ’0 is sampled. The simple rejection method is thus

straightforward and works as follows. An angle ’0 is uniformly

selected in [0, 2�], and q̂q is computed according to equation

(30). Then PGðk; ’
0Þ is obtained by linear interpolation on the

grid. The ratio of this probability density to the maximum

probability density is compared with a random number

selected uniformly on [0, 1]. If the ratio is smaller than the

random number, the value of ’0 is accepted, k̂k0 is computed

from equation (29) and k0 = kk̂k0. Otherwise, another value of ’0

is selected uniformly in [0, 2�] and the process is repeated.
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Clearly, the sampling of ’0 is the bottleneck in the simula-

tion. An improvement in the sampling procedure might

dramatically increase the code efficiency. The main problem is

that, although we can compute �ðĜG; q̂qÞ with reasonably effi-

ciency (by interpolating precomputed values), this is not

enough. For an importance sampling method, like rejection,

we need the maximum in ’0 of �ðĜG; q̂qÞ, with q̂q given by

equation (30), which depends on the wavevector of the inci-

dent neutron, k. To estimate the maximum, �ðĜG; q̂qÞ has to be

evaluated many times. Alternatively, we might consider using

the weight factor transformation,1 frequently used in McStas

(Willendrup et al., 2019, 2018). A similar problem arises in this

case, however, since the weight is given by the normalized

probability density, PGðk; ’
0Þ, which is proportional to

�ðĜG; q̂qÞ, the proportionality factor being the inverse of the

integral of �ðĜG; q̂qÞ over ’0. To compute the normalization

factor, which again depends on k, one has to evaluate �ðĜG; q̂qÞ

many times. A simple brute-force possibility would be to

precompute either the maximum in ’0 of �ðĜG; q̂qÞ or the

normalization factor of PGðk; ’
0Þ on a three-dimensional grid

in k space. However, the precomputation would be very time

consuming and the three-dimensional table very large, and we

prefer to avoid interpolation on three-dimensional grids.

Hence, we discarded this possibility. In any case, it is clear that

there is ample room for improvement at this point.

The need to compute PGðk; ’
0Þ on the ’0 grid each time that

’0 is sampled would make the simulations unfeasible if � and

�l had to be computed from expressions (23) and (25). The

precomputation of � is crucial. In comparison, the use of the

precomputed Ul in the evaluation of � is less important: it

greatly improves the efficiency of the simulation, but simula-

tions would still be feasible without it.

The efficiency of the simulation can be greatly improved by

using variance reduction techniques (stratified sampling)

provided by the McStas kernel, especially the use of the SPLIT

keyword (Willendrup et al., 2019, 2018). Using the SPLIT n

keyword, each incoming neutron is reused n times. The values

of 	coh and PGðk; ’
0Þ computed on the grid are saved and

reused when another identical neutron enters the component.

Summarizing, the user has to provide the McStas

Texture.comp component with the necessary information

through eight input parameters:

(a) The paths to three files: one which contains the coor-

dinates of the crystal reference frame, fâa; b̂b; ĉcg, in the sample

frame; another one which contains the crystallographic

information in Lazy/ICSD format (Yvon et al., 1977); and a

third which contains the Fourier coefficients of the ODF.

(b) Four integer numbers: the cut-off lmax; the sizes in each

dimension of the 2D grid in ðcos �n̂n; ’n̂nÞ space where �ðĜG; q̂qÞ

and UlðĜG; k̂kÞ are precomputed, nct � n’ ; and the size of the

grid used to sample ’0, n’0 .

(c) One real number, the packing factor p.

The program obtains the Miller indices and the corresponding

structure factors from the crystallographic file. The user has to

guarantee consistency between the sample frame, the crystal

reference frame, the crystallographic information and the

Fourier coefficients of the ODF.

6. Cut-off effects

The feasibility of Monte Carlo simulations using the method

proposed in this work relies on the truncation of the expan-

sion, restricting the sum in l to l 	 lmax , with lmax sufficiently

small. To investigate the cut-off effects, we considered the

textures of a Zircaloy-4 plate and a Zr–2.5Nb pressure tube

that were obtained experimentally by Malamud et al. (2018).

The coefficients Cmn
l are computed from the ODFs reported in

this reference, using the MTEX software. Fig. 1 displays Cl =P
mn jC

mn
l j=ð2l þ 1Þ as a function of l for the two materials. The

Zr–2.5Nb pressure tube has a sharper texture than the

Zircaloy-4 plate, which is reflected in the slower vanishing of

the Fourier coefficients as l!1.

The dependence on lmax of the pole figures PGðr̂rÞ associated

with the lattice planes perpendicular to the reciprocal-lattice

vector G is obtained by truncating at lmax the sum in l in the

well known relation (Bunge, 1993)

PGðr̂rÞ ¼
X1
l¼0

Xl

m¼�l

Xl

n¼�l

Cmn
l

2l þ 1
Yn

l ðĜGÞY
m�

l ðr̂rÞ; ð31Þ

where r̂r represents a direction relative to the sample reference

frame.

The cut-off effects on pole figures in the Zircaloy-4 plate

and Zr–2.5Nb pressure tube are displayed in Figs. 2 and 3,

respectively. The columns, from left to right, correspond to the

ð1010Þ, (0002) and ð1120Þ crystal planes, respectively. The top

panels display the pole figures computed directly from the

experimental ODF [cf. Figs. 4 and 6 of Malamud et al. (2018)].

The lower panels display the absolute difference between the

pole figures shown in the top panels and the pole figures

computed using equation (31), with cut-offs lmax of 30, 35 and

20 in the Zircaloy-4 case, and of 40, 35 and 30 in the Zr–2.5Nb

pressure tube case. The pointwise convergence of the Fourier

expansion can be appreciated by looking at the scale set by

‘Max’ in the figures.

The dependence of the cross sections on lmax is also inter-

esting. Fig. 4 displays, as a function of lmax , the contribution of
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Figure 1
Fourier coefficients of (a) the Zircaloy-4 plate ODF and (b) the Zr–2.5Nb
pressure tube ODF. What is actually plotted is Cl =

P
m;n jC

l
mnj=ð2l þ 1Þ.

1 We are grateful to one of the referees for bringing the weight factor
transformation to our attention. It might have some advantages over
importance sampling methods, opening a way for improving the code
efficiency, although the problems discussed in the text have to be overcome
first.



different hkl planes to the total scattering cross section for a

neutron of  = 3.1 Å propagating along a direction given by

polar and azimuthal angles of 80 and 60
, respectively, with

respect to the sample reference frame. These angles were

chosen arbitrarily and correspond to an impinging direction

80
 to the normal direction and 60
 to the rolling direction in

the case of the Zircaloy-4 plate, and 80
 to the radial direction

and 60
 to the axial direction in the case of the Zr–2.5Nb tube.

The left- and right-hand panels correspond to the Zircaloy-4

plate and the Zr–2.5Nb pressure tube, respectively. The total

cross section is also displayed (black line). To appreciate the

convergence towards the lmax ! 1 limit, the values are

normalized by those with the largest cut-off (30 and 40 for the

Zircaloy-4 plate and the Zr–2.5Nb pressure tube, respec-

tively). The insets magnify the region of larger lmax . We see

that the uncertainties introduced by the finite value of lmax are

very small if lmax is large enough.

Fig. 5 displays the probability density,PGðk; ’
0Þ, of ’0 for the

scattering of a neutron with wavevector k described in the

preceding paragraph by various crystal planes of the Zircaloy-

4 plate. The probability density is normalized by its maximum.

Remember that this function corresponds to the modulations
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Figure 2
Pole figures of the Zircaloy-4 plate corresponding to the crystal planes (left) ð1010Þ, (middle) (0002) and (right) ð1120Þ. In the first row they are computed
from the experimental ODF of Malamud et al. (2018). The second, third and fourth rows display the differences between the pole figures shown in the
first row and those computed using equation (31) with cut-off lmax = 30, 25 and 20, respectively, and Fourier coefficients obtained from the ODF of
Malamud et al. (2018).



of intensity around the corresponding Debye–Scherrer cone

diffracted by a small sample. Each panel corresponds to a

different set of crystal planes, whose Miller indices are shown.

The different curves correspond to different values of lmax ,

displayed in the legend. For l = 0, the curves are constant, as

they have to be for a uniform texture, with no preferred

orientation. Note that the differences decrease considerably as

lmax is increased and are large only for lmax < 10.

The analogous data for the Zr–2.5Nb pressure tube are

displayed in Fig. 6. While for the Zircaloy-4 plate the curves

converge for l > 30, for the Zr–2.5Nb texture convergence

occurs for l > 40. This is consistent with the higher texture

sharpness of the Zr–2.5Nb tube, as discussed by Malamud et

al. (2018) and observed in Figs. 2 and 3. In the Zr–2.5Nb case

there are appreciable differences for lmax 	 15, but for lmax �

20 the differences are small. Note that for lmax 	 15 the

probability density even becomes negative in some regions. In

these regions, however, the true probability is small. The code

deals with this problem just by replacing the negative prob-

abilities by zero. This is reasonable since, for instance, some

useful although not accurate estimation of the background

generated by a Zr–2.5Nb pressure tube might be obtained by

Monte Carlo simulations using lmax = 15. Nevertheless, it is

advisable to increase the value of lmax since, due to the opti-

mization implemented in the code, this will not significantly

affect the efficiency of the simulations.
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Figure 3
The same as Fig. 2 but for the Zr–2.5Nb pressure tube. The second, third and fourth rows correspond to lmax = 40, 35 and 30, respectively.



7. Code validation

To validate the code we performed Monte Carlo simulations

to obtain the pole figures of the Zircaloy-4 plate and the Zr–

2.5Nb pressure tube, and compared the results with the exact

pole figures displayed in the upper panels of Figs. 2 and 3. By

exact we mean that these are the pole figures that correspond

to the set of Fourier coefficients used in this work, which

obviously suffer from the uncertainties associated with their

experimental and theoretical determination. The Monte Carlo

simulations were performed with the same Fourier coefficients

and cut-off, and therefore have to reproduce them with high

accuracy. All simulations described in this paper (in this and

the next section) were performed by precomputing UlðĜG; n̂nÞ

and �ðĜG; q̂qÞ on a 201 � 601 uniform grid in ðcos �; ’Þ space.

The grid could probably be made coarser with no great loss of

accuracy, but we have not systematically studied the trade-off

between simulation accuracy and grid density.

To avoid systematic uncertainties, the simulations are

performed in an almost ideal case: the beam, highly collimated

(with negligible divergence) and perfectly monochromatic,

with  = 3.1 Å, is scattered by a small spherical sample of

1 mm radius, and multiple scattering is forbidden. The area of

the detector is chosen to be small enough that its influence on

the results is negligible. The statistical uncertainties are kept

low by simulating a high number of neutron histories. Another

source of uncertainty is introduced by the approximations

made in the code to optimize the computations (for instance,

interpolations of precomputed quantities). Although not

convenient in real neutron experiments, in this virtual

experiment the Schulz setup (Schulz, 1949) is used, as shown

in Fig. 7(a): the direction of the incident beam and the position

of the detector are chosen so that the scattering vector is

always directed along the ŷyL direction in the laboratory

reference frame, given by the orthonormal triad fx̂xL; ŷyL; ẑzLg.

The sample is initially positioned so that x̂x = x̂xL, ŷy =�ẑzL and ẑz =

ŷyL. The vectors of the sample reference frame, fx̂x; ŷy; ẑzg, are

identified with, respectively, the rolling direction (RD), the

transverse direction (TD) and the normal direction (ND) in

the Zircaloy-4 plate case, and with the axial direction (AD),

the hoop direction (HD) and the radial direction (RD) in the

Zr–2.5Nb pressure tube case. Then, the sample is rotated by

an angle � about x̂x and subsequently by an angle ’ about ẑz, and

a Monte Carlo simulation is performed. This process is repe-

ated in steps of 5
 in both � and ’, starting from � = 0 and ’ = 0.
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Figure 4
The contributions of different crystallographic planes to the total cross
section of (a) the Zircaloy-4 plate and (b) the Zr–2.5Nb pressure tube, as
a function of the cut-off lmax. To appreciate the convergence to the lmax!

1 limit, they are normalized to the value at the largest lmax.

Figure 5
The probability density, PGðk; ’

0Þ, of ’0 for the Zircaloy-4 plate for
different crystallographic planes and a fixed k (see main text), for the
values of lmax displayed in the legends.

Figure 6
The same as Fig. 5 but for the Zr–2.5Nb pressure tube.

Figure 7
(a) A scheme of the experimental setup used for the simulation of the
pole figure measurement. The sample coordinates correspond to (x, y, z) =
(RD, TD, ND) for the Zircaloy-4 plate and (x, y, z) = (AD, HD, RD) for
the Zr–2.5Nb pressure tube. (b) A pole figure scan with the experimental
setup shown in panel (a).



Fig. 7(b) displays the projection of the scattering vector onto

the pole figure as the two rotations on � and ’ are performed.

It is clear that, with the set of rotations proposed, a full

coverage of the pole figure is achieved.

The pole figures obtained from the Monte Carlo simulation

are displayed in Figs. 8 and 9 for the Zircaloy-4 with lmax = 20

and for the Zr–2.5Nb pressure tube with lmax = 30, respec-

tively. The lower panels show the absolute differences relative

to the exact result; the scale of the figures indicates that they

are small. To appreciate better the quality of the simulations,

Fig. 10 displays several cuts at constant � of the ð1120Þ pole

figure. These curves represent the variation in intensity in the

pole figure along the circle centred at z with radius �, as shown

in Fig. 7(b). The symbols are the results of a high-statistics
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Figure 8
Pole figures of the Zircaloy-4 plate for the crystal planes (left) ð1010Þ, (middle) (0002) and (right) ð1120Þ from a Monte Carlo simulation with lmax = 20.
The bottom panels display the differences relative to the exact result given by equation (31).

Figure 9
The same as Fig. 8 but for the Zr–2.5Nb pressure tube with lmax = 30.



Monte Carlo simulation and the continuous red line is the

exact result, obtained with the appropriate truncation of

equation (31). The error bars signalling the statistical uncer-

tainties of the simulations, smaller than the symbols, are barely

visible. The left- and right-hand panels correspond to,

respectively, the Zircaloy-4 plate, with lmax = 20, and the Zr–

2.5Nb pressure tube, with lmax = 30.

We also performed simulations to validate the imple-

mentation of the linear attenuation coefficient. This imple-

mentation, however, is much easier than the implementation

of the scattering process, which, as described in Section 5, has

to sample k0 according to the proper probability distribution.

For the linear attenuation coefficient we only had to imple-

ment in the McStas code the computation of 	coh using

equations (17) and (18). The McStas union master, which has

been validated elsewhere (Bertelsen, 2017), takes care of

sampling the interaction point and the interaction process.

The simulations setup is as follows. A very small rectangular

sample, with dimensions 0.1 � 0.1 � 1 mm, is irradiated with

an almost perfectly collimated beam, with divergence smaller

than 1.0 � 10�4 
, and with a uniformly distributed wave-

length, , between 2 and 6 Å. Two detectors with wavelength

resolution are placed in front of and behind the sample. To

avoid uncertainties we force McStas to absorb neutrons that

suffer interaction. In this way, the detector behind the sample

collects the neutrons that traverse the sample without inter-

action, while the detector in front of the sample merely counts

the number of incident neutrons. If I0() and I1() are the

intensities recorded by the detectors in front of and behind the

sample, respectively, the simulated linear attenuation coeffi-

cient is given by � lnðI1=I0Þ=L, where L = 1 mm is the trans-

mitted neutron path length through the sample. The exact

value is computed independently from equations (17) and (18)

without relying on McStas. Fig. 11 displays the results. The red

and green lines are, respectively, the results of the simulation

and the exact values. The panels, from left to right and from

top to bottom, correspond to, respectively, beams propagating

along the hoop, the axial and the radial directions through a

sample with the texture of the Zr–2.5Nb pressure tube, and

along the Z direction through a Zr sample with uniform ODF.

Note the perfect agreement (within the simulation noise)

between the simulation and the exact results.

Note also the large difference between the attenuation

coefficient of a textured material and another with a uniform

ODF. The results displayed in Fig. 11 are similar to those

presented in Fig. 8 of Santisteban et al. (2012). In that work,

experimental values for a Zr–2.5Nb pressure tube with similar

texture to the one considered in this work were compared with

theoretical evaluations obtained using the technique of inte-

grating pole figures to compute the total coherent elastic cross

section.

The perfect agreement between the Monte Carlo results

and the exact pole figures and attenuation coefficients is a

strong indication that the code works properly. In the case of

the Zr–2.5Nb pole figures, very small but sizable (larger than

three standard deviations of the statistical uncertainty)

discrepancies between the Monte Carlo results and the exact

values are evident for � = 0
 and � = 30
. They are caused by

the unavoidable systematic effects of the simulation such as,

for instance, the size of the detector, which is small but finite,

and the systematic approximations made in the algorithm (e.g.

the interpolation of precomputed values and the finite size of

the grids).

8. Example: signal-to-noise ratio in a simplified model
of a pressure cell

As an example, we simulated the SNR in a simple experiment

in which a powder sample of Na2Ca3Al2F14 (Courbion &

Ferey, 1988) is located inside a cylindrical container that

simulates a pressure cell, with a wall made of Zr with the Zr–

2.5Nb texture.
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Figure 10
Cuts at constant � of the ð1120Þ pole figure of (a) a Zircaloy-4 plate
computed with lmax = 20 and (b) a Zr–2.5Nb pressure tube with lmax = 30.
The values of � are displayed in the legends. The points are the results of a
Monte Carlo simulation and the continuous red line the exact result
obtained from equation (31) with the corresponding cut-off.

Figure 11
Simulation of neutron transmission through a small sample under ideal
conditions. The upper panels and the bottom left-hand panel correspond
to a Zr sample with the texture of the Zr–2.5Nb pressure tube reported by
Malamud et al. (2018). In each case the beam propagates along the sample
direction displayed in the figure. The bottom right-hand panel
corresponds to a Zr sample with uniform ODF. The red lines are the
results of the simulation and the green lines the exact result. In the first
three panels the tiny differences are due to noise in the simulation results.
In the last panel (bottom right) the differences between the simulation
and the exact result cannot be appreciated on the scale of the figure.



Note that, generically, the separation of the detector read-

ings into signal and noise components is not universally

defined, but depends on the experimental goals: what in one

experiment is part of the signal might be considered noise in a

different experiment. Since we are not concerned here with a

particular experiment, but with the background generated by

the instrument, we consider as signal all neutrons scattered

only by the sample, and as noise neutrons scattered at least

once by the container. Hence, the SNR is defined here as the

ratio between the number of neutrons that reach the detectors

after having been scattered only by the sample (one or more

times) and the number of neutrons that reach the detectors

after having been scattered at least once by the container (and

perhaps also by the sample). In some experiments, however,

neutrons scattered by the sample incoherently or more than

once would be considered noise generated by the sample.

Fig. 12 displays the setup. The container is a hollow cylinder

with a diameter of 18 mm, height of 150 mm and thickness of

3 mm, so that inside there is an empty cylindrical space of

12 mm in diameter. The sample has cylindrical geometry,

6 mm in diameter and 10 mm in height. The system is irra-

diated with a neutron beam that has a Gaussian-distributed

wavelength of 3 � 0.015 Å and a Gaussian distribution of

divergence with a standard deviation of 0.4
. The beam is

limited by a 6.6 � 110 mm slit, a bit larger than the sample,

located 30 cm before it. The scattered neutrons are collected
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Figure 12
A scheme of the simulated experiment to estimate the SNR. A cylindrical
sample is located inside a hollow cylinder modelling a pressure cell made
of a Zr alloy. Two detectors of cylindrical shape are placed to have almost
2� coverage (only parts of them are shown). Neutrons (black lines) may
suffer from multiple scattering by the different components before
reaching the detector.

Figure 13
The intensity collected by the detectors in the simulation of an experiment with the simplified model of a pressure cell described in Section 8, with the cell
walls made of Zr with the texture of the Zr–2.5Nb pressure tube reported by Malamud et al. (2018). (a) Total intensity, (b) intensity of neutrons scattered
at least once by the cell walls (background), (c) intensity of neutrons scattered only by the sample (signal) and (d) intensity of neutrons collected by the
detectors in the equatorial plane, providing a typical diffractogram: total (black), signal (red) and background (blue).



by two area detectors with the geometry of cylindrical sectors

of 1 m radius, centred at the sample position, which are 4 m

high (vertical direction) and cover angular intervals with

respect to the beam direction from 5 to 170
 and from 190 to

355
, respectively. By symmetry, the intensity collected by

both detectors is essentially the same, and we only show the

results for the first detector.

The texture of the Zr–2.5Nb pressure tube is actually the

texture of a small cylindrical sector cut from the tube. That

means a whole cylinder is composed of many small cylindrical

sectors, with the texture of each sector oriented according to

the corresponding AD, HD and RD directions. Hence, we

cannot simply simulate a whole cylinder with the same texture,

relative to the laboratory frame, at any point. Rather, we have

to divide the cylinder into small sectors and assign to each

sector the texture oriented according to the local AD, HD and

RD directions. In practice we divide the cylinder into 24

sectors of 15
, which causes a big increase in the simulation

complexity.

Fig. 13 displays the results. Panel (a) shows the total neutron

intensity, in arbitrary units, collected by the detectors; panel

(b) displays the intensity of the background, i.e. of neutrons

that have been scattered at least once by the container (and

some of them also by the sample); panel (c) displays the signal,

i.e. the intensity of neutrons that have been scattered only by

the sample, showing the intersection with the detectors of the

corresponding Debye–Scherrer cones; and panel (d) displays

the total intensity and its components, signal and background,

along the equatorial plane of the detector system, as a function

of the angular position. This provides a typical diffractogram.

Note that at some points the background is much higher than

the signal. The lines seen in panel (b) correspond to the

intersection of the detector surface with Debye–Scherrer

cones originated by the wall material, which is not at the

centre of the detector system. Therefore, several factors

contribute to the modulations along the rings: the crystal-

lographic texture, the differences in neutron path length

through the various materials, which causes differences in

attenuation, and the differences between the solid angles

subtended by the detectors and interaction points.

To analyse the effect of the cell wall texture, the simulation

has been repeated considering a Zr wall with uniform ODF.

The results are displayed in Fig. 14. Panels (a) and (b) show

the intensity of neutrons scattered only by the cell wall, with

the Zr–2.5Nb texture and with the uniform ODF, respectively.

Fig. 14(a) is essentially indistinguishable from Fig. 13(b),

which means that the intensity of neutrons scattered both by

the cell walls and by the sample is small. The different
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Figure 14
The intensity collected at the detectors of neutrons scattered only by the cell walls, (a) with the texture of the Zr–2.5Nb pressure tubes and (b) with a
uniform texture. The difference is displayed in (c) and the results in the equatorial plane in (d).



modulations of the intensity along the Debye–Scherrer cones

in panels (a) and (b) of Fig. 14 are due to the texture, which

has a big influence on the background, as seen in panel (c),

where the difference between the intensities of neutrons

scattered by both types of cell wall is displayed. The results in

the equatorial plane, as a function of the angular position, are

shown in panel (d).

The texture has an important influence on the SNR, as

expected. The left-hand panel of Fig. 15 displays the ratio

SNR1/SNR2 , where SNR1 and SNR2 stand for the SNR of a Zr

pressure cell with the Zr–2.5Nb texture and with uniform

ODF, respectively. The right-hand panel shows the data along

the equatorial plane of the detector system. There are points

at which the SNRs differ by a factor higher than five. Note

that, although the SNR depends crucially on the sample, which

provides the signal, the ratio of SNRs in the case of two

different containers is nearly independent of the sample, since

the influence of the container on the signal is rather small.

Thus, the ratio of SNRs is, to high accuracy, the ratio of the

background produced by the containers, which, in turn,

depends very little on the sample. This means that Fig. 15(a)

can be visualized, to a very good approximation, as the point-

to-point ratio of Figs. 14(b) and 14(a).

9. Summary and conclusions

We have developed a method of simulating the transport of

thermal neutrons through polycrystalline materials. It is based

on the generalized Fourier expansion, in terms of Wigner D

matrices, of the orientation distribution function, which leads

to an expansion of the differential and total cross sections in

terms of the Fourier coefficients. These expansions are

suitable for Monte Carlo codes. As expected, the expression

for the differential cross section associated with a crystal plane

is proportional to the well known analogous expansion of the

corresponding pole figure (Bunge, 1993). Although alternative

expressions are currently used, to our knowledge the expres-

sion for the total cross section given here has not been derived

before. In some cases, for instance in Monte Carlo codes, it has

advantages over other expressions.

The method has been implemented in a McStas component

code called Texture.comp. It has been validated by

computing the pole figures of a Zircaloy-4 plate and a Zr–

2.5Nb pressure tube through Monte Carlo simulations of an

ideal neutron diffraction experiment, where the sample is

rotated about two axes, and by simulating a transmission

experiment under ideal conditions. As a first application, we

estimated the signal-to-noise ratio of a diffraction experiment

in which a small sample is placed inside a cylindrical pressure

cell made of a Zr alloy with the texture of the Zr–2.5Nb

pressure tube obtained by Malamud et al. (2018). To see the

effect of texture, the simulation was repeated considering a Zr

alloy with uniform texture. We found that texture has a deep

impact on the SNR: at some points the two SNRs differ by a

factor greater than five.

The computational cost of simulating thermal neutron

transport through textured polycrystals is obviously much

higher than that through a polycrystal with a uniform ODF.

The cost depends strongly on the complexity of the problem.

The higher the complexity, the higher the relative cost of the

problem with non-trivial texture. For the simplest problem, in

which neutrons are scattered only by a small sample, so that

multiple scattering is very unlikely, the computing time in the

non-trivial texture case is only three and a half times longer

than that in the uniform ODF case, if the McStas SPLIT

keyword is used heavily. Without using SPLIT, it is 12 times

longer. For complex problems the SPLIT keyword is not as

effective. For instance, in the problem described in Section 8,

which is rather complex since the cylindrical container with

non-trivial texture was divided into 24 sectors, the simulations

(using SPLIT) with the Zr–2.5Nb texture were 32 times longer

than with the uniform ODF. This is, however, not a big

problem, given (i) the power of current computation

resources, (ii) that the simulations are trivially parallelizable
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Figure 15
(a) The ratio of SNR1/SNR2 of the SNR of a pressure cell with Zr walls with the texture of the Zr–2.5Nb pressure tubes (SNR1) and with a uniform
texture (SNR2). (b) A cut of panel (a) along the equatorial plane of the detector system, height = 0.



and (iii) that McStas is extremely fast at simulating powder

materials.

The generalized Fourier expansion of the ODF is useful

only if the texture is sufficiently mild. For very sharp textures,

the ODF can be split into a smooth component and some

sharp peaks. The smooth part can be simulated with the

software presented here and the sharp peaks with the methods

proposed by Laliena et al. (2019).

The software will be used to compute the background

generated by components like pressure cells in neutron scat-

tering instruments, which depends strongly on the texture of

the device materials. The final goal is to assist in the design of

neutron instruments for extreme conditions by estimating,

through Monte Carlo simulations, the SNR in different

configurations. The software, however, has a much broader

scope, and may also be used for the analysis of experiments

involving samples of polycrystalline materials, like pole figures

and residual stresses in alloys. Interestingly, the expression for

the total cross section can be used to analyse data from

transmission experiments with polycrystalline materials

(Vicente-Álvarez et al., work in progress).

The component Texture.comp will appear in the next

McStas release, so that it will be available to the community. It

can also be obtained in advance from the authors upon

request.

APPENDIX A
Some properties of SO(3)

The Hermitian infinitesimal generators of SO(3) satisfy the

algebra

½Lx;Ly� ¼ iLz; ½Lx;Lz� ¼ �iLy; ½Ly;Lz� ¼ iLx: ð32Þ

The irreducible representations of SO(3) are characterized by

the non-negative integers l associated with the eigenvalues,

l(l + 1), of L2 = L2
x þ L2

y þ L2
z, and have dimension 2l + 1. An

orthonormal basis of the representation space is given by the

eigenvectors jlmi of L2 and Lz, with the integer m bounded by

�l 	 m 	 l. This basis is uniquely determined by choosing a

phase convention. Here we adhere to the Condon & Shortley

(1957) choice of phases, which is fixed by the relation

L�jlmi ¼ ½ðl �mÞ ðl �mþ 1Þ�1=2
jlm� 1i; ð33Þ

where L� ¼ Lx � iLy.

For each g 2 SO(3), the Wigner D matrix is defined by

Dl
mnðgÞ ¼ hlmjRlðgÞjlni; ð34Þ

where Rl(g) is the operator that implements the action of g in

the l representation, which implies the relation

Dl
mnðg1g2Þ ¼

Pl

m0¼�l

Dl
mm0 ðg1ÞD

l
m0nðg2Þ: ð35Þ

In addition, the unitarity of the representation implies that the

Wigner matrices are unitary and

Dl
mnðg

�1
Þ ¼ Dl�

nmðgÞ: ð36Þ

In terms of Euler angles the Wigner matrices read

Dl
mnð�; �; �Þ ¼ hlmjexp ð�i�LzÞ exp ð�i�LyÞ exp ð�i�LzÞjlni;

ð37Þ

so that

Dl
mnð�; �; �Þ ¼ exp ð�im�Þ d l

mnðcos�Þ exp ð�in�Þ; ð38Þ

where

d l
mnðcos�Þ ¼ hlmjexp ð�i�LyÞjlni ð39Þ

is called the Wigner d function. We have the following explicit

formula (Galindo & Pascual, 1990):

d l
mnðxÞ ¼

ð�1Þl�n

2l

ðl þ nÞ!

ðl � nÞ!ðl þmÞ!ðl �mÞ!

� �1=2

�
ð1� xÞm�n

ð1þ xÞ
mþn

� �1=2
d l�n

dxl�n
ð1� xÞ

l�m
ð1þ xÞ

lþm
� �

: ð40Þ

Below we will use the following relation (Galindo &

Pascual, 1990):

Dl
0mð0; �; �Þ ¼

4�

2l þ 1

� �1=2

Y�m
l ð�; �Þ; ð41Þ

where Ym
l ð�; ’Þ are the spherical harmonics, defined by

Ym
l ð�; ’Þ ¼

2l þ 1

4�

ðl �mÞ!

ðl þmÞ!

� �1=2

Pm
l ðcos �Þ exp ðim’Þ; ð42Þ

with 0 	 � 	 � and 0 	 ’ < 2�, and Pm
l ðxÞ are the Legendre

associated functions, given by

Pm
l ðxÞ ¼ ð1� x2

Þ
m=2 ð�1Þm

l!2l

d lþm

dxlþm
ðx2
� 1Þl: ð43Þ

Note that the Legendre polynomial Pl(x) of order l is the

associated Legendre function of order l and m = 0. The

arguments of the spherical harmonics define a unit vector, n̂n,

given by the polar angle � and the azimuthal angle ’, so that

we can use the notation Ym
l ðn̂nÞ. Other useful properties of the

Wigner matrices and the representations of SO(3) can be

found in many books, for instance in Appendix B of Galindo

& Pascual (1990).

APPENDIX B
Computation of the differential cross section

To compute the integral IG(q) of equation (13) we use the

representation of the three-dimensional Dirac delta function

in polar coordinates:

�ðx� yÞ ¼
1

x2
�ðx� yÞ �Sðx̂x; ŷyÞ; ð44Þ

where �Sðx̂x; ŷyÞ is the Dirac delta function on the sphere, which

in polar coordinates � and ’ reads

�Sðx̂x; ŷyÞ ¼ �ðcos �ŷy � cos �x̂xÞ �Pð’ŷy � ’x̂xÞ; ð45Þ

and �P(’) is the periodic Dirac delta function. Then, intro-

ducing the Fourier representation of the ODF, f(g), we have

research papers

J. Appl. Cryst. (2020). 53, 512–529 Victor Laliena et al. � Simulation of neutron scattering by a textured polycrystal 527



IGðqÞ ¼
1

G2
�ðjk� k0j �GÞ

X1
l¼0

Xl

m¼�l

Xl

n¼�l

Cmn
l Il

mn; ð46Þ

where

Il
mn ¼

R
SOð3Þ

dg Dl
mnðgÞ �Sðq̂q; gĜGÞ; ð47Þ

with q̂q ¼ ðk� k0Þ=jk� k0j. Let gn̂n denote a rotation that brings

a unit vector n̂n to ẑz, so that gn̂nn̂n ¼ ẑz. Since the Dirac delta

function on the sphere is rotationally invariant, we have

�Sðq̂q; gĜGÞ ¼ �Sðẑz; gq̂qgg�1
ĜG

ẑzÞ: ð48Þ

Using the invariance of the measure we have

Il
mn ¼

R
SOð3Þ

dg Dl
mnðg

�1
q̂q ggĜGÞ �Sðẑz; gẑzÞ: ð49Þ

Since the Wigner D functions support a unitary representation

of SO(3) [equation (35)], we have

Il
mn ¼

P
m0

P
n0

Dl�

m0mðgq̂qÞD
l
n0nðgĜGÞ

R
SOð3Þ

dg Dl
m0n0 ðgÞ �Sðẑz; gẑzÞ: ð50Þ

The integral can be readily evaluated in terms of the Euler

angles, (�, �, �), that characterize g, since

gẑz ¼ sin � cos� x̂xþ sin � sin � ŷyþ cos� ẑz; ð51Þ

so that

�Sðẑz; gẑzÞ ¼ �ðcos �� 1Þ �Pð�Þ: ð52Þ

Taking into account that d l
mnð1Þ ¼ �mn, we obtainZ

SOð3Þ

dg Dl
m0n0 ðgÞ �Sðẑz; gẑzÞ ¼

1

4�
�m00�n00; ð53Þ

and therefore

Il
mn ¼

1

4�
Dl�

0mðgq̂qÞD
l
0nðgĜGÞ: ð54Þ

The Euler angles corresponding to a rotation gn̂n that brings n̂n

to ẑz are � = 0, � ¼ �n̂n and � ¼ �� ’n̂n, where �n̂n and ’n̂n are the

polar coordinates of n̂n, and therefore, using relation (41), we

have

Dl
0mðgn̂nÞ ¼

4�

2l þ 1

� �1=2

Ym
l ðn̂nÞ: ð55Þ

Using the above expression, equation (54) becomes

Il
mn ¼

1

2l þ 1
Yn

l ðĜGÞY
m�

l ðq̂qÞ; ð56Þ

and inserting this expression into equation (46) we obtain the

desired result.

APPENDIX C
Computation of the total cross section

The total cross section can be obtained by integrating over the

solid angle d�k0 the differential cross section given by equa-

tion (14). However, it is easier to integrate equation (12) over

d�k0 before performing the integral over dg. Since the scat-

tering is elastic, we have k0 ¼ kk̂k0, so that

�ðk� k0 � gGÞ ¼ �ðk� gG� kk̂k0Þ

¼
1

k2
�ðjk� gGj � kÞ �S k̂k�

1

k
gG; k̂k0

� �
: ð57Þ

The integral over d�k̂k0 of the above expression is 1, since the

first Dirac delta function forces k̂k� gG=k to lie on the unit

sphere. Therefore we have

�coh
el ¼ N

ð2�Þ3

v0k3

X
G

jFGj
2

Z
dg f ðgÞ k�ðjk� gGj � kÞ: ð58Þ

Let us remember that we defined gn̂n as the rotation that brings

the unit vector n̂n to ẑz, so that gn̂nn̂n ¼ ẑz. Then we have

jk� gGj ¼ jkg�1

k̂k
ẑz�Ggg�1

ĜG
ẑzj ¼ jkẑz�Ggk̂kgg�1

ĜG
ẑzj: ð59Þ

Using the invariance of the measure we can writeR
dg f ðgÞ k�ðjk� gGj� kÞ ¼

R
dg f ðg�1

k ggGÞ �ðjkẑz�Ggẑzj� kÞ;

ð60Þ

and, using the Fourier expansion of the ODF and the group

properties of the Wigner matrices, we haveR
dg f ðgÞ k�ðjk� gGj � kÞ ¼

P1
l¼0

P
m

P
n

P
m0

P
n0

Cmn
l Dl�

m0mðgk̂kÞD
l
n0nðgĜGÞ S

l
m0n0 ðG; kÞ; ð61Þ

where

Sl
m0n0 ðG; kÞ ¼

R
dg Dl

m0n0 ðgÞ k�ðjkẑz�Ggẑzj � kÞ: ð62Þ

Using equation (51) we have

jkẑz�Ggẑzj ¼ k2 þG2 � 2kG cos �
	 
1=2

; ð63Þ

which is independent of � and �. Therefore, the integrals over

these angles give 4�2�m00�n00. Making the change of variable z =

cos� and taking into account that d l
00ðzÞ = PlðzÞ, we have

Sl
m0n0 ðG; kÞ ¼

�m00�n00

1

2

Z1

�1

dz PlðzÞ k� k2
þG2

� 2kG cos �
	 
1=2

�k
h i

: ð64Þ

The argument of the delta function vanishes for z = G/2k, and

its derivative at this point is �G. Then we have

Sl
m0n0 ðG; kÞ ¼ �m00�n00

k

2G
Pl

G

2k

� �
H 1�

G

2k

� �
: ð65Þ

Inserting the above result into (61) and using equation (55) we

get Z
dg f ðgÞ k � ðjk� gGj � kÞ ¼

k

2G
�ðG; kÞ: ð66Þ
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Mikula, P., Lukắs, P. & Vrána, M. (1997). Physica B, 234–236, 1058–

1060.
Pawlik, K. (1986). Phys. Status Solidi, 134, 447–483.
Popa, N. C. (1992). J. Appl. Cryst. 25, 611–616.
Pospiech, J. & Jura, J. (1974). Z. Metallkd. 65, 324–330.
Pospiech, J., Ruer, D. & Baro, R. (1981). J. Appl. Cryst. 14, 230–233.
Rodrı́guez-Velamazán, J. A., Campo, J., Rodrı́guez-Carvajal, J. &

Noguera, P. (2011). J. Phys. Conf. Ser. 325, 012010.
Rodrı́guez-Velamazán, J. A. & Noguera, P. (2011). J. Phys. Conf. Ser.

325, 012022.
Roe, R. (1965). J. Appl. Phys. 36, 2024–2031.
Santisteban, J. R., Edwards, L. & Stelmukh, V. (2006). Physica B, 385–

386, 636–638.
Santisteban, J. R., Vicente-Alvarez, M. A., Vizcaino, P., Banchik,

A. D., Vogel, S. C., Tremsin, A. S., Vallerga, J. V., McPhate, J. B.,
Lehmann, E. & Kockelmann, W. (2012). J. Nucl. Mater. 425, 218–
227.
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