
computer programs

540 https://doi.org/10.1107/S1600576719014742 J. Appl. Cryst. (2020). 53, 540–548

Received 27 April 2019

Accepted 31 October 2019
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Knowledge of the appearance of texture components and fibres in pole figures,

in inverse pole figures and in Euler space is fundamental for texture analysis. For

cubic crystal systems, such as steels, an extensive literature exists and, for

example, the book by Matthies, Vinel & Helming [Standard Distributions in

Texture Analysis: Maps for the Case of Cubic Orthorhomic Symmetry, (1987),

Akademie-Verlag Berlin] provides an atlas to identify texture components. For

lower crystal symmetries, however, equivalent comprehensive overviews that

can serve as guidance for the interpretation of experimental textures do not

exist. This paper closes this gap by providing a set of scripts for the MTEX

package [Bachmann, Hielscher & Schaeben (2010). Solid State Phenom. 160, 63–

68] that allow the texture practitioner to compile such an atlas for a given

material system, thus aiding orientation distribution function analysis also for

non-cubic systems.

1. Introduction

Quantitative texture analysis is concerned with detailed

analysis of the orientation distribution function (ODF), e.g.

measuring weight fractions of texture components or texture

fibres. These components in turn allow one to deduce, for

example, whether an observed change in the microstructure

during a thermo-mechanical processing step is due to defor-

mation, recrystallization etc. as each of these processes

develops typical texture components. For cubic materials, such

as steels, these texture components are very well understood,

and a large body of research exists defining the typical

components as well as identifying the processes during which

they develop. For example, Ray et al. (1994) and Hoelscher et

al. (1991) provide reviews of texture components for steel. Hu

(1974) provided a condensed review for polycrystalline metals

and alloys. Typical pole figures (PFs), inverse pole figures

(IPFs), and, more importantly, locations of components and

fibres in ODF plots, i.e. orientation densities in Euler space,

are provided in these papers. Matthies et al. (1987) compiled

standard distributions for which the computed ODFs, IPFs

and PFs for various components with varying half-width of the

distribution are displayed. This book provides an atlas that

aids texture analysis of cubic systems, as experimentally

observed ODFs can be divided into their components for

further quantitative analysis. Without the knowledge of these

components, quantitative texture analysis is not possible and

at best a qualitative comparison of PFs or ODF sections can

occur.
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For non-cubic systems, however, typical texture compo-

nents are material specific and much less well documented. In

their overview paper, Wang & Huang (2003) attempt to

overcome this situation for hexagonal crystal systems. For

other crystal symmetries, to the best of our knowledge, such

reviews of typical texture components do not exist except for

specific systems such as quartz (Law, 2014). This limitation

prevents in many cases a quantitative texture analysis as well

as a deeper assignment of observed texture components to

thermomechanical processes in non-cubic materials. This has

become particularly evident with the development of modern

large-scale neutron and synchrotron user facilities in combi-

nation with sophisticated data analysis tools – especially

Rietveld analysis tools – enabling texture analysis [such as

MAUD (Lutterotti et al., 1997) or GSAS (Von Dreele, 1997)].

These resources allow measurement of textures of multi-phase

systems, as well as low-crystal-symmetry materials in the bulk

that are inaccessible or at least difficult to access by PF

measurements with laboratory X-ray diffractometers or elec-

tron diffraction. But because of this limitation, the vast

majority of applications of texture analysis for non-cubic

materials at best report PFs. Only very rarely is a quantitative

texture analysis presented, although this is almost standard for

cubic materials.

The ‘real-life’ texture of a given material is typically a

combination of several texture components. Knowledge of the

individual texture components enables one to identify the

components present in an experimental texture, thus allowing

quantitative texture analysis, e.g. determining the weight or

volume fraction of a component, to ultimately interpret how a

given texture correlates with the material processing history.

In this paper, we present a tool that overcomes the limita-

tion of needing to have a comprehensive atlas of texture

components available for a given system by providing short

scripts for the open-source toolbox for texture analysis MTEX

(Bachmann et al., 2010). MTEX can produce similar plots of

ODF sections, IPFs and PFs to those provided by Matthies et

al. (1987). For the texture practitioner, this means that

observed texture components of the material under investi-

gation can be compiled from the literature or estimated via

texture modelling to produce an atlas of how these compo-

nents occur in ODF sections, IPFs and PFs. Once the

components are identified visually, either their volume frac-

tion can be directly refined with MAUD (using the ‘Standard

Functions’ representation of the ODF in MAUD) or the

volume fractions can be calculated (e.g. by using the ‘volume’

command in MTEX) to develop a deeper understanding of

microstructural changes as a function of thermomechanical

treatment of a material. While MTEX is also a texture analysis

tool similar to popLA (Kallend et al., 1991), BEARTEX

(Wenk et al., 1998) and LABOTEX (Pawlik & Ozga, 1999),

utilizing the powerful MATLAB (The MathWorks Inc.,

Natick, MA, USA) graphing capabilities allows this kind of

plot to be readily produced with MTEX. This paper provides a

brief introduction to MTEX, describes the scripts used to

produce the ODF, PF and IPF plots, and gives examples for

cubic, hexagonal and orthorhombic unit cells.

2. MTEX texture analysis toolbox

MTEX (Bachmann et al., 2010) is a free MATLAB toolbox for

texture analysis and interpretation, which provides a variety of

texture analysis tools. MTEX can be downloaded from http://

mtex-toolbox.github.io/download.html and allows users to

produce different visualizations of a given texture component:

PF and IPF as well as sections of Euler space showing the

orientation density. A PF is a stereographic projection of the

orientation distribution function showing the resulting pole

densities of the plane normals of a single crystallographic

lattice plane for all sample directions in the coordinate system

of the sample. An IPF is a stereographic projection of the pole

density of all crystal lattice plane normals for a single sample

direction. Since both of these visualizations are projections of

the ODF, information is lost, and a more complete visualiza-

tion of the ODF is provided by sections through Euler space,

showing the frequency or probability of all possible crystal

orientations in the sample coordinate system (Suwas & Ray,

2014; Kocks et al., 2000; Randle & Engler, 2014).

In order to plot PFs, IPFs and ODFs in MTEX, crystal

symmetry and specimen symmetry need to be defined. A

texture component, e.g. a single orientation or a fibre, is

defined in the specimen coordinate system. The mathematical

description of texture components in MTEX is accomplished

by kernel functions, and one of the available functions needs

to be chosen. Finally, MTEX offers five types of texture

components, two of which, the unimodal and fibre compo-

nents, will be used here. In the following sections, more detail

for each of the aforementioned parameters is provided to

allow the reader to understand the examples, followed by a

short example of the corresponding MTEX command.

Complete descriptions of these commands are given in the

MTEX documentation.

2.1. Crystal symmetry

Texture analysis requires solely the point group of the

crystal symmetry. In MTEX, however, the crystal symmetry

may be defined by the space group, point group or Laue group

of the crystal. The crystal symmetry is stored in MTEX as a

variable of the type crystalSymmetry. Command 1 shows

an example of the definition for hexagonal �-Ti. The para-

meters of the crystalSymmetry object in the form used

below are point group, lattice parameters and alignment of the

crystal axes with the Euclidean crystal coordinate system. The

result of this command is assigned to the variable CS.

Command 1: CS = crystalSymmetry(’6/mmm’,

[2.9356 2.9356 4.689], ’X||a*’, ’Y||b’,

’Z||c’);

2.2. Specimen symmetry

The specimen symmetry can add symmetry due to ther-

momechanical processes, e.g. the fibre symmetry around the

deformation axis from an extrusion process or uni-axial

compression, or the mirror symmetry of a rolling process.

Therefore, specimen-symmetry definition can affect the Euler
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space minimal dimension. For the general case, when the

sample has no symmetry or is misaligned with respect to the

symmetry of the texture, the full range of Euler space needs to

be considered in order to represent all possible orientations.

Any other sample symmetry will reduce the Euler space. For

example, if a sample was deformed by rolling and is perfectly

aligned with the instrument coordinate system, orthorhombic

symmetry can be assumed and the Euler space will be reduced.

Command 2 illustrates two different ways to define triclinic

specimen symmetry (the general case). The result of this

command is assigned to the variable SS.

Command 2: SS = specimenSymmetry(’1’) or SS =

specimenSymmetry(’triclinic’)

2.3. Orientation

The weight, or probability, of all possible orientations

describes the texture of the sample. Any orientation can be

described by three rotation angles, the Euler angles, which

may be defined using conventions given by Bunge (1982), Roe

(1965) and Matthies et al. (1987). Furthermore, orientations

can be given by pairs of Miller indices and crystal directions,

{hkl}huvwi or {hkil}huvtwi for hexagonal crystal symmetry,

indicating for example a set of lattice plane normals {hkil}

parallel to the sample normal direction (ND) and a family of

crystal directions parallel to the rolling direction (RD) of the

sample. Command 3 shows orientations for which the {0001}

plane normals are parallel to ND and the h1010i directions are

parallel to RD. In this command ND and RD are determined

by a sequence of lattice vectors.

Command 3: o = orientation.byMiller([0 0 1],

[1 0 0],CS,SS)
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Figure 1
The PDFs for all kernel functions in MTEX.

Figure 2
ODF maps for the Goss component with 7.5� half-width: (a) schematic representation after Matthies et al. (1987) and (b) produced by an MTEX script.



2.4. Kernel function

In polycrystalline materials, texture components do not

appear as single orientations but have a certain variance. This

is commonly modelled by bell-shaped density functions like

the Gaussian. As there is no Gaussian in orientation space,

several generalizations such as the Abel–Poisson kernel, the

Gauss–Weierstrass kernel, the von Mises–Fisher kernel and

the de la Vallée Poussin kernel have been suggested in the

literature for this purpose. In practice, all these kernel func-

tions behave quite similarly and the choice of a specific kernel

function is much less important than the choice of its half-

width. In this work all standard components are modelled

using the de la Vallée Poussin kernel, which is the default

choice in MTEX. Fig. 1 shows the probability distribution

functions (PDFs) for all kernel functions existing in MTEX.

The script that produces this figure is described in Appendix A

and the MTEX documentation.

3. Visualization of components

The previously introduced concepts are applied to visualize

texture components in Standard Distributions in Texture

Analysis (Matthies et al., 1987) for cubic crystal symmetry. To

establish the compatibility of the MTEX scripts presented

here with this standard work, we choose the {011}h100i cubic

component (the Goss component), which is typical of recrys-

tallization textures in face- (f.c.c.) and body-centred cubic

(b.c.c.) crystal systems and is shown on pages 278–323 of

Volume 1 of Standard Distributions in Texture Analysis.

Having established the reproducibility for cubic systems

(Section 3.1), we extend the concept to non-cubic crystals

(Sections 3.2 and 3.3). In non-cubic crystals (e.g. hexagonal)

the components strongly depend on the lattice parameter ratio

(e.g. c/a) of a given material and therefore are not readily

covered by the literature. Striving to review common texture

components, we show the basal fibre component of the

hexagonal � phase in Ti–6Al–4V (see Section 3.2), which

results from rolling (Philippe, 1994). We note in passing that a
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Figure 3
IPFs for the Goss component with 7.5� half-width along the normal
direction (labelled as N or 001), transverse direction (T, 010) and rolling
direction (R, 100): (a) schematic representation after Matthies et al.
(1987) and (b) produced by MTEX.

Figure 4
PFs for the Goss component with 7.5� half-width: (a) schematic
representation after Matthies et al. (1987) and (b) produced with MTEX.
Rolling, normal and transverse directions of the sample coordinate
system are indicated by R, N, T in (a) and RD, ND, TD in (b).



splitting of the (0001) pole maxima can occur for basal fibres in

hexagonal cubic packed (h.c.p.) materials depending on the c/a

ratio in the presence of twinning (Wang & Huang, 2003). The

second example in a hexagonal unit cell shows the

{1013}h1210i component, also occurring in hexagonal mate-

rials, which is known as the recrystallization component in

titanium alloys (Wagner et al., 2002). Finally, in order to

illustrate the ability of MTEX to deal with all crystal

symmetries, we chose to plot the {001}h010i component in

orthorhombic olivine (space group Pbnm) (see Section 3.3).

3.1. Goss component in a cubic system

The script visualizing the Goss component {011}h100i,

typical for f.c.c. and b.c.c. crystals and known as recrystalli-

zation texture (Hu, 1974), using the de la Vallee Poussin

kernel (default function in MTEX) with a half-width of 7.5� is

described in Appendix B. Figs. 2(b), 3(b) and 4(b) show the

resulting ODF maps, the IPFs along the rolling [100], normal

[001] and transverse [010] directions, and the (110), (311),

(111) and (100) PFs, respectively. While the plots are not

identical, owing to the different mathematical representations,

the agreement between the spherical harmonics representa-

tion of Matthies et al. (1987) [Figs. 2(a), 3(a) and 4(a)] and the

plots produced by MTEX establishes that the parameters

chosen for the plots with MTEX are suitable.

3.2. Hexagonal unit cell

As an example of a non-orthogonal unit cell we show the

basal fibre and recrystallization component for the Ti crystal

structure.

3.2.1. Texture fibre in a hexagonal system. Fig. 5 displays

(a) ODF maps, (b) IPFs, and (c) (0002), (1010) and (2110) PFs

for the basal fibre (0001) parallel to the ND direction. The
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Figure 5
MTEX plots of (a) ODF maps, (b) IPFs in RD (100), TD (010) and ND
(001) directions, and (c) calculated PFs (0002), (1010) and (2110) of fibre
component {0001} in a hexagonal crystal parallel to ND.

Figure 6
MTEX plots for (a) ODF maps, (b) IPFs in RD, TD and ND directions,
and (c) calculated (0002), (1010) and (2110) PFs of the {1013}h1210i
component in a hexagonal crystal for c/a = 1.597.

Figure 7
MTEX plots for (1011) PFs of {1013}h1210i with (a) c/a > ideal, (b) c/a =
ideal and (c) c/a < ideal.



script is displayed and explained in Appendix C. The results of

the plots agree with Fig. 1(a) (PFs) and Fig. 5(a) (ODFs) of

Wang & Huang (2003).

3.2.2. {1013}(1210) component in a hexagonal unit cell.
The following example shows Euler space sections, IPFs and

PFs for the {1013}h1210i component, which is known as the

recrystallization component in hexagonal systems (Wagner et

al., 2002). The MTEX script to produce plots like Fig. 6 is

provided in Appendix D.

The c/a ratio of h.c.p. materials can influence the ODFs,

IPFs and PFs. Figs. 7(a)–7(c) show a comparison of the

{1013}h1210i components for values of c/a above, equal to and

below the ideal c/a ratio of 1.633 in the (1011) PF, respectively.

Zn has lattice parameters a = 2.665 Å, c = 4.947 Å and c/a =

1.856, which is above the ideal ratio. Mg has lattice parameters

a = 3.210 Å, c = 5.210 Å and c/a = 1.623, close to the ideal ratio.

Ti has lattice parameters a = 2.951 Å, c = 4.683 Å and c/a =

1.5787, which is below the ideal ratio. The difference can be

observed clearly in the PFs and to a lesser extent in the ODFs

[Figs. 8(a)–8(c)]. Note that the c/a ratio has no influence on the

(1010) and (0001) PFs (not shown).

3.3. Orthorhombic unit cell

The texture of low-symmetry crystal systems is rarely

analyzed in terms of weight fractions of components, as is the

case, in particular, for steel textures. As mentioned above, the

relative simplicity of texture component reconstruction using

MTEX, even for low-symmetry structures, could significantly

help with such quantitative analysis. Olivine is an example of

that. Wenk & Tomé (1999) applied a deformation-based

model for dynamic recrystallization to the prediction of

texture and microstructure development of olivine deformed

in simple shear to large strains (Fig. 9). The script visualization

of the {001}h010i component for the orthorhombic unit cell of

olivine is shown in Appendix E. In this example we show the

ODF, IPF and PF in MTEX without the tilt observed in Fig. 9.

The orientation assigned to variable o is given in the Bunge

Euler-angle convention. From Fig. 9 we can conclude that the

Euler angles for this texture component are ’1 = 0, � = 0, ’2 =

0. MTEX is able to calculate an {hkl}huvwi component from a

given orientation provided in Euler angles. The last six lines in

Appendix E are given to calculate {hkl} and huvwi for the
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Figure 8
MTEX plots for ODFs of {1013}h1210i with (a) c/a > ideal, (b) c/a = ideal and (c) c/a < ideal.

Figure 9
Simulated PFs for olivine during deformation and recrystallization (Wenk
& Tomé, 1999).

Figure 10
MTEX plots of (a) ODF maps, (b) IPFs in RD, TD and ND directions,
and (c) {100}, {010} and {001} PFs of the {001}h010i component in the
olivine crystal.



’1 = 0, � = 0, ’2 = 0 orientation. The resulting orientation in

{hkl}huvwi is {001}h010i, which is somewhat obvious for the

PFs presented in Fig. 9 but is much more complicated in the

general case. Fig. 10 represents the MTEX result for (a) ODF

sections, (b) IPFs and (c) PFs of the {001}h010i component in

olivine.

Geoscience literature often describes olivine textures with

types A to E, as described for example by Jung (2017). The

script in Appendix F shows an example of visualization of the

A to E texture component types of olivine in terms of Miller

indices. While the olivine texture component of type D is

represented by a fiber, the other component types are repro-

duced by components of the form {hkl}[uvw]. Fig. 11 shows the

pole figures of A to E texture components (Jung, 2017) and

can be directly compared with Fig. 6 therein.

4. Summary and conclusions

We have provided scripts for the MTEX toolbox that provide

a fast and convenient way of plotting PFs, ODFs as sections in

Euler space and IPFs for a given texture component or fibre to

establish where pole densities or orientation densities for this

component or fibre occur. The scripts produce plots that agree

with equivalent plots from standard references (Matthies et al.,

1987; Wang & Huang, 2003). Examples for hexagonal and

orthorhombic crystal structures are given. Similar to the

standard reference for cubic systems (Matthies et al., 1987),

such plots can help to identify texture components present in

experimental textures and, for example, to assign them to

specific thermomechanical processes in experimental and

theoretical studies of materials with non-cubic crystal struc-

tures. Contrary to texture identification in cubic materials,

where a vast literature of components (e.g. � or � fibre, cube,

Goss) and their origin (e.g. rolling, recrystallization) exists,

identification of texture components in non-cubic systems is

rarely reported. This tool, in combination with components

reported in the literature, can help the texture researcher to

overcome this limitation by producing an ‘atlas’ of the

appearance of individual components for a given material.

This allows determination of volume fractions in the next step,

thus enabling truly quantitative texture analysis for non-cubic

systems as demonstrated, for example, for Ti by Lonardelli et

al. (2007).

APPENDIX A
The variables psi, assigned to all possible Kernel functions

in MTEX are assigned to an array psi. The following lines

produce plots of the probability distribution function of all

defined Kernel functions. The array colour defines different

colours for the subsequent plotting command.

psi{1} = AbelPoissonKernel(0.79);

psi{2} = deLaValeePoussinKernel(13);

psi{3} = vonMisesFisherKernel(7.5);

psi{4} = bumpKernel(35*degree);

psi{5} = DirichletKernel(3);

psi{6} = GaussWeierstrassKernel(0.07);

psi{7} = fibreVonMisesFisherKernel(7.2);

psi{8} = SquareSingularityKernel(0.72);

close; figure(’position’,[100,100,700,450])

hold all

colour = {[0, 0.4470, 0.7410];[0.8500, 0.3250, 0.0980];...

[0.9290, 0.6940, 0.1250];[0.4940, 0.1840, 0.5560];...

[0.4660, 0.6740, 0.1880];[0.3010, 0.7450, 0.9330];...

[0.6350, 0.0780, 0.1840];...

[0.75, 0.75, 0]};

for i = 1:numel(psi)

plot(psi{i},’DisplayName’,class(psi{i}),’colour’,

colour{i},’LineWidth’,2);

end

hold off

set(findall(gcf,’-property’,’FontSize’),’FontSize’,30)

legend(gca,’show’)

xlabel(’x’)

ylabel (’f(x)’)
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Figure 11
The A to E texture components of olivine displayed as pole figures.



APPENDIX B
The first command defines the crystal symmetry, lattice

parameters and orientation of the crystal axes relative to the

sample axes when the Euler angles are (0, 0, 0), and the

sample’s symmetry is defined in the second command. The

preferred axis direction is defined by the third and fourth lines.

The definition of the desired texture component is assigned to

the variable o.

The plot commands produce PFs, ODF sections and IPFs,

respectively. Axes of PFs can be labelled using the annotate

command or by changing the mtex_settings file in the

MTEX installation directory. In this example we chose to

change the mtex_settings file. Figs. 2–4 are the results of

the subsequent plot commands.

CS = crystalSymmetry(’F m -3 m’, [1 1 1], ’X||a*’, ’Y||b’,

’Z||c’);

SS = specimenSymmetry(’orthorhombic’);

setMTEXpref(’xAxisDirection’,’north’);

setMTEXpref(’zAxisDirection’,’outofPlane’);

o = orientation(’Miller’,[1 1 0],[0 0 1],CS,SS)

odf = unimodalODF(o,CS,SS,’halfwidth’, 7.5*degree)

figure

plotPDF(odf,Miller({1,1,0},{3,1,1},{1,1,1},{1,0,0},

CS),’antipodal’, ’contour’)

mtexColorbar(’location’,’southOutSide’,’title’,’mrd’);

set(findall(gcf,’-property’,’FontSize’),’FontSize’,30)

figure

plot(odf,’phi2’,[0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

80 85 90]*degree,’contour’,’silent’)

set(findall(gcf,’-property’,’FontSize’),’FontSize’,30)

mtexColorbar(’location’,’southOutSide’,’title’,’mrd’);

figure

plotIPDF(odf,[xvector,yvector,zvector],’antipodal’,

’contour’)

mtexColorbar(’location’,’southOutSide’,’title’,’mrd’);

set(findall(gcf,’-property’,’FontSize’),’FontSize’,30)

APPENDIX C
The following script produces plots for the basal fibre {0002}

parallel to the Z direction of the sample in hexagonal �-Ti

using MTEX. This script shows how font size can be defined.

The hkil_fibre variable is assigned to fibre orientation, from

which the fibre component ODF_fibre is calculated.

CS = crystalSymmetry(’6/mmm’, [2.9356 2.9356 4.689],

’X||a*’, ’Y||b’, ’Z||c’);

SS = specimenSymmetry(’triclinic’);

setMTEXpref(’FontSize’,25);

setMTEXpref(’xAxisDirection’,’north’);

setMTEXpref(’zAxisDirection’,’intoPlane’);

hkil_fibre = Miller(0,0,0,1,CS,’HKIL’)

psi = vonMisesFisherKernel(’HALFWIDTH’,10*degree);

odf_fibre = fibreODF(hkil_fibre,zvector,SS,psi)

figure

plotPDF(odf_fibre,Miller({0,0,2},{1,0,0},{-2,1,0},CS),

’antipodal’,’contourf’)

figure

plot(odf_fibre,’phi2’,[0 10 20 30 50 60]*degree,

’contourf’,’silent’)

set(findall(gcf,’-property’,’FontSize’),’FontSize’,25)

figure

plotIPDF(odf_fibre,[xvector,yvector,zvector],

’antipodal’,’contourf’)

set(findall(gcf,’-property’,’FontSize’),’FontSize’,30)

APPENDIX D
The following script produces the {1013}h1210i component,

a typical recrystallization component, in the hexagonal crystal

symmetry for the Ti crystal structure. The specimenSym-

metry in this script was set to orthorhombic, thus reducing

the plot range of the Euler space sections.

CS = crystalSymmetry(’6/mmm’, [2.9356 2.9356 4.689],

’X||a*’, ’Y||b’, ’Z||c’);

SS = specimenSymmetry(’orthorhombic’);

setMTEXpref(’FontSize’,25);

setMTEXpref(’xAxisDirection’,’north’);

setMTEXpref(’zAxisDirection’,’intoPlane’);

o = orientation(’Miller’,[1 0 3],[-1 2 0],CS,SS)

odf = unimodalODF(o,CS,SS,7.5*degree)

figure

plotPDF(odf,Miller({0,0,2},{1,0,0},{-2,1,0},CS),

’antipodal’,’contourf’,’upper’)

figure

plot(odf,’phi2’,[0 20 30 40 50 60]*degree,

’contourf’,’silent’,)

set(findall(gcf,’-property’,’FontSize’),’FontSize’,25)

figure

plotIPDF(odf,[xvector,yvector,zvector],’antipodal’,

’contourf’)

set(findall(gcf,’-property’,’FontSize’),’FontSize’,35)

APPENDIX E
The following script defines the ’1 = 0, � = 0, ’2 = 0

component in an orthorhombic unit cell with the lattice

parameters of olivine and converts the component to the

{hkl}huvwi convention by computing the closest {hkl}huvwi

vectors.

CS = crystalSymmetry(’P b n m’, [4.78 10.25 6.3], ’X||b’,

’Y||a’, ’Z||c’);

SS = specimenSymmetry(’1’);

figure

o = orientation(’Euler’,0*degree,0*degree,0*degree,CS,SS)

psi = vonMisesFisherKernel(’HALFWIDTH’,5*degree);

odf = unimodalODF(o,CS,SS,psi)

plotPDF(odf,Miller({1,0,0},{0,1,0},{0,0,1},CS), ‘HALFWIDTH’,

5*degree, ’antipodal’)
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annotate([vector3d.X,vector3d.Y,vector3d.Z],

’label’,{’RD’,’TD’,’ND’},’backgroundcolor’,’w’)

figure

plot(odf,’phi2’,[0 10 20 30 40 50 60 70 80 90]*degree,

’contourf’,’silent’)

figure

plotIPDF(odf,[xvector,yvector,zvector],’antipodal’,

’contourf’)

hkl = o \ vector3d.Z;

hkl.dispStyle = ’hkl’;

hkl = round(hkl)

uvw = o \ vector3d.X;

uvw.dispStyle = ’UVW’;

uvw = round(uvw)

APPENDIX F
The following script produces the five olivine texture

components A to E. The type-D texture component of olivine,

which can be described as a girdle distribution of the [010] and

[001] axes, can be visualized using the fibre component.

setMTEXpref(’xAxisDirection’,’west’)

CS = crystalSymmetry(’P b n m’, [4.78 10.25 6.3], ’X||b’,

’Y||a’, ’Z||c’);

SS = specimenSymmetry(’1’);

type_A = orientation(’Miller’,[0 0 1],[0 1 0],CS,SS);

ODF_A = unimodalODF(type_A,CS,SS,7.5*degree);

plotPDF(ODF_A,Miller({1,0,0},{0,1,0},{0,0,1},CS),

‘HALFWIDTH’,5*degree, ’antipodal’)

type_B = orientation(’Miller’,[1 0 0],[0 0 1],CS,SS);

ODF_B = unimodalODF(type_B,CS,SS,7.5*degree);

plotPDF(ODF_B,Miller({1,0,0},{0,1,0},{0,0,1},CS),

‘HALFWIDTH’,5*degree, ’antipodal’)

type_C = orientation(’Miller’,[0 1 0],[0 0 1],CS,SS);

ODF_C = unimodalODF(type_C,CS,SS,7.5*degree);

plotPDF(ODF_C,Miller({1,0,0},{0,1,0},{0,0,1},CS),

‘HALFWIDTH’,5*degree, ’antipodal’)

type_D = fibreODF(Miller(1,0,0,CS),xvector);

plotPDF(type_D,Miller({1,0,0},{0,1,0},{0,0,1},CS),

‘HALFWIDTH’,5*degree, ’antipodal’)

type_E = orientation(’Miller’,[0 1 0],[1 0 0],CS,SS);

ODF_E = unimodalODF(type_E,CS,SS,7.5*degree);

plotPDF(ODF_E,Miller({1,0,0},{0,1,0},{0,0,1},CS),

‘HALFWIDTH’,5*degree, ’antipodal’)
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