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Engineering, 8093 Zürich, Switzerland. *Correspondence e-mail: klaus.wakonig@psi.ch, manuel.guizar-sicairos@psi.ch

Over the past decade, ptychography has been proven to be a robust tool for non-

destructive high-resolution quantitative electron, X-ray and optical microscopy.

It allows for quantitative reconstruction of the specimen’s transmissivity, as well

as recovery of the illuminating wavefront. Additionally, various algorithms have

been developed to account for systematic errors and improved convergence.

With fast ptychographic microscopes and more advanced algorithms, both the

complexity of the reconstruction task and the data volume increase significantly.

PtychoShelves is a software package which combines high-level modularity for

easy and fast changes to the data-processing pipeline, and high-performance

computing on CPUs and GPUs.

1. Introduction

The achievable resolution of a standard microscope is

commonly limited by the numerical aperture of the objective

lens. This limitation is particularly severe in the hard X-ray

regime, where the higher photon energies and thus shorter

wavelengths would otherwise allow for a significantly

increased resolution. Consequently, lens-less imaging systems

have been of great scientific interest. Removing the objective,

however, often comes at the cost of computational inefficiency,

as lens-less imaging methods commonly rely on iterative

reconstruction algorithms. One example is ptychography, a

scanning coherent diffraction imaging technique. Its core ideas

were introduced as early as 50 years ago (Hoppe, 1969) but in

the past decade, with the incorporation of iterative phase-

retrieval algorithms (Faulkner & Rodenburg, 2004), it has

evolved into a well established method for achieving a quan-

titative and high-resolution representation of the sample’s

transmissivity (Pfeiffer, 2018).

In conventional ptychography, a diffracted intensity pattern

is measured for each shift in the sample position with respect

to the spatially and temporally coherent illumination, usually

denoted as the probe (Fig. 1). The acquisition is done such that

adjacent illumination regions partially overlap (Faulkner &

Rodenburg, 2004; Edo et al., 2013; da Silva & Menzel, 2015).

The wavefront directly after the sample, called the exit wave

or view, �j(r), at the jth position can be decomposed into

�jðrÞ ¼ Pðr� rjÞ OðrÞ; ð1Þ

with r being the transverse real-space coordinate vector,

P(r � rj) the illuminating probe and O(r) the sample trans-

missivity. The decomposition can be used to reconstruct both
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probe and sample transmissivity simultaneously (Rodenburg

& Bates, 1992; Thibault et al., 2008). The measured intensity

Ij(q) at the detector plane and the reciprocal-space coordi-

nates q can be written as the propagated exit wave,

IjðqÞ ¼ P �jðrÞ
� ��� ��2; ð2Þ

where P is the propagation operator. In conventional

ptychography, also known as far-field ptychography because

the diffracted intensity is measured in the far-field regime, the

propagation operator can be reduced to a Fourier transform.

These ptychographic principles have been successfully

applied to near-field geometries, also known as Fresnel

ptychography (Stockmar et al., 2013), as well as lens-based

electron microscopes (Nellist & Rodenburg, 1998) and visible-

light microscopes (Rodenburg et al., 2007). In the optical

regime, a variation of ptychography, termed Fourier ptycho-

graphy, is nowadays more common (Zheng et al., 2013), where

the real-space shifts of the sample are substituted by

displacements in reciprocal space of the object’s spectrum.

Recently, Fourier ptychography has been demonstrated in the

X-ray regime (Wakonig et al., 2019). However, for the

following discussion, the focus will be on conventional

ptychography only, although the same principles can be

generalized for other variations of ptychography methods by

adjusting the propagation operator.

By recovering the complex exit wave for each scan position,

not only the sample transmissivity but also the illuminating

function can be reconstructed. In particular, the latter has

proved to be crucial for ptychography to work at synchrotrons,

as the illumination can deviate considerably from calculations

(Thibault et al., 2008). Moreover, the reconstructed probe can

provide useful information about beam instabilities and

partial coherence (Thibault & Menzel, 2013; Schropp et al.,

2010; Odstrčil et al., 2016). In ptychography, the achievable

resolution depends on the captured diffraction angle. Conse-

quently, the detector readout, that is the number of pixels per

diffraction pattern, is commonly chosen such that the effective

pixel size at the sample plane is smaller than the expected

resolution. The effective pixel size is given by

�s ¼
� z

N �d
; ð3Þ

where � denotes the illumination wavelength, z the distance

from the sample to the detector, N the readout size of the

detector frame and �d the detector pixel size.

For each ptychographic image, a scan is performed. At the

cSAXS beamline at the Swiss Light Source (Paul Scherrer

Institute, Switzerland), a ptychographic scan typically

comprises between 102 and 104 scan positions and, depending

on the energy, propagation distance, detector pixel size and

achievable scattering angles, up to 1600 � 1600 pixels per

diffraction pattern.

Various methods to recover the amplitude and phase of the

sample and probe have been presented and tested over recent

years (Faulkner & Rodenburg, 2004; Thibault et al., 2008;

Guizar-Sicairos & Fienup, 2008; Maiden & Rodenburg, 2009;

Thibault & Guizar-Sicairos, 2012; Maiden et al., 2017; Odstrčil

et al., 2018; Qian et al., 2014). Despite the advances which have

been achieved over the past decade, ptychography remains in

continuous development and thus requires a flexible and

modular computational framework to allow new algorithms

and data-processing tools to be easily implemented and tested

while benefiting from shared data preparation and post-

processing routines. Currently, a few software packages are

publicly available or available on request [see for instance

Favre-Nicolin et al. (2011), Nashed et al. (2014, 2017), Enders

& Thibault (2016), Marchesini et al. (2016) and Dong et al.

(2018)]. With PtychoShelves, we provide a toolbox which is

geared towards a flexible framework by providing modules for

various detector file formats and geometries, as well as

different reconstruction algorithms called engines. Similar to a

bookshelf, where single books can be read and ordered arbi-

trarily, PtychoShelves does not impose constraints on the

order or usage of the reconstruction modules. Beyond its

convenience for testing and prototyping new algorithms,

PtychoShelves also includes high-performance engines for

achieving fast ptychographic reconstructions. It therefore

enables a fast reconstruction, comparable with or even faster

than other currently existing toolboxes, whilst providing a

high-level modular framework.

After a description of the general concept of the Ptycho-

Shelves toolkit, the data types used, and the inputs and outputs

in Section 2, the principles of the modular framework are

presented in Sections 3 and 4. In Sections 5 and 6 the imple-

mentation details of our high-performance CPU and GPU

engines are elaborated. Finally, Section 7 provides an over-

view of PtychoShelves’ performance compared with other

published toolboxes.

2. Processing pipeline

PtychoShelves is a MATLAB-based (The MathWorks, 2015)

software package designed to take care of the full data pipe-

line, starting from receiving frames from the detector, through

preprocessing and storing intermediate files, to applying

iterative algorithms and providing the reconstruction for

computer programs
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Figure 1
Conventional ptychography. A sample is scanned through coherent
illumination such that the illuminated region partially overlaps with a
previous data acquisition. For each sample position, a diffraction pattern
is collected in the far-field regime.



postprocessing, e.g. for tomographic reconstruction. A flow-

chart can be seen in Fig. 2.

The data are processed according to a user-defined

template, where parameters such as the data preparator,

detector settings, reconstruction engines and output file

format are specified in the form of MATLAB scripts. This

template creates a MATLAB structure, called the p structure,

which is provided to all PtychoShelves modules. Consequently,

changes to the p structure, and thus to the behaviour of the

reconstruction, can be achieved by modifying the settings in

any subfunction of the processing pipeline.

2.1. Data preparation

Subsequent to defining all paths and parsing the settings for

the data preparator in the initialization process, routines for

preparing the data are executed. This includes reading the

scan positions, and adjusting the measured diffraction patterns

such that the final data set is rotated, shifted and cropped if

necessary. Additionally, a valid-pixel mask for the corre-

sponding detector is applied and the probe and object are

initialized. The detector data can either be read from a file

[HDF5 (The HDF Group, 2018), CBF (Bernstein &

Hammersley, 2006) or TIFF] or streamed directly via ZeroMQ

(Hintjens, 2012). Alternatively, a virtual detector can be used

to simulate measurements. A detailed explanation of the data

preparation will be given in Section 3.

The relative positions between sample and probe, as defined

in equation (1), can either be parsed from a SPEC (Certified

Scientific Software, 2017), ASCII, HDF5 or MATLAB data

file, or created according to a user-defined scan pattern in the

template.

PtychoShelves supports multiple scans to be reconstructed

simultaneously, while sharing information about the object or

probe (Guizar-Sicairos et al., 2014). For this purpose two

vectors are implemented, probe_share_ID and object_

share_ID. These can be seen as vectors of pointers to a slice

of the probe and object data sets, respectively, where the

number of elements is equal to the number of scans. A

probe_share_ID of ½1 2 1� for a simultaneous reconstruc-

tion of three scans would therefore result in two probes, one

for the first and third scans, and a second probe for the second

scan. Similar logic is used for object sharing.

To account for the effects of state mixtures, the concept of

probe and object decomposition into modes was introduced

(Thibault & Menzel, 2013). In combination with probe

sharing, this results in a 4D array for the probe, (y, x,

probe_ID, mode), where y and x represent pixel coordi-

nates, probe_ID indicates the slice of the probe data set and

mode the aforementioned illumination mode.

A similar concept was applied to the object storage. Since

the reconstructed objects are bound to the extent of the scan

range, which can vary for each scan, the object storage was

designed as a container of 4D arrays, {object_ID}(y, x,

mode, layer), which supports different array sizes. For

reconstructions with an extended depth of field where the

object is split into multiple planes along the beam direction

(Maiden et al., 2012; Suzuki et al., 2014; Tsai et al., 2016), the

last index indicates the object layer.

2.2. Reconstruction

After the objects and probes have been initialized and the

data preparation has finished, the data are handed over to one

of the reconstruction engines. The number of engines used for

a reconstruction and their order can be chosen arbitrarily.

Additionally, each engine can support independent para-

meters. The modular framework of the engines’ implementa-

tion will be discussed further in Section 4.

2.3. Output

The final reconstruction is stored in the requested data

format, either a MATLAB or a general HDF5 file. Specific

HDF reading and writing functions were written to achieve a

computer programs

576 Klaus Wakonig et al. � PtychoShelves J. Appl. Cryst. (2020). 53, 574–586

Figure 2
The PtychoShelves processing pipeline. Based on the settings of the user-
defined template, an initial guess for the reconstructed object and probe
can be selected. For subsequent data preparation, the data preparator
and detector settings are loaded. After triggering the preparation and
loading the measured data, the output is handed over to the engines,
where the actual reconstruction is performed. Finally, the result is saved
using the specified data format.



less restricted user experience. PtychoShelves’ HDF5 function

uses MATLAB’s low-level HDF routines to emulate

MATLAB’s proprietary saving routine while being able to

write to a user-defined HDF hierarchy and support hard links

and symbolic links for internal and external referencing.

For each reconstructed scan, a reconstruction file is created.

To avoid redundancies, the prepared data are only added as an

external link. Furthermore, the reconstruction file uses

internal links to provide direct access to the object and probe

arrays of the full data set of the corresponding scan, saved in

/reconstruction/p/probes and /reconstruction/

p/object, respectively. A similar procedure is applied for

the metadata of the measurement. In Fig. 3 the typical struc-

tures of prepared data and reconstruction files are shown. This

concept allows fast access for further processing.

3. Modular data preparation

To provide a framework which can be adapted quickly to

various changes in data sources and formats, as well as to

support customized data-processing routines, the preproces-

sing procedures and data-preparation routines were split into

single modules. These modules are grouped into four topics:

reading scan positions, reading metadata, supporting different

detectors, and creating queues for the reconstruction to share

the workload across computation nodes and clusters.

As the functions for reading scan positions and metadata

and for creating file queues are independent of each other,

they were implemented by single functions in MATLAB

packages, a functionality similar to namespaces in other

programming languages. For instance, adding the support of a

new data structure for reading the scan positions can be

achieved by creating an additional function in the +posi-

tions package. Due to the differences in reading, prepro-

cessing and data preparation for each detector and file type,

the code was split into small subfunctions. Function overriding

is employed to cover various scenarios of data preparation.

For each detector, a parameter file is placed in a MATLAB

package directory, e.g. eiger.m in +eiger, where the details

of the detector implementation are specified, including the

pixel size, data-loading parameters and readout geometry. For

specific modifications related to a single detector, default

routines can be overridden by a function in the detector’s

package directory without affecting other detector imple-

mentations.

For commissioning and testing new detectors in particular,

the support of function overriding gives the flexibility to

provide fast adaptation without breaking the stability and

performance of previous implementations, thus reducing the

maintenance to a minimum. In order to reduce the time

needed to prepare the data, two routines were implemented to

load the data: a modular MATLAB data preparator, based on

a multi-threaded C++/MEX function, and libDetXR

(Zamofing, 2013), a Python processing toolbox.

4. Reconstruction modules

To provide a consistent environment for further development

of methods, each ptychographic reconstruction module

receives the same input parameters, including user-defined

settings for the current algorithm, specified in the template,

and a MATLAB structure containing information about the

reconstruction. Changes to the reconstructed object, probe

and scan positions are forwarded to the subsequent engine.

PtychoShelves’ modular framework does not rely on an

object-oriented implementation. New engines can easily be

added as a single function to the +engines directory. The

engine will be provided with already prepared data and

initialization parameters, as well as access to all core func-

tionalities, including e.g. plotting and saving routines. This

concept provides a versatile base upon which various modifi-

cations and extensions can be built.

5. High-performance CPU engine

The ease and simplicity of high-level programming languages

often comes at the cost of decreased performance. Even with

just-in-time compilation (The MathWorks, 2015), compared

with low-level programming languages like C/C++ the

computer programs
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Figure 3
The HDF tree structure for a prepared data file and a single
reconstruction file. The prepared data file, written by the data preparator,
appends a new group of data and positions for each scan and the
corresponding detector settings to the detector group. The reconstruction
file uses an external link to provide direct access to the used prepared
data, and internal soft symbolic links to access object and probe slices of
subscans, indicated by pink and green arrows, respectively.



performance is often sacrificed for readability and ease of use.

However, it is crucial to match the data-acquisition speed and

reconstruction time to avoid piling up unprocessed data. In

particular when working with brilliant light sources, the

acquisition time of a scan can be as short as a few seconds

(Celestre et al., 2017; Klug et al., 2018; Odstrcil, Lebugle et al.,

2019). It is therefore necessary to combine the aforemen-

tioned capabilities with high-performance computing. In

PtychoShelves this was achieved by implementing the differ-

ence map (Thibault et al., 2008) and a maximum-likelihood

refinement (Thibault & Guizar-Sicairos, 2012) in a standalone

C++ binary, using OpenMP and MPI to distribute the work-

load across CPU cores and distributed memory nodes of

analysis clusters (OpenMP Architecture Review Board, 2011;

Message Passing Interface Forum, 2012). The improved

performance of the high-performance CPU engine (HPC)

enables online feedback to the user and thus, combined with

fast tomography codes (Gürsoy et al., 2014; van Aarle et al.,

2016; Odstrčil, Holler et al., 2019), also online feedback on

partially measured tomography data sets. HPC has already

been exploited in recent publications (Holler et al., 2014, 2017;

Donnelly et al., 2015, 2017; Guizar-Sicairos et al., 2015; Nielsen

et al., 2016; Wilts et al., 2017; Ihli et al., 2017, 2018; Wakonig

et al., 2019).

5.1. Optimizations employed

To achieve high performance, the C++ code had to be

adapted to contemporary hardware. The hardware for which

the code was optimized consists of Infiniband-connected

computer cluster nodes with two multicore Intel CPUs each.

Peak performance can only be reached by utilizing the vector

units of each CPU core to the maximum extent. Beyond a

sheer optimization of parallel activities, the limited memory

bandwidth had to be addressed by adapting the code to the

caching mechanisms, hardware prefetching units and memory

buses of the system. Additionally, unnecessarily idling vector

units might reduce parallelism, which can be caused by both

excessive synchronization between small parallel activities and

extended wait times between large ones.

The central tenet of the implementation lies in the optimi-

zation of the most common scenarios of ptychographic

reconstruction on the cSAXS beamline. For this task, the

following guidelines have been established:

(i) Parallelization is done by assigning diffraction patterns

and associated computations to cores in a fixed way to help

caching.

(ii) Cores can try to assist other slower cores in order to

reduce idling. Help is first given to cores that are on the same

CPU socket.

(iii) Data touched by a core are put into memory close to

the core to better utilize the memory buses.

(iv) If possible, computations are split into thread-local

computations and a final aggregation step involving synchro-

nization to help parallelization.

(v) Computational tasks on the same data are fused into

bigger code sections to assist caching.

(vi) Computations are done on contiguous memory blocks

to help memory prefetching.

(vii) Memory blocks are aligned and sized to fit vector sizes

and cache lines in order to help memory handling.

(viii) Computations are vectorized explicitly where this

proves to be faster than compiler-generated code.

(ix) Distributed memory nodes all keep a copy of the

probes, but the object memory is distributed.

5.2. Program options, input and output

As input, the HPC binary receives a description of the

measurement-related data such as diffraction patterns and

positions, and a description of the initial approximation for

objects and probes which the code is supposed to improve.

Data transfer between MATLAB and HPC can be achieved

via either a TCP/IP stream or two HDF5 files. For the latter,

the decision to have two files was made to reduce the data

processing if only reconstruction parameters change. There-

fore, the prepared data and the initial guess are written in

separate files. The main output of all code variants is either an

HDF5 solution file or a TCP/IP stream with updated object

and probe arrays, which represent the object’s transmissivity

and the illumination, respectively.

5.3. Difference-map and maximum-likelihood implementa-
tion

We have adopted the difference-map (DM) method

described by Thibault et al. (2008). By performing the Fourier

projection first, followed by the overlap projection, the

difference-map implementation reverses the order of the

projections compared with the approach used by Thibault et al.

(2008). Assuming a good initial guess, this reduces the

reconstruction time by essentially skipping the first overlap

projection. The error metric used for DM is the sum of the

differences between the current model’s amplitude at the

detector plane [equation (2)] and the measurement, calculated

for all valid pixels l 2 M and positions k 2 N,

� ¼
P
k2N

P
l2M

Pð�kÞ
l

�� ��� Il
k

� �1=2
h i2

: ð4Þ

The second method, a maximum-likelihood refinement

(Thibault & Guizar-Sicairos, 2012), uses a conjugated gradient

optimization. The search directions are calculated using the

Pollak–Ribière Plus method with a Powell restart criterion

(Andrei, 2010; Hager & Zhang, 2006). The line search first

attempts to establish a bracket around the solution. New

solution points within the bracket are probed using quadratic

and cubic fits. If these methods fail, a geometric bisection

search for better solution points within the bracket is tried.

The Armijo (1966) criterion is used to decide whether a new

solution point is good enough. However, due to the loss of

significance in floating-point summation, an accurate calcula-

tion can be numerically challenging. Therefore, a special

summation algorithm was implemented. By grouping and

summing values with approximately the same magnitude, the

adverse effect of limited precision can be mitigated.
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5.4. OpenMP implementation

The main decision for the OpenMP code is the fixed

assignment of diffraction patterns and corresponding views to

OpenMP threads. The code assumes one pinned thread per

core, which can be achieved by setting the OMP_PROC_BIND

environment variable (OpenMP Architecture Review Board,

2011). As a result, multiple calculations can be performed in

parallel on data closely located in memory to the corre-

sponding cores. However, due to the intrinsic parallelization

difficulties of ptychography, as the same memory location has

to be accessed by multiple instances, the threads need to

coordinate actions. This affects the probe and object update

phases of the overlap projection in the difference-map

reconstruction algorithm, as well as the error metric value

aggregation, search direction calculation and gradient calcu-

lation steps of the maximum-likelihood reconstruction algo-

rithm. Moreover, probe and object updates, as well as the

gradient calculation, rely on synchronization-heavy opera-

tions, where contributions in the form of submatrices for all

threads need to be summed into a process-wide matrix.

In order to reduce idling of cores at OpenMP synchroni-

zation barriers and perform as many operations as possible in

memory close to the core, a special reduction algorithm has

been devised (Fig. 4). The process-wide matrix is split up into a

sequence of consecutive aligned data blocks, in our case

comprising 64 cache lines. For each of these blocks, there is a

reservation lock that needs to be held exclusively by a thread

when working on that particular data block. The submatrix of

each thread consists of a range of entire rows of the process-

wide matrix. To minimize the overlap of the submatrices, views

are initially sorted by row position within the object for the

purpose of assigning views and the corresponding diffraction

patterns to threads.

A submatrix is split into blocks, namely the blocks that the

corresponding row range covers. If the first and last blocks are

not fully covered, they are treated separately. Each thread has

an atomic counter, initialized to the sequence number of the

first fully covered block in the submatrix.

On each addition of a submatrix block onto the corre-

sponding process-wide matrix block, every thread fetches the

counter value and increases it atomically. The fetched counter

value is the sequence number of the submatrix block that can

be handled exclusively by the thread after obtaining the

reservation lock for the corresponding block in the process-

wide matrix. If a thread has finished with its submatrix, that

thread can be employed to assist in processing the submatrices

of slower threads. In order to stay close to the handled

memory, slower threads residing on cores in the same CPU are

preferred in this process.

5.5. OpenMP/MPI hybrid implementation

Following the same principles as for the OpenMP imple-

mentation, diffraction patterns and the corresponding views

are assigned to MPI processes to perform calculations in

parallel on data located in a node’s local memory. This fixed

assignment provides a way of distributing the object matrix

data between the nodes. Each node only keeps the range of

object matrix rows covered by the views assigned to the MPI

process. The decision to keep a range of entire rows, rather

than a smaller submatrix, was made in order to reduce the

complexity of the MPI communication and synchronization

patterns. To sum the contributions of all MPI processes

covering a stripe of rows, the MPI_Allreduce operation is

performed on the stripe among all the MPI processes covering

the stripe (Message Passing Interface Forum, 2012).

5.6. HPC engine performance evaluation

For performance measurements, the code was run on a

computing cluster at the Paul Scherrer Institute, Switzerland.

The nodes used have two sockets with 16 cores each (hyper-

threading disabled) equipped with Intel Xeon E5-2697A v4

CPUs running at 2.60 GHz and a maximum bandwidth of

76.8 GB s�1 per socket. Cluster nodes are connected via

Mellanox ConnextX 3 FDR Infiniband and run CentOS 7.4 as

the operating system. The code was compiled with gcc 7.3.0,

openmpi 3.0.0 and Intel MKL 2018.0.0. Performance data

were sampled with a frequency of 3.3 Hz using the likwid-perf

tool (Version 4.3.0; Treibig et al., 2010; Roehl et al., 2014). To

show the scalability properties of the OpenMP implementa-

tion, we used a data set with 423 positions, a probe of size

512 � 512 pixels and an object of size 2649 � 2644 pixels. Two

illumination modes were reconstructed. We performed 300

difference-map iterations followed by a maximum-likelihood

refinement. For the difference-map algorithm, the time spent

for each iteration is comparable. However, iterations within

the maximum-likelihood refinement may vary considerably

due to the line search step in the high-dimensional solution

space. We therefore used the maximum-likelihood refinement

until a specific error value was reached, resulting in a

comparable reconstruction between single runs.
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Figure 4
The OpenMP reduction algorithm scheme for six threads. The object
array is subdivided into submatrices (blue) and distributed between the
threads, shown as object layers 1–6. Each submatrix is again subdivided
into smaller blocks of 64 cache lines and a consecutive sequence number
(e.g. 1–28 for the first thread). On each addition, a thread fetches the
current sequence counter and increases it atomically. To avoid having
multiple threads working on the same array block, a reservation lock is
used. If blocks are not fully covered (orange), they are treated separately.



The results shown in Fig. 5 highlight the scalability limita-

tions. One of the limits that cannot be overcome by using more

threads on the same computer node is the memory bandwidth.

Moreover, the synchronization time increases with more

threads. Our implementation suffers from an additional

limitation due to the aggregation mechanism based on stripes

of rows. Assuming a more or less equal distribution of

measurement positions, the minimum number of views to form

a reasonably covered stripe of rows is around 20 for the used

data set. Therefore, the usage of more than 21 threads leads to

stripes of rows which are not fully covered by the views. The

stripe of a particular thread will thus contain regions of zero

values, which are nevertheless aggregated into global matrices,

essentially wasting memory bandwidth. In the future, this

could be addressed by changing the per-stripe atomic block

reservation counter in the aggregation method to a per-row

counter, only swiping through covered blocks.

For larger data sets, additional performance can be gained

by using the aforementioned OpenMP/MPI hybrid imple-

mentation. The reconstructed data set had 11 844 positions, 28

probes of size 500 � 500 pixels and one object of size

8058 � 13 525 pixels, resulting in an uncompressed total size

of 11.9 GB (Guizar-Sicairos et al., 2014). For each probe two

illumination modes were reconstructed. The data set can be

seen as a combination of 28 separate data sets to achieve an

extended field of view. Although such large data sets are not

very common on the cSAXS beamline, the sheer quantity of

data highlights bottlenecks in the data-processing routines.

For the first test, ten nodes with 32 threads each were

allocated. After the data had been read and initialized, 30

difference-map iterations followed by 30 maximum-likelihood

iterations were performed before the result was written to the

file system. Fig. 6 shows the measured memory bandwidth and

computer performance data for the first node. Additionally,

the stream benchmark for 32 threads measured with the

likwid-bench stream-sp-avx benchmark code is given as a

reference (Treibig et al., 2012). Using one work group, the

stream bandwidth was 87.64 GB s�1. This benchmark reflects

the data-access patterns of the various computational loops in

the code rather well. A vector addition benchmark with

operations exclusively on aligned thread-local data achieved a

bandwidth of 122.38 GB s�1 with 32 threads. The theoretical

maximum computational performance Pmax of a cluster node

is given by

Pmax ¼ frequency� cpus� coresper cpu

�
1

minðCPIÞ
� flopsper instruction; ð5Þ

where CPI denotes the clock count per instruction. With a

frequency of 2.6 GHz, two sockets, 16 cores per CPU, eight

single-precision floating-point operations per AVX multiply

instruction and a minimal clock count per AVX multiply

instruction (CPI) of 0.5,21 this amounts to approximately

1.33 Tflop s�1 for multiplications. If computations could be

carried out with independent fused multiply–add instructions

(CPI 0.5 and 16 flops per instruction) exclusively, this number

would double. For addition this number would halve, since the

minimum CPI is 1 in this case for the Broadwell architecture

(Intel Corporation, 2018).

It must be noted that floating-point operations often

depend on previous computations and may be further limited

by slow memory load operations. Both the difference-map and

the maximum-likelihood reconstruction methods suffer from

these problems. The typical loop gathers elements from a few

matrices and computes one or two values that are written into

a matrix or accumulated. As illustrated in Fig. 6, the compu-

tation performance graph shows peaks well below the theo-

retical peak computation performance. At the same time, the

memory bandwidth graph shows peaks that are around or

even above the stream benchmark results. Since the compu-

tations are simple element-wise operations, the memory

bandwidth is the main bottleneck for both reconstruction

methods. However, the OpenMP thread and distributed MPI

process synchronization time impose additional constraints on

computer programs
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Figure 5
(a) The time to complete 300 difference-map iterations for different
thread counts on a single node. (b) The time for the maximum-likelihood
refinement to reach a specific error value limit for various thread counts
on a single node. (c) The I/O time to read the data and write the
reconstruction result for various thread counts. Due to the use of a single-
threaded HDF5 library, no performance gain was achieved by using more
than one thread during I/O. For (a) and (b), the performance benefits of
more threads are clearly visible. The increased synchronization time in
the case of many threads, as well as the limited memory bandwidth, limits
the performance gain in the case of more than 20 threads.

2 According to the Intel Intrinsics Guide (Intel Corporation, 2018) the Intel
Broadwell architecture can simultaneously complete two independent AVX
multiplication and fused multiply–add instructions per clock cycle.



the achievable performance, visible as white gaps between

peaks in both graphs of Fig. 6.

In general, synchronization patterns are a result of the

combination of algorithm and parallelization. For the differ-

ence-map method and the chosen parallelization with a fixed

distribution of diffraction patterns to threads, synchronization

is required to maintain a common view of the objects and

probes in the overlap projection. Similarly, synchronization is

required if feedback on the conversion is needed. However,

the possibilities for hiding the synchronization overhead

without introducing extra synchronization, e.g. by performing

independent computations while MPI communication is done

in the background, are limited. The performance loss cannot

be addressed by allocating additional resources, as more

threads and computer nodes will increase the synchronization

time further. It therefore imposes a fundamental limit on the

scalability. Fig. 7 shows enlargements of the difference-map

iterations on ten nodes [Figs. 7(a)–7(c)] and one node

[Figs. 7(d)–7( f)]. For both runs, the achieved CPI for every

thread is shown. The CPI numbers in the computationally

heavy loops are well above 1, indicating that the computa-

tional resources are not fully used. Moreover, as an effect of

using more nodes, the increased computation power results in

narrower peaks. At the same time, the white spaces due to

synchronization make up a larger part of the graphs in

Figs. 7(a) and 7(b) compared with 7(d) and 7(e).

The same observations hold for Fig. 8, which shows

subsections of the maximum-likelihood refinement for runs

with ten nodes and one node, 32 threads each. For the

maximum-likelihood method using the conjugated gradient

algorithm and the chosen parallelization with a fixed distri-

bution of diffraction patterns to threads, synchronization is

required to maintain the common view of the gradient, to

coordinate the line search, and to compute the error function

value and a number of dot products for the search direction

update.

To show absolute reconstruction time measurements and

scaling properties, the reconstruction problem was first

handled with 300 difference-map iterations, followed by

maximum-likelihood refinement iterations until a specific

error value limit was reached. This value was used to ensure

that the reconstruction quality could be considered similar to

that of previous reconstructions.

Fig. 9(a) gives the time to complete 300 iterations of the

difference map. The time assuming perfect linear scaling is

added as a comparison. Difference-map iterations are quite

comparable across runs with different node counts, except for

slight numerical differences and jitter due to the number of

computer programs

J. Appl. Cryst. (2020). 53, 574–586 Klaus Wakonig et al. � PtychoShelves 581

Figure 7
(a)–(c) Enlargements of the difference-map interactions of Fig. 6, running
on ten nodes with 32 threads each. (d)–( f ) Enlargements of the
difference-map iterations on a single node with 32 threads. For each run,
(a), (d) the memory bandwidth, (b), (e) the single-precision performance
and (c), ( f ) the clocks per instruction (CPI) are shown. The CPI can be
seen as efficiency measurements and are given for each thread of the first
node. The increase in synchronization time in the case of multiple nodes
and the resulting rise in CPI is clearly visible. Furthermore, the Fourier
projection shows a significantly improved performance compared with
the overlap projection, e.g. from timestamp 80 s to 81 s in panels (a)–(c)
and from 81 s to 82 s in panels (a)–(c), respectively. These effects can also
be attributed to the increased synchronization time between threads.

Figure 6
(a) Aggregated memory bandwidth and (b) single-precision computation
performance for the first node of a hybrid run using ten cluster nodes with
32 threads each. The stream benchmark memory bandwidth result for 32
threads has been added as a reference (horizontal blue line). Different
colours are used for each thread. Only one thread per socket reports on
the memory bandwidth since these data are based on uncore events.



nodes and thread scheduling, as well as general OS jitter.

However, an increase in synchronization time clearly leads to

reduced efficiency for a higher number of nodes. Iterations for

the maximum-likelihood refinement are less comparable

across runs and node counts, as even minor numerical differ-

ences can multiply considerably when walking through the

high-dimensional solution space. Therefore, the number of

iterations to reach the specific error value limit varied from

173 to 217 for the presented runs. The reconstruction time for

the maximum-likelihood refinement is shown in Fig. 9(b).

As expected, the part that scales the least is the part that

handles data input and output (I/O) [Fig. 9(c)]. The

measurement data file and the initial solution approximation

were read as HDF5 files from a GPFS file system. The

reconstruction result was written to the same GPFS file

system, also in the form of an HDF5 file. Nonetheless, the total

time spent on I/O was only a small fraction of the total

reconstruction time.

6. MATLAB-based GPU-accelerated engine

Although usually running at a lower clock frequency than a

CPU, the sheer number of cores on a GPU device allows for

significantly improved performance if calculations can be run

in parallel. PtychoShelves exploits these advantages with a

MATLAB-based GPU-accelerated (MG) engine, which

provides a performance close to, or even better than, the

highly optimized CPU code presented in Section 5. The

implementation relies mostly on high-level built-in MATLAB

functions and comprises a collection of various reconstruction

algorithms and refinement methods which can be easily

combined and chained: difference map (DM) (Thibault et al.,

2008), extended ptychographic iterative engine (ePIE) solver

(Maiden & Rodenburg, 2009) and iterative least-squares

maximum-likelihood (LSQ-ML) (Odstrčil et al., 2018). In

particular, this last provides many additional refinement

directions such as position and geometry refinement, variable

wavefront and intensity refinement, and multilayer ptycho-

graphic reconstruction for extended depth of field (Odstrčil

et al., 2016, 2018; Tsai et al., 2016). Additionally, mixed-state

modes (Thibault & Menzel, 2013) and a method of accounting

for incoherent background signal (Odstrčil et al., 2015, 2018)

are implemented for all MG engine methods. The combination

computer programs
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Figure 8
(a)–(c) Enlargements of the maximum-likelihood iterations of Fig. 6,
running on ten nodes with 32 threads each. Additionally, the efficiency
measure CPI is given for every thread. (d)–( f ) Enlargements of the
maximum-likelihood iterations on a single node run with 32 threads.
Similar to Fig. 7, (a), (d) the memory bandwidth, (b), (e) the single-
precision performance and (c), ( f ) the CPI are shown for each run.

Figure 9
(a) The time to complete 300 difference-map iterations for various node
counts and 32 threads per node. (b) The time for the maximum-likelihood
refinement to reach a specific error value limit for various node counts
and 32 threads per node. (c) The I/O time to read the data and write the
reconstruction result for various node counts and 32 threads per node.
The effect of increased synchronization time for larger numbers of nodes
is clearly visible.



of fast GPU-based methods with high-level scripting was also

used to facilitate the implementation of a broad range of

wavefront propagation methods. In addition to the conven-

tional far-field and Fresnel propagator, the MG engine

supports the angular spectrum method (ASM) for near-field

propagation, the fractional Fourier transformation (FFTR)

(Ozaktas et al., 1996), fast Fourier transform (FFT)-based

rotation (Larkin et al., 1997) and propagation to a tilted plane

(Delen & Hooker, 1998). Furthermore, these propagators can

be combined to perform e.g. a propagation to a tilted and

rotated plane placed in the near-field propagation regime. If

no suitable GPU hardware is available, the MG engine auto-

matically falls back to a CPU implementation.

6.1. Implementation

For the most common numerical operations used in

ptychography, such as wavefront propagators and element-

wise operations, MATLAB built-in GPU-accelerated func-

tions can be used. To further accelerate the reconstruction,

multiple views can be grouped into blocks and processed in

parallel. Their overall size, however, needs to be small enough

to fit into the available GPU memory and sufficiently large to

avoid additional overhead caused by the launch of the CUDA

(https://developer.nvidia.com/cuda-zone) kernel before each

GPU operation.

The MG engine automatically estimates the memory

requirements for each of the implemented methods with its

extensions and chooses the optimal parallel block size. This

provides high computational efficiency for a broad range of

ptychographic experiments. In contrast to the HPC engine,

which supports MPI and thus communication across multiple

nodes, the GPU engine is currently limited to a single device.

Therefore, the reconstruction time and the maximum size of a

reconstruction are determined by the computational power

and memory of a single GPU.

To optimize the performance further, the communication,

that is the data transfer from CPU to GPU memory, has to be

minimized. Therefore, the engine was designed such that the

only required large-volume CPU–GPU communication is the

initial upload of the measured data into the GPU memory.

6.2. Data compression for ptychography

By keeping the measured data in GPU memory, the

maximum size of the data sets can become a limitation of the

reconstruction dimensions. To lessen these constraints, an

online lossy compression of the measured data was imple-

mented. The compression method is based on the assumption

that the measured diffraction patterns are well described by

Poisson statistics. The measurements were rescaled by a simple

variance stabilization transformation,

Mi ¼ Nið Þ
1=2; ð6Þ

where Ni denotes the number of captured photons or elec-

trons. For ideal Poisson-noise-limited data sets, the standard

deviation of the transformed measurements Mi can be well

approximated by � = 0.5. If there are additional sources of

noise, the value of the standard deviation will only increase.

Therefore, the compression itself is performed by optimum

quantization of the transformed value Mi . If the quantization

error of the lossy compression is sufficiently lower than the

error caused by the Poisson statistics (Fig. 10), the Mi values

can be stored in a lower-precision format with negligible

information loss.

The compression scheme uses the following formula to

store the measured intensities into 8 bit unsigned integer

values ~MiMi:

~MiMi ¼ uint8 ½round ðMi=QSÞ�; ð7Þ

where QS denotes the quantization step. Fig. 10 highlights the

introduced errors compared with Poisson noise for values of

Mi from 0 to 16 counts. The dependence of ptychographic

reconstruction quality for a simulated Poisson-noise-limited

data set is shown in Fig. 11. Using the lossy compression

scheme, measured intensities of up to 16 384 counts can be

computer programs
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Figure 10
Examples of decompressed values versus the original count number for
quantization step QS = 0.5. The blue shaded area denotes the range
containing 90% of the Poisson-distributed values. Black dots denote the
dependence of the decompressed counts on their original value Ni.

Figure 11
Reconstruction quality for a simulated ptychographic data set limited by
Poisson noise, plotted versus the quantization step QS. The reconstruc-
tion quality was measured by means of the normalized spatial resolution
determined by a Fourier ring correlation (FRC), as well as by the signal-
to-noise ratio between the original model and the reconstruction.



stored in 8 bit unsigned integer data format. If the measured

data exceed 16 384 counts, the 16 bit unsigned integer format

will extend the range up to 109 counts per pixel. Yet, as such

high intensities are rare, the memory allocation can be

reduced by up to 75% of what would otherwise be required to

store the modulus values in the commonly used 32 bit single-

precision format. Using online compression, 1000 measured

diffraction patterns of size 1024 � 1024 occupy a mere

1.04 GB of GPU memory. Therefore, using the LSQ-ML

method, a single GPU with 16 GB memory is sufficient to

reconstruct a 98.4 megapixel ptychographic data set (Guizar-

Sicairos et al., 2014).

7. Overview of engine performance

There is no ideal way to compare computational performance

between various engines, other toolkits based on different

hardware, and reconstruction methods which may differ

significantly in their convergence speed. However, providing

at least a basic comparison is important for understanding the

limitations of different reconstruction approaches. For this

task, the performance was evaluated by measuring the

computation time for three different ptychographic data sets.

The first data set contains 253 scan positions with a probe size

of 256 � 256 pixels, the second one contains 8998 positions

with a probe size of 256 � 256 pixels and the third contains

1569 positions with a probe size of 1024 � 1024 pixels.

Table 1 shows a comparison of the computation times

normalized by the number of iterations, scan positions and

pixels of the probe. Using a single computational node, the

HPC engine can compete well with the GPU-based imple-

mentation for smaller data sets. With larger data sets, the

overhead caused by the CUDA launch becomes negligible

compared with the computation time and the difference

between the engines becomes dominated by computational

speed and memory bandwidth only. Additionally, the LSQ-

MLc method (Odstrčil et al., 2018) is computationally less

expensive than the ML method (Thibault & Guizar-Sicairos,

2012), mainly due to the absence of the line search required

for conjugate gradient optimization, as discussed in Section 5.3.

For this reason, the LSQ-ML method can be up to eight times

faster than the HPC ML method. Nevertheless, the HPC

engine’s support for distributing the computation across

multiple nodes can significantly reduce the required time to

finish a single reconstruction, as shown in Fig. 9. Table 1 also

highlights the fact that the limited GPU memory constrains

the maximum reconstructed data-set size for our GPU-based

difference-map implementation. Such limitations can be

lessened if the DM method is only used as a low-resolution

initial guess (Odstrčil et al., 2018). The memory requirements

of the other methods implemented in the MG engine depend

only on the size of the parallel blocks and the volume of

measured data, which can be significantly reduced by online

data compression, as described in Section 6.2.

In order to demonstrate the performance of the

PtychoShelves engines with respect to other implementations,

we provide in Table 2 the normalized computation times for

other published ptychography toolboxes, and also predictions

for the Nvidia V100 card. The predictions can be used as a

rough estimate of the computational cost per iteration.

However, the computational cost may differ for various

algorithms, or even for identical methods with different

computer programs

584 Klaus Wakonig et al. � PtychoShelves J. Appl. Cryst. (2020). 53, 574–586

Table 1
Comparison of computation time (ns) required per iteration, pixel and scan position for three different ptychographic data sets and the different engines
and methods implemented in our toolkit.

The CPU-based engines were tested using 2 � 14 cores of Intel Xeon CPU E5-2690 v4 and 512 GB RAM clocked at 2400 MHz. The GPU calculations were
performed on a single Nvidia Tesla V100 GPU accelerator with 16 GB memory using MATLAB 2018a.

Engine Hardware Method Data set 1 Data set 2 Data set 3

HPC 2� Intel Xeon CPU E5-2690 DM 1.30 1.31 2.41
HPC ML 2.41 2.48 4.90
MG DM 18.5 17.5 16.7
MG Nvidia GPU Tesla V100 DM 1.03 0.70 Memory limited
MG MLc 0.81 0.49 0.60
MG PIE 0.78 0.39 0.50

Table 2
A summary of computational performance for Ptycholib (Nashed et al., 2014), SHARP (Marchesini et al., 2016), PyNX (Mandula et al., 2016), the
software package of NSLS-II (Dong et al., 2018) and ADP (Nashed et al., 2017).

We provide the normalized computation time as in Table 1 and a prediction for Nvidia V100 GPU based on the assumption that computational performance is fully
memory bandwidth limited. Note that, if the memory bandwidth difference between Nvidia V100 and the used GPU card is large and there are other limitations
such as CUDA kernel launch overheads, the predicted computation time may be over-optimistic.

Ptycholib SHARP PyNX NSLS-II ADP

Hardware Nvidia M2070 Nvidia Titan X Nvidia Titan X Nvidia P100 Nvidia K80
Memory bandwidth (GB s�1) 150 337 337 732 480
Method ePIE RAAR (no probe update) DM DM ADP
Probe size 256 � 256 128 � 128 336 � 336 200 � 200 128 � 128
Normalized time (ns) 9.3 1.4 2.5 2.5 3.6
For V100 (ns) 1.6 0.5 0.9 2.0 1.9



reconstruction parameters. Moreover, each method can lead

to significant differences in the convergence speed. Addi-

tionally, the computation time does not depend linearly on the

probe size, although the nonlinearity is rather weak. For our

MG-engine GPU engine, the difference is only 20–30%

between probe sizes of 256 � 256 and 1024 � 1024 pixels.

Based on the comparisons in Tables 1 and 2, for data sets 1

and 2 both our CPU-based HPC and GPU-based MG engines

reach shorter per-iteration computation times than other

toolboxes would if they were run on an Nvidia V100 GPU. The

exception is the SHARP toolbox, which could provide

comparable single-GPU performance to our MG engine. Also,

all the GPU-based methods generally perform better than the

CPU-based HPC engine for data sets with a large probe size,

as tested with data set 3.

8. Conclusions

PtychoShelves has been successfully tested on, and with data

from, various synchrotron beamlines, including beamlines at

SLS, MAX IV, SOLEIL and ESRF, and laboratory experi-

ments in the visible and extreme ultraviolet range, as well as

for electron ptychography. The presented benchmarks of the

PtychoShelves C++ solver suggest that the main speed

limitation arises from the finite memory bandwidth and

synchronization overhead. As a result, we are currently

investigating ways of porting the C++ solver to a GPU, from

which we expect an additional performance gain.

The already existing GPU implementation in MATLAB

provides a fast yet flexible environment for method develop-

ment. Given that large-scale synchrotron facilities around the

world expect to increase their coherent flux by orders of

magnitude over the next few years, the demands on ptycho-

graphic data processing will increase significantly. By essen-

tially providing both a modular framework and high-

performance engines, scalable even for large computing clus-

ters, we expect that PtychoShelves will be of particular interest

for researchers working on ptychography.

PtychoShelves is publicly available (CXS, 2019). For

demonstration purposes, the raw data of the results presented

in this article can be downloaded, and the data can be

reconstructed using a demonstration MATLAB script.

PtychoShelves comes with a royalty-free non-exclusive licence

for academic and non-commercial purposes only.
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