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Different studies in X-ray microscopy have arrived at conflicting conclusions

about the dose efficiency of imaging modes involving the recording of intensity

distributions in the near (Fresnel regime) or far (Fraunhofer regime) field

downstream of a specimen. A numerical study is presented on the dose

efficiency of near-field holography, near-field ptychography and far-field

ptychography, where ptychography involves multiple overlapping finite-sized

illumination positions. Unlike what has been reported for coherent diffraction

imaging, which involves recording a single far-field diffraction pattern, it is found

that all three methods offer similar image quality when using the same fluence

on the specimen, with far-field ptychography offering slightly better spatial

resolution and a lower mean error. These results support the concept that (if the

experiment and image reconstruction are done properly) the sample can be near

or far; wherever you are, photon fluence on the specimen sets one limit to spatial

resolution.

1. Introduction

X-ray microscopy provides a unique combination of short-

wavelength radiation (with the potential for nanoscale

imaging) with high penetration. However, X-rays ionize

atoms, so radiation damage often sets a limit on the achievable

resolution, especially when studying soft or biological mate-

rials (Sayre et al., 1977a; Kirz et al., 1995). This becomes quite

important as one seeks finer spatial resolution �r, since for

isotropic objects there is a tendency (Sayre et al., 1977b;

Howells et al., 2009) for the required number of photons per

area incident on the specimen (the fluence nph) to obtain an

image with sufficient signal-to-noise ratio to increase as

nph / ð�rÞ
�4. Since fluence leads directly to the absorbed

radiation dose D, it is important to use low-fluence methods

for high-resolution imaging.

One of the methods for low-fluence and low-dose X-ray

imaging is to use phase contrast. That is because (Henke et al.,

1993; Du & Jacobsen, 2018) the phase shift imparted on an

X-ray wavefront scales like �Z�2, while beam absorption

scales like �Z�4, where � is the density, Z is the atomic number

and � is the wavelength. As a result, phase contrast often leads

to reduced radiation dose for the same feature detectability,

especially at shorter wavelengths (Schmahl & Rudolph, 1987).

While the phase of an X-ray wave cannot be measured

directly, it can be inferred by mixing with a reference wave so

that phase changes are encoded as intensity differences. This

can be done using the Zernike method with X-ray zone plates
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(Schmahl et al., 1994), or by using beam propagation. In near-

field methods involving short propagation distances from the

specimen to the detector, one or a few Fresnel fringes can be

interpreted using approaches such as the transport of intensity

(Paganin et al., 2002), while at intermediate distances a large

number of Fresnel fringes allow for in-line holographic

reconstruction (Baez, 1952a,b) in an approach that is often

referred to as near-field holography (NFH). One can improve

reconstruction fidelity in NFH by combining information from

holograms recorded at multiple distances (Cloetens et al.,

1999) or from multiple lateral illumination shifts (Stockmar

et al., 2013), where the latter approach is referred to as near-

field ptychography (NFP). If instead the beam is allowed to

propagate from the specimen to a detector at a distance that

meets the far-field or Fraunhofer condition, X-ray images of

phase objects can be recovered from coherent diffraction

patterns with no wave mixing required (Sayre, 1980). This can

be done in a single illumination approach now called coherent

diffraction imaging or CDI (Miao et al., 1999), where one uses

finite-support iterative phase retrieval (Fienup, 1978). Alter-

natively, it can be done using multiple finite-sized over-

lappping coherent illumination spots in a method called far-

field ptychography (FFP) (Hoppe, 1969a,b), where one again

uses an iterative phase retrieval algorithm (Faulkner &

Rodenburg, 2004) to obtain an image with a spatial resolution

much finer than the size of the illumination spot (Rodenburg

et al., 2007).

Are there fundamental differences in photon exposure

requirements depending on whether one mixes the specimen

wave with a reference to get intensities, or measures the

specimen wave diffraction intensities alone? One might think

that by mixing a strong reference wave R with a weak

specimen wave S one might have a multiplying effect due to

the net intensity recording being jRj2 þ RSy þ RySþ jSj2,

and indeed it has been suggested that NFH might be an

especially dose-efficient imaging method (Bartels et al., 2015;

Hagemann & Salditt, 2017), though other simulation studies

by some of the same researchers have found more of a dose

equivalence with far-field diffraction (Jahn et al., 2017). In fact,

quantum noise is still limited by the specimen wave, leading to

the following conclusion by Richard Henderson (1995) in the

context of electron microscopy: ‘It can be shown that the

intensity of a sharp diffraction spot containing a certain

number N of diffracted quanta will be measured with the same

accuracy (N1=2) as would the amplitude (squared) of the

corresponding Fourier component in the bright field phase

contrast image that would result from interference of this

scattered beam with the unscattered beam (Henderson, 1992).

The diffraction pattern, if recorded at high enough spatial

resolution, would therefore contain all the intensity informa-

tion on Fourier components present in the image.’ This point is

also addressed in Section 4.8.5 in the work of Jacobsen (2020).

This leads us to expect that the reconstruction of a certain

spatial frequency of the object should be equally accurate for

far-field diffraction as it is for near-field phase contrast

imaging, provided both use the same fluence nph on a

specimen pixel.

One could argue that the act of recovering phases from far-

field diffraction patterns can introduce extra noise. Indeed,

Henderson (1995) followed the comments above with this

statement: ‘It [the diffraction pattern] would lack only the

information concerning the phases of the Fourier components

of the image which are of course lost. Thus, for the same

exposure, holography should be equal to normal phase

contrast in performance, and diffraction methods inferior

because of the loss of the information on the phases of the

Fourier components of the image.’ However, diffraction

patterns are affected by the phase of Fourier components.

Consider the example of a transverse shift of one subregion of

a coherently illuminated object: the shift theorem of the

Fourier transform makes it clear that one would change the

phase of that subregion’s contribution to a specific point in the

entire object’s complex diffraction amplitude. Therefore the

intensity of the diffraction pattern produced by the object

would undergo some redistribution (that is, the speckle

pattern would change), showing that diffraction methods do

indeed involve the encoding of phase. This is perhaps why a

number of studies on iterative phase retrieval methods have

indicated that the phase retrieval process seems not to add

additional noise to the reconstructed image beyond that

present in the diffraction pattern itself (Fienup, 1978; Williams

et al., 2007; Huang et al., 2009; Schropp & Schroer, 2010;

Godard et al., 2012).

A slightly different approach to compare the signal-to-noise

ratio for various imaging methods is to consider the strength

of the signal scattered by a Gaussian-shaped feature char-

acterized by a width �f , relative to the signal from the total

illuminated area (the field of view or FOV) (Villanueva-Perez

et al., 2016). Unlike calculations that assume isotropic features

and then calculate their contrast based on X-ray interaction

properties (Sayre et al., 1977b; Howells et al., 2009; Du &

Jacobsen, 2018), this approach assumes that the feature scat-

ters some number Ns of photons for a given incident illumi-

nation (Ns can be estimated; Shen et al., 2004; Schropp &

Schroer, 2010; Villanueva-Perez et al., 2016). This approach

has been used to calculate a signal-to-noise ratio (SNR) for

propagation-based phase contrast microscopy [PM;

equation (8) of Villanueva-Perez et al. (2016)] of

SNRPM
’ 2 Nsð Þ

1=2 4

�ð Þ1=2
B

2�f

FOVPM

ð1Þ

where B ¼ ps=fw is the ratio of pixel size ps over source size fw

(B ¼ 1 for coherent plane-wave illumination from a distant

source in NFH). Analysis of coherent CDI [equation (9) of

Villanueva-Perez et al. (2016)] yields an expression

SNRCDI
’ Nsð Þ

1=2 2�f

FOVCDI

: ð2Þ

The FOV of CDI in equation (2) can be reinterpreted as the

probe size in FFP. For a Gaussian probe, a reasonable way to

define the probe size would be to consider a sharp-edged disc

concentric with the probe, and having the same height (1) as

the probe’s magnitude distribution. For the disc to have the

same integral area as the probe, its diameter needs to be
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2ð2Þ1=2 times the Gaussian probe’s standard deviation �f . With

this assumption, and expressing the FOV as 512 pixels for

NFH and 2ð2Þ1=2 pixels for FFP, the SNR ratio between FFP

and NFH becomes

SNRFFP

SNRNFH ¼
ð�Þ1=2

8�

FOVNFH

FOVFFP

¼
ð�Þ1=2

8� 1
�

512

2ð2Þ1=2 6
’ 6:7; ð3Þ

suggesting that FFP has a slight advantage over NFH.

In spite of equation (3), we hypothesize that the fluence nph

on the object sets the main limit on achievable resolution,

rather than the use of near-field versus far-field imaging

methods (assuming both methods are implemented in a way

that allows a specific spatial resolution target to be reached).

This hypothesis is supported by a previous simulation study of

binary objects using propagation with different Fresnel

numbers (Jahn et al., 2017). Excluding the contact regime

(where one loses sensitivity to phase contrast), this work

concluded that near-field and far-field imaging methods

require essentially the same critical photon fluence to reach

the same level of reconstruction error. Nevertheless, this

analysis was carried out using small objects with binary

contrast and within rectangular supports, whereas we examine

below the same irregularly sized objects with more continuous

contrast that were used in a different near-field/far-field

comparison (Hagemann & Salditt, 2017). In addition, both this

binary object study (Jahn et al., 2017) and other previous

studies (Huang et al., 2009; Hagemann & Salditt, 2017) used

single diffraction patterns from finite-sized objects for far-field

imaging. The reconstruction of complex objects from their

single coherent diffraction patterns is not always straightfor-

ward, as one needs precise knowledge of the specimen’s

support S (the subregion within which the object is restricted

to lie; Fienup, 1987; Huang et al., 2010). In addition, other

experimental limitations like the loss of a significant subset of

strong low-spatial-frequency intensity values due to the

presence of beam stops can complicate object reconstruction

(Thibault et al., 2006; Huang et al., 2010). These complications

may have played a role in the simulation study noted earlier

that showed that NFH yields superior images at the same

fluence nph when compared with using standard CDI as a far-

field imaging method (Hagemann & Salditt, 2017).

The problems noted above for standard CDI are greatly

mitigated in FFP, where the finite coherent illumination spot

provides several benefits. Ptychography allows one to accu-

rately determine the equivalent of a finite support due not to

the characteristics of the object but instead to the character-

istics of the limited-size probe function, which can be recov-

ered from the data. Object subregions that are present in the

overlap between two probe positions provide a sort of holo-

graphic reference between the two resulting diffraction

patterns (Bunk et al., 2008). Finally, the spreading of the

unmodulated probe function in the far field (due to its finite

extent at the object’s plane) helps distribute intensities out of

the central, zero-spatial-frequency pixel on the diffraction

detector, especially when the probe is a convergent beam

provided by the focus of a lens (Thibault et al., 2008).

Therefore while standard CDI often shows imperfections in

image reconstruction beyond those provided by fluence, FFP

can provide a method for a more robust comparison between

the fluence requirements of near-field versus far-field coherent

imaging methods. We have also shown good agreement

between calculations and experimental FFP experiments for

the fluence/resolution relationship when imaging integrated

circuits (Deng, Hong et al., 2017) and biological specimens

(Deng, Vine et al., 2017). It is for these reasons that we have

carried out a simulation study comparing NFH not against

CDI but against FFP as a far-field imaging method. We also

include a comparison with NFP as a method that combines

near-field recording, as in NFH, with multiple illumination

positions, as in FFP.

2. Image reconstruction method

In order to compare different imaging methods for non-binary

objects, we have chosen to use the same optimization-based

reconstruction method for the three imaging approaches, so as

to reveal only the inherent differences between them. The

work of Hagemann & Salditt (2017) used the relaxed averaged

alternating reflections or RAAR algorithm (Luke, 2005) for

reconstruction.

We have chosen to make use of the same simulated object

that they used [shown in Fig. 2(a) of Hagemann & Salditt

(2017)]. However, in our case we have chosen to use a more

basic cost function minimization approach, in which one

defines a forward model for how incident illumination inter-

acts with a present guess of the object to produce a measurable

intensity distribution, after which one seeks to adjust the

object guess so as to minimize the difference between the

result of this forward model and the actual measured intensity

distribution (we refer to this difference as the cost function C).

One can also include regularizers in this approach as will be

described below. In order to efficiently minimize the cost

function C for the three different imaging methods of NFH,

FFP and NFP, we have chosen to use an automatic differ-

entiation (AD) approach (Rall, 1981) so that we do not need

to calculate gradients of C by hand for the two imaging

methods and regularizers. The use of AD in CDI was

suggested before powerful parallelized toolkits were widely

available (Jurling & Fienup, 2014), but it has since been used

for image reconstruction in FFP (Nashed et al., 2017), in Bragg

and near-field ptychography (Kandel et al., 2019), and in NFH

and FFP of thick specimens (Du et al., 2020).

Our approach is to minimize the cost function C by

adjusting the object function n which contains the complex

refractive index of the sample. For X-ray imaging, we used a

2D grid of the X-ray refractive index nðx; yÞ ¼

1� �ðx; yÞ � i�ðx; yÞ distribution multiplied by the projection

object thickness tðx; yÞ to yield an optical modulation of

exp k½i�ðx; yÞ � �ðx; yÞ�tðx; yÞ
� �

in the sign convention where

forward propagation is expð�ikzÞ. In our case, we used the

same 512� 512 pixel pure-phase cell phantom [shown here in

Fig. 1(a)] as was used in prior work (Hagemann & Salditt,

2017), with the modification of taking its complex conjugate so
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that it had positive rather than negative phase values since

X-ray phase is advanced rather than retarded in materials

(Larsson et al., 1924). Within the 19.4% of the pixels that

define the support S of the object, it produces an optical

modulation n0 on the incident illumination with a mean phase

of

�’’ ¼ 0:643 rad; ð4Þ

a variance of �’ ¼ 0:037 rad and a bound of 0–1 rad (this

object phase contrast is representative of what one might have

in soft X-ray imaging; the contrast is usually lower in hard

X-ray imaging). The cost function C is the mean squared

difference between the modulus of the wave at the detector

plane as predicted by the forward model f ðn; k; dÞ for the

present guess n of the object, and the ‘measured’ intensity yk

of

yk ¼ jf ðn0; k; dÞj2; ð5Þ

where d is the free-space propagation distance z in terms of a

Fresnel number

d ¼
�2

�z
ð6Þ

for an object pixel size � (so that far-field diffraction has

d ¼ 0). Fresnel propagation f ðn; k; dÞ of the wavefield leaving

the specimen to the detector plane was accomplished via

convolution with a propagator function in the Fourier domain

(Goodman, 2017). Poisson noise was incorporated in recorded

intensity values yk as will be described below. We then had a

least-squares or LSQ cost function CLSQ between the inten-

sities one would expect from the present guess of the object

versus the measured intensities yk of

CLSQ ¼
1

NpNk

jf ðn; k; dÞj � ykð Þ
1=2

�� ��2

2
; ð7Þ

where Np represents the number of pixels in the detector and

Nk represents the number of illumination spots k (Nk ¼ 1 for

the single, full-area illumination in holography).

The formulation of the cost function in equation (7) is

straightforward: by minimizing the cost function, we update

the object function n so that the Euclidean distance between

the diffraction images generated by n and the actual

measurements is reduced. An LSQ cost function like this is

more appropriate for images containing Gaussian noise, which

is generally applicable at relatively high photon fluences (Cai

et al., 2017), but is unable to accurately account for the shot
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Figure 1
The 512� 512 pixel phantom cell object used for our computational experiments (a). The object is the same pure-phase cell phantom used in a prior
study (Hagemann & Salditt, 2017), so that one can compare directly with those results. The only difference is that we used the complex conjugate of the
phantom so as to have positive rather than negative phase shifts, since X-ray phase is advanced rather than retarded in materials (Larsson et al., 1924).
(b) The simulated experimental intensities for NFH with propagation by a distance corresponding to a per-pixel Fresnel number [equation (6)] of 10�3.
(c) One of the far-field diffraction patterns at the center of the object. In fact, a set of far-field diffraction intensity patterns were simulated for a series k
of different illumination or probe positions across the sample, which is the type of data set one obtains in FFP. In (d) and (e), we show one of the NFP
recordings of the object and the phase map of the illumination function used.



noise at low photon fluences. When the object is illuminated

by a limited number of photons, the total probability of

observing the entire set of experimental measurements given

the object function n is better described by a Poisson distri-

bution as

pðyjnÞ ¼
YNpNk

i¼1

exp½�jf ðn; k; dÞj2i �jf ðn; k; dÞj
2yi
i

yi!
: ð8Þ

Equation (8) is also known as the Poisson likelihood function,

and the true object function should be one that maximizes the

likelihood. In practice, the negative logarithm of equation (8)

is often taken, so that the maximization of a serial product can

be turned into the more tractable problem of minimizing a

sum. In this way, the Poisson cost function is written as

CPoisson ¼
1

NpNk

XNpNk

i¼1

jf ðn; k; dÞj2i � 2yi log jf ðn; k; dÞji
� �

: ð9Þ

In NFP and FFP, the lack of scattering that takes place when

the illuminating probe function is outside the object’s

boundary means that it is quite natural for a reconstruction

algorithm to seek solutions for such regions that are empty,

even under conditions of limited illumination. To add a similar

constraint only to NFH reconstructions, we added to the cost

function of equation (7) a regularizer consisting of a finite-

support mask S. This yields an update n0 to the object of

n0 ¼ argminnðCjÞ

subject to nw ¼ 0 for nw =2 S and n � 0 for n 2 S

where j 2 fLSQ;Poissong: ð10Þ

A finite-support constraint also suppresses the twin image in

in-line holography (Liu & Scott, 1987). Due to the presence of

information redundancy, FFP and NFP do not need a finite-

support constraint.

With the forward model as described above, and the finite-

support constraint added to NFH, we were able to obtain

reconstructed images by minimization of the cost function C,

using either the LSQ or the Poisson cost function. The partial

derivative of C with regards to the elements of n was calcu-

lated using AD as implemented as a cost function in Tensor-

Flow (Abadi et al., 2016), so that all three imaging types and

both cost function types (LSQ and Poisson) could be treated

in the same way simply by varying the Fresnel number d. The

Adam optimizer (Kingma & Ba, 2015) in TensorFlow was

used to update the object function using the calculated

gradients.

3. Numerical experiments

For direct comparison with prior work (Hagemann & Salditt,

2017), we used the same 512� 512 pixel simulated cell

phantom phase object described above, and the same value of

the Fresnel number [equation (6)] of d ¼ 10�3 for NFH. This

corresponds to z = 40.3 mm with � = 10 nm pixel size at a soft

X-ray photon energy of 500 eV, or z = 807 mm at a hard X-ray

photon energy of 10 keV. In the case of NFH, the object was

padded by 256 pixels on each side before optical propagation

was carried out in order to prevent fringe wrap-around due to

the periodic array nature of discrete Fourier transforms. The

finite-support mask is created by thresholding a low-pass-

filtered version of the true object, so that the mask is about 9

pixels looser than the actual object boundary. For FFP, we

assumed a probe function that was Gaussian in both magni-

tude and phase, with a standard deviation of 6 pixels and a

phase that varied from 0 to 0.5 rad. The shift between probe

positions was set to 5 pixels so that there was sufficient probe

overlap at low fluence as is required for robust ptychographic

reconstructions (Bunk et al., 2008); this is discussed further in

the supporting information. This led to a square scan grid with

66� 68 probe positions, and for each probe position a 72� 72

pixel subset of the object array was extracted before multi-

plication with the probe function and calculation of the

resulting 72� 72 pixel diffraction pattern.

For our complementary study on NFP, the setup is assumed

to be for a point-projection imaging, where a point source is

used for illumination. The high spatial resolution of a point-

projection microscope is achieved by the geometrical magni-

fication effect of the spherical wave that the point source

emits. As the Fresnel scaling theorem [Appendix B in the

work of Paganin (2006)] indicates that this geometry is

equivalent to plane-wave illumination with the sample–

detector distance scaled by a certain factor, we can simulate

the image-forming process simply using a plane wave as the

probe function. Since NFP delivers better resolution when a

diffuser is used to generate a structured illumination

(Stockmar et al., 2013), we created our incident illumination

function as a wavefield with unity magnitude and random

phase distribution. The phase map was generated by first

creating a 768 � 768 array of Gaussian-distributed per-pixel

random phases centered at 0 with � = 0.3 rad; it was then

spatially smoothed using a kernel with � = 5 pixels. The phase

of the illumination function (cropped to the same size as the

final diffraction image) is shown in Fig. 1(e). A Fresnel number

of d ¼ 10�3 between the sample and detector, the same as the

value used for NFH, is used in this case. After the sample-

modulated wavefield was propagated to the detector plane, it

was cropped down to 512� 512 to remove fringe wrapping at

the edges. Since each diffraction pattern in point-projection-

based NFP has a much larger effective FOV (larger than the

sample size) compared with FFP, a small number of scan spots

suffice. If both the probe function and the object function

contain N pixels, and so does each diffraction image, then it

takes at least four diffraction patterns to solve both the object

and the probe (Stockmar et al., 2013). We therefore followed

their choice of using 16 diffraction patterns distributed in a

4� 4 grid, through which the sample was translated across the

entire 512� 512 final FOV while being fully contained inside.

This should provide sufficient data for a robust reconstruction

provided that we use a known probe function.

X-ray microscopes use ionizing radiation, so it is important

with many specimen types to limit the photon fluence nph

(average number of incident photons that hit each pixel

containing the sample) and consequent radiation dose that the
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specimen receives. However, one must supply sufficient

fluence in order to successfully image small low-contrast

features. For phase contrast imaging of a non-absorbing low-

contrast specimen with thickness tf and phase-shifting part of

the refractive index �f for feature-containing pixels and �b for

background (feature-free) pixels, one can estimate that the

fluence required to obtain an image with a signal-to-noise

ratio of SNR is given by equation (39) from the work of Du &

Jacobsen (2018), which we rewrite here as

nph ¼
SNR2

2

1

k2j�f � �bj
2t2

f

ð11Þ

where k � 2�=� is the wavenumber. Since kj�f � �bjtf is the

mean phase shift within the object compared with the object-

free region, we can substitute this with �’’ ¼ 0:643 rad from

equation (4) and obtain an estimate that we require a fluence

of

nph ¼ SNR2=½2ð �’’Þ2�: ð12Þ

Given that the variance about the mean phase within the

object was �’ ¼ 0:037 rad, we would expect that an SNR of

about j �’’j=�’ ¼ 17:4 would begin to give very faithful low-

noise representations of the true object, which corresponds to

a fluence estimate of nph ¼ 350 photons per pixel (with higher

fluences giving increasing image fidelity).

We therefore carried out simulations with values of nph that

bracketed a value of nph ¼ 350 per pixel on an approximately

logarithmic scale. Starting from the noise-free ‘recorded’

intensities yk of equation (5), we incorporated Poisson noise to

yk for a specified total fluence nph in photons per pixel on the

specimen (to save computational time, NFP was tested on a

subset of the photon fluence values used for NFH and FFP).

Because we expect nph ¼ 350 per pixel to be the nominal

dividing line between ‘high-dose’ and ‘low-dose’ regimes, data

sets with nph beyond that were reconstructed using the LSQ

cost function which approximates photon noise using a quasi-

Gaussian model that works well at high photon fluence. On

the other hand, data with nph below 350 per pixel were

reconstructed using both the LSQ and the Poisson cost func-

tions. Two separate, independent random-noise data sets were

generated for each experiment type, fluence and loss function

type; reconstructed images from one of these two instances are

shown in Fig. 2. This figure shows that both NFH and FFP

yield high-quality reconstructions at high photon fluence. As

the fluence decreases to nph ¼ 350 incident photons per pixel

or less, the images begin to show a degradation in quality, but

in different ways. In NFH, the images begin to take on a ‘salt-

and-pepper’ or speckle-like noise appearance as one would

expect in a direct coherent imaging experiment. Switching to

the Poisson cost function does not help significantly with

improving the quality. In FFP at low fluence, one will have

relatively few photons scattered outside the numerical aper-

ture of the probe function, so the image appears to show a loss

of spatial resolution going towards the probe resolution but

with less ‘salt-and-pepper’ noise appearance. At very low

fluences in FFP, there are relatively few photons in the overlap

regions between probe positions. If a sparser scan grid was

used, one would start to see the scan grid artifacts that can

arise due to insufficient probe overlap when using the LSQ

cost function (Bunk et al., 2008; Huang et al., 2017). The

68� 66 scan grid we used in this case is fine enough to

suppress these artifacts, but a grid with doubled spot spacing

could result in obvious grid artifacts, and in that case, the

Poisson cost function turns out to be a better option (see

supporting information, Fig. S1). The Poisson cost function is

also able to give sharper boundaries of features compared

with the LSQ cost function, especially for nph below 35 per

pixel. Nevertheless, results of the Poisson cost function at

relatively high photon fluences incorporate fringe-like arti-

facts, such as in the region marked by the yellow dashed box in

the image with nph ¼ 35 per pixel. Even when reconstructing

noise-free data, this kind of artifact still exists, which proves

that the Poisson cost function is not always a superior choice

than LSQ and Gaussian cost functions. Another observation

adding to this conclusion is that the Poisson cost function

generally takes more iterations to converge, especially in the

case of FFP.

For NFP, using a Poisson cost function improves the

contrast of the reconstructed images to some extent. However,

it was observed exclusively in NFP that almost all results

obtained from noisy data, even with nph ¼ 20 000 where NFH

and FFP yield nearly identical results to the ground truth,

contain high-frequency artifacts. When the input data are

noise free, then NFP is able to reconstruct the image without

artifacts, as shown in the insets in Fig. 2. The reduced

performance at low fluence may be attributed to the ambiguity

arising from noise-related uncertainty: although both a

structured illumination and multiple diffraction images are

used to provide information diversity, the presence of noise

makes the solution non-unique. Tighter constraint usually

leads to a better solution, which can be provided either by

taking more diffraction images so that the uncertainty is

reduced by larger sample volume or by using a finite-support

constraint as in the case of NFH. However, a tight support

constraint is not always easily determined and, furthermore,

avoidance of the requirement of a finite-support constraint is

in fact one of the motivations to use NFP.

In order to better quantify the reconstruction quality, we

now consider metrics one can obtain from noisy images. If one

has two images I1 and I2 of the same object with two different

instances of noise, one can calculate an overall image corre-

lation coefficient r of (Bershad & Rockmore, 1974)

r ¼
hðI1 � hI1iÞ ðI2 � hI2iÞ

y
i

hðI1 � hI1iÞ
2
ihðI2 � hI2iÞ

2
i

� �1=2
: ð13Þ

One can then use this correlation coefficient to calculate an

overall image SNR (Frank & Al-Ali, 1975) of

SNR ¼
r

1� r

� �1=2

; ð14Þ

where the expression of equation (14) is correct for intensity

images I1 and I2, as confirmed by the as-expected scaling of
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SNR / ðnphÞ
1=2 (Huang et al., 2009). Although we do not use a

finite-support constraint as part of the NFP and FFP recon-

struction processes, for comparison with NFH we calculate r

and SNR only within the finite-support region for all three

imaging methods, leading to the result shown in Fig. 3(a). With

the exception of the very lowest fluences in NFH and NFP, and

NFP fluences above the nph ¼ 350 estimate given after

equation (12) at which one expects to have achieved a high-

fidelity reconstruction of the object, the SNR from all recon-

struction methods shows a linear trend on this log–log plot

with a slope of about 0.5 as expected for SNR / ðnphÞ
1=2. FFP

shows the highest overall SNR, with NFH being second to it,

and NFP the lowest. The high-frequency and uncorrelated

artifacts in NFP results are clearly responsible for the

method’s lower SNR. As one compares the results yielded by

the two types of cost functions, it can be found that, while the
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Figure 2
Reconstructed images of the cell phantom shown in Fig. 1(a) obtained for NFH, FFP and NFP at the photon fluences nph indicated. For a photon fluence
higher than 350 photons per pixel, only results obtained using the LSQ cost function are shown; for fluences at or below that value, we show the
reconstructions obtained using both the LSQ cost function [equation (7)] and the Poisson cost function [equation (9)]; these are placed side by side. At
high photon fluence, both NFH and FFP yield high-quality images. However, their behaviors differ at low fluence. For NFH, the images gain a more salt-
and-pepper appearance, as one would expect from low-photon statistics. The use of the Poisson noise model does not significantly improve the
reconstruction quality. In FFP, the decrease in photons scattered beyond the illumination probe’s numerical aperture at low fluence means the images
tend more and more towards the probe’s limit of spatial resolution. While the LSQ cost function gives blurry reconstructions at low photon dose, the
results with the Poisson cost function preserve sharp features even at very low photon count, but instead show fringe-like artifacts. With NFP, using the
Poisson cost function at low dose slightly improves the contrast in reconstructed images. However, both LSQ and Poisson results contain high-frequency
artifacts that are eliminated only with noise-free diffraction data (see insets).



SNR of NFH is slightly enhanced at nph ¼ 0:8 and 2 per pixel,

the SNR of FFP reconstructions with the Poisson cost function

is actually lower than those with LSQ, and the disparity

increases at higher nph. This observation seems to contradict

the visual appearance of images in Fig. 2, where Poisson

reconstructions give sharper feature boundaries under low-

dose conditions. This could be explained by the fact that the

method of calculating the SNR we have chosen measures the

degree of correlation between two independently recon-

structed images. If the images each contain correlated arti-

facts, the SNR is erroneously increased. When using the LSQ

cost function to reconstruct FFP data, the loss of high-

frequency information due to photon deficiency results in

overall blurriness in the reconstructed images. In Poisson

reconstructions, however, low photon fluence leads to loca-

lized fringe artifacts, which are heavily dependent on the

initial guess. When nph is sufficiently high that LSQ recon-

structions are almost noise free, there is still a minor presence

of the fringe artifacts in Poisson reconstructions. As the initial

guess was created by Gaussian noise, the positions and

numbers of the fringes can vary even for two reconstructions

corresponding to the same nph. As a result, the SNR metric of

equation (14) tends to interpret the artifacts in FFP recon-

structions with the Poisson cost function as uncorrelated noise.

Since the phantom cell is a pure-phase object with a well

defined support S (which was used in the NFH reconstruction

to suppress the twin image), another whole-image metric we

can use is the within-support mean squared error (SMSE) on

the phase of

SMSE ¼
1P
ðn 2 SÞ

�
P
n2S

jjargðphantomÞ � argðreconstructionÞjj2; ð15Þ

where n is a pixel index. This is the same ‘2-norm metric

defined by equation (9) in prior work (Hagemann & Salditt,

2017). Our results for the SMSE for NFH, FFP and NFP are

shown in Fig. 3(b). Hagemann & Salditt (2017) found that

NFH gave a higher SMSE at fluences below about 100 quanta

per pixel when compared with far-field CDI, but that holo-

graphy then gave a lower SMSE at higher fluences. Here, we

have found a very similar relation between NFH and FFP, with

the SMSE cross-over also occurring near 100 photons per

pixel. Other than that, we have again found that use of the

Poisson cost function [equation (9)] gives slightly better results

than LSQ [equation (7)] for NFH and NFP, but appears to

result in larger SMSE for FFP, due to the more uncorrelated

artifacts in FFP’s Poisson reconstructions.

Although whole-image SNR measurements show that FFP

slightly outperforms NFH (and largely outperforms NFP) at

low photon fluence, they also seem to indicate improved

results for FFP when using the LSQ cost function

[equation (7)] instead of the Poisson cost function

[equation (9)] at low fluence, which seems to contradict the

visual appearance of the reconstructed images shown in Fig. 2.

We therefore compared the performance of the NFH, FFP and

NFP reconstructions for reconstructing a small, bright feature

indicated by a yellow arrow in Fig. 4. For each reconstructed

image, a Gaussian fit was carried out on this feature with a 2D

symmetric profile, as shown in Fig. 4. An increase in the

standard deviation of the Gaussian fitting function thus

measures the blurriness of the reconstructed image, since a

sharper feature will have a smaller standard deviation. At very

low photon fluence, the overall resolution of the images is low,

and the fitted standard deviation may suffer from significant

uncertainty. With nph > 2 per pixel, the results start to show

less fluctuation (outliers for FFP at nph ¼ 35 and 200 per pixel

have been removed from the plot). For FFP, the plot of the
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Figure 3
Whole-image metrics of image-reconstructed image quality as a function
of fluence nph. (a) The SNR as calculated using equation (14) for NFH,
FFP and NFP, and using either the LSQ (solid squares) or Poisson cost
function (open squares). The image correlation was calculated within the
finite-support area of the object. At each photon fluence nph and for each
cost function type, two separate instances of Poisson noise were
generated and applied to the noise-free data set. The noisy data sets
are then independently reconstructed and used for our correlation-based
SNR calculation. The slope for the LSQ fitting curves is near 0.5 for all
three techniques, indicating that the SNR increases roughly as ðnphÞ

1=2, as
one might expect. (b) The within-support mean squared error (SMSE) of
equation (15), which shows improved performance at low fluences for
FFP compared with NFH. NFP shows a larger SMSE for all photon
fluences tested.



Gaussian fit width better indicates the sharper features

brought by the Poisson cost function, as the Gaussian spread

of the feature in Poisson ptychography is smaller than that in

LSQ ptychography. This agrees with visual perception of the

results shown in Fig. 2.

Another important metric for evaluating two separate

instances of equally noisy images is to examine the correlation

of their Fourier transforms as a function of radial spatial

frequency ur, leading to the Fourier shell correlation for 3D

images or the Fourier ring correlation (FRC) for 2D images

(Saxton & Baumeister, 1982; van Heel, 1987) given by

FRC12ður;iÞ ¼

P
ur2ur;i

F1ðrÞ � F2ðrÞ
y

P
ur2ur;i

F2
1 ðrÞ �

P
ur2ur;i

F2
2 ðrÞ

h i1=2
: ð16Þ

High-resolution low-noise images will show strong correlation

at high spatial frequencies, while lower-resolution noisier

images will show poorer correlation at high spatial frequen-

cies. It is common to assign a spatial resolution value based on

the crossing of the FRC with a half-bit threshold value (van

Heel & Schatz, 2005). The resulting FRC analysis (plotted

only for LSQ results) shown in Fig. 5 indicates that both NFH

and FFP deliver full-resolution images at high photon fluences

with similar information distribution over the spatial

frequency below the Nyquist limit. On the other hand, NFP

largely loses correlativity at mid-high frequency even at

nph ¼ 20000 due to the uncorrelated artifacts. This figure also

highlights the half-bit resolution FRC crossing point with a red

circle for the case of an incident fluence of 8 quanta per

pixel for each imaging method. This measure of the spatial
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Figure 4
Standard deviation of the fitted Gaussian 2D profile for the small bright-
spot-like feature pointed to by the yellow arrow. This is done for NFH,
FFP and NFP. For photon fluences below 2 per pixel, the curves are
greatly influenced by uncertainties, but meaningful results start to appear
at higher photon fluences (with outliers for FFP at nph ¼ 35 and 200 per
pixel removed). The results agree with the visual appearance of the
reconstructions shown in Fig. 2, where features in FFP reconstructions
appear sharper when using the Poisson cost function at low photon
fluence.

Figure 5
Fourier ring correlation (FRC) curves for two images reconstructed from
separate instances of Poisson-noise-included simulated data sets, for (a)
NFH, (b) FFP and (c) NFP. Only results obtained using the LSQ cost
function of equation (7) are shown. Each curve is labeled with the fluence
nph in quanta per pixel. Also shown on the plot is the 1/2-bit threshold
curve that is commonly used to define the achieved spatial resolution
based on the spatial frequency of the crossing with the experimental FRC
curve (van Heel & Schatz, 2005), as indicated by red circles for a fluence
of 8 in (a) and (b). These FRC crossing normalized spatial frequencies are
used in Fig. 6.



resolution as a fraction of the 1=ð2�rÞ Nyquist spatial

frequency is shown in Fig. 6(a), where one can see that both

NFH and FFP approach full resolution at a fluence near the

estimate of 350 quanta per pixel found using equation (12),

while NFP barely reaches full resolution at

nph ¼ 2� 104 photons per pixel. Because of the noise fluc-

tuations present in the FRC curves, the FRC/half-bit crossing

fraction may show some variations depending on the parti-

cular instances of data Poisson noise; this explains the non-

smooth trend of the FRC crossing values shown in Fig. 6(a).

The fraction of the Nyquist limit spatial frequency shown in

Fig. 6(a) was calculated by FRC analysis from two separate

instances of Poisson noise at each fluence value and each

imaging mode. However, a prior study has carried out FRC

analysis by comparing a noisy image against the ground-truth

image of the noise-free cell phantom (Hagemann & Salditt,

2017). We have therefore calculated this ‘ground-truth’ FRC

crossing value, as well as tracing the curves shown in Fig. 4(a)

of this previous analysis (Hagemann & Salditt, 2017) for both

NFH and far-field CDI (where the latter involves a single

diffraction pattern from illuminating the entire object array,

and the use of a finite support in iterative phase retrieval). We

show in Fig. 6(b) up to two FRC/half-bit crossing curves for

each experiment/cost function type: the crossing obtained by

comparing one low-fluence image with the ground-truth image

(for NFH, FFP and NFP), and the traced values from Fig. 4(a)

of the previous analysis (Hagemann & Salditt, 2017) (for NFH

and CDI). As can be seen, there is reasonable agreement

betwen our FRC crossing results and those of the previous

analysis (Hagemann & Salditt, 2017) for the case of NFH with

a ground-truth reference, even though the previous analysis

used a slightly different reconstruction algorithm (the RAAR

algorithm; Luke, 2005). In addition, FFP, NFH and NFP all

show improved performance relative to far-field CDI, which

suffers from well known difficulties (Miao et al., 2005; Thibault

et al., 2006; Williams et al., 2007; Huang et al., 2010).

Overall, the above analyses and discussions suggest similar

performance between FFP and NFH over a wide range of

fluence, although FFP performs slightly better in terms of SNR

(especially at low photon fluence). However, it should also be

noted that FFP has certain extra requirements: it requires a

high degree of coherence over the entire beam used, while

NFH requires high coherence within the region of Fresnel

fringes from a feature in a specimen but not over the entire

illumination field. (As an example, with Fresnel fringes

extending to 20 mm, one could use a 200 mm-wide beam with

20 mm coherence width to image a larger FOV with higher flux

if using a partially coherent source.) FFP also requires accu-

rate movement of a probe beam relative to the sample (though

computational probe position refinement can also help correct

for errors; Guizar-Sicairos & Fienup, 2008; Zhang et al., 2013).

Additionally, all our FFP results shown above were recon-

structed with a known probe function. In reality, it is often the

case that the probe needs to be reconstructed along with the

object, which is straightforward (Thibault et al., 2008, 2009)

but which also requires additional computation. Finally, our

results show poorer performance for NFP relative to FFP and

NFH, but this may be due in part to the fact that we employed

a finite-support constraint to suppress the twin image in NFH,

but not in NFP (nor did we use a finite-support constraint in
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Figure 6
Values for the crossing between the FRC curves of Fig. 5 and the half-bit
resolution criterion (van Heel & Schatz, 2005), shown as a fraction of the
Nyquist spatial frequency limit of 1=ð2�rÞ. This is done for NFH, FFP and
NFP. In (a), the crossing values are shown for the FRC analysis between
reconstructed images obtained from two instances of Poisson noise, as
normally required. The curves are not entirely smooth due to the
sensitivity of the FRC crossing to the exact noise instance of the FRC
curves shown in Fig. 5, but they show that one achieves full spatial
resolution with NFH and FFP at fluences near the value of 350 quanta per
pixel (shown with a vertical dashed line) estimated after equation (12). In
prior work (Hagemann & Salditt, 2017), the FRC crossing analysis was
done by comparison of one noise instance with the ‘ground-truth’ object
of the cell phantom, so (b) shows our results for an equivalent ‘ground-
truth’ FRC crossing as dashed lines. Also shown in (b) are the
approximate results of the previous study (Hagemann & Salditt, 2017)
of NFH, labeled with ‘(H&S)’ as obtained by tracing of the published
figure. [The previous study plotted the FRC crossing as a function of
1=ð�rÞ, so we have multiplied the FRC crossing fractions by a factor of 2.]
As can be seen, our ‘ground-truth analysis’ results and the ‘H&S’ results
are reasonably consistent for the case of NFH. The previous study also
considered far-field CDI [‘Far-field CDI (H&S)’], where the entire object
array is illuminated and a finite-support constraint is applied during
iterative reconstruction.



FFP, since the limited spatial extent of the probe function acts

in some ways as a per-probe-position finite-support

constraint). The use of a finite-support constraint helps

tremendously with reconstruction fidelity in NFH, and one

could expect that it would improve the performance of NFP as

well for those specimens that do fit within a finite-support

region.

4. Related literature

The following additional references are cited in the supporting

information: Huang et al. (2014), Maiden & Rodenburg

(2009).

5. Conclusion

We have considered a variety of coherent imaging methods

and how they can perform with varying X-ray fluence. While

the brightness (and thus coherent flux) of synchrotron light

sources has been increasing dramatically (with the next

advance being provided by diffraction-limited storage rings;

Eriksson et al., 2014), radiation dose sets a limit to achievable

resolution (Sayre et al., 1977b; Howells et al., 2009; Du &

Jacobsen, 2018). Therefore it is usually desirable to use the

lowest fluence possible, and instead use increasing coherent

flux to image larger FOV with shorter exposure times, or a

greater number of specimens to give better statistical sampling

of a phenomenon.

We have used the same AD-based optimization method for

image reconstruction to compare the performance of NFH,

FFP and NFP at low specimen fluence values. Though this

reconstruction algorithm is slightly different from what was

used in a previous study (Hagemann & Salditt, 2017) that

compared NFH with single-exposure far-field CDI, we have

obtained quite similar results for NFH as shown in Fig. 6(b), as

well as in a comparison of our Fig. 3(b) with Fig. 4(c) of the

previous study. The previous study showed that NFH gives

greatly superior results compared with far-field CDI, but far-

field CDI is known to be very challenging due to the experi-

mental difficulty of obtaining an object that has truly zero

scattering outside a defined region (the finite support), and

due to the sensitivity of the reconstruction to the correct

‘tightness’ of the support and the accuracy of recording the

strong low-spatial-frequency diffraction signal (Miao et al.,

2005; Thibault et al., 2006; Williams et al., 2007; Huang et al.,

2010). FFP removes the requirement for the object to be

within a finite-support constraint, and if a lens focus is used to

provide the scanned coherent illumination spot the spreading

of the signal in the far-field diffraction pattern helps reduce

the dynamic range demands placed on the detector (Thibault

et al., 2008). In addition, the partitioning of data recording into

a set of distinct regions of the object may provide some

additional information beyond what one obtains when illu-

minating the entire object in one exposure, which may be why

we observe slightly improved SNR from FFP relative to NFH

in this computational study.

We conclude that the imaging method used does play some

role in the quality of an image that one can obtain from a given

fluence on the specimen. [We also note that, if an optic were to

be used to record a direct image with no reconstruction

algorithm required, one would need to increase the fluence to

account for the focusing efficiency of the optic (Huang et al.,

2009), which is often below 20% for the case of Fresnel zone

plates used for X-ray microscopy (Kirz, 1974).] However, it is

still photon fluence that dominates the achievable recon-

struction, as has long been suggested on the basis of theore-

tical analyses (Glaeser, 1975; Sayre et al., 1977b; Howells et al.,

2009; Du & Jacobsen, 2018) and simulation studies (Huang

et al., 2009; Jahn et al., 2017). While previous studies using

NFH suggested that one could obtain images at reduced

radiation dose compared with far-field imaging methods

(Bartels et al., 2015), they did not include a systematic analysis

of resolution versus fluence. Such an analysis was included in a

prior computational study (Hagemann & Salditt, 2017), but it

compared NFH with far-field CDI, rather than with a more

robust far-field method like FFP. When CDI in this compar-

ison is replaced with FFP, we start to observe that the two

techniques provide similar spatial resolution at a wide range of

photon fluence, as indicated by our FRC analysis. By bringing

NFP into the comparison, we can state with more confidence

that near-field and far-field imaging are generally equivalent in

the resolution that they can achieve, because information

redundancy due to a scanning-type acquisition scheme does

not necessarily provide an advantage, and thus does not really

compensate for the resolution of FFP. We therefore conclude

that the sample can be near or far; wherever you are, photon

fluence on the specimen sets a fundamental limit to spatial

resolution.
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