
teaching and education

J. Appl. Cryst. (2020). 53, 1101–1107 https://doi.org/10.1107/S1600576720007311 1101

Received 11 March 2020

Accepted 1 June 2020

Edited by J. M. Garcı́a-Ruiz, Instituto Andaluz de

Ciencias de la Tierra, Granada, Spain

Keywords: metric matrices; bond angles; bond

lengths; torsion angles; vectors.

Supporting information: this article has

supporting information at journals.iucr.org/j

From atoms to bonds, angles and torsions:
molecular metrics from crystal space, and
two Excel implementations

Leslie Glasser*

Curtin Institute for Computation, Discipline of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

*Correspondence e-mail: l.glasser@curtin.edu.au

Values of molecular bond lengths, bond angles and (less frequently) bond

torsion angles are readily available from databases, from crystallographic

software, and/or from interactive molecular and crystal visualization programs

such as Jmol. However, the methods used to calculate these values are less well

known. In this paper, the computational methods are described in detail, and

live Excel implementations, which permit readers to readily perform the

calculations for their own molecular systems, are provided. The methods

described apply to both fractional coordinates in crystal space and Cartesian

coordinates in Euclidean space (space in which the geometric postulates of

Euclid are valid) and are vector/matrix based. In their simplest computational

form, they are applied as algebraic expansions which are summed. They are also

available in matrix formulations, which are readily manipulated and calculated

using the matrix functions of Excel. In particular, their general formulation as

metric matrices is introduced. The methods in use are illustrated by a detailed

example of the calculations. This contribution provides a significant practical

application which can also act as motivation for the study of matrix mathematics

with respect to its many uses in chemistry.

1. Introduction

Students and teachers of chemistry are familiar with the

lengths of and angles between chemical bonds, and even with

torsion angles defining molecular conformations. They are

also familiar with the source of these data, which generally

arise from diffraction experiments, principally with X-ray

sources but also with electron or neutron sources. However,

the methods of calculation which yield these values are less

familiar, often hidden in crystallographic computational

programs, and not generally accessible to the non-expert. The

difficulties of these calculations are compounded by the fact

that the experimental results are generally presented in crystal

spaces, which best represent the crystalline symmetry but

which are not readily manipulated by those only familiar with

everyday orthogonal Euclidean space described using Carte-

sian coordinates. Even for students who have the opportunity

to perform a full X-ray structure determination (Kantardjieff,

2010; Chapuis, 2011; Aldeborgh et al., 2014; Gražulis et al.,

2015), it appears that the structural details are obtained from

the computational software, without students having the

opportunity of acquainting themselves with the calculation

methods.

The fundamental data of crystallography, that is, chemical

composition, unit-cell dimensions, space-group symmetry and

fractional atom coordinates, are reported as the results of the

diffraction experiments. These data are made widely available

by publication both in the primary literature and, since the
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1990s, via deposition as crystallographic information files (Hall

et al., 1991; http://www.iucr.org/resources/cif) (*.cif), which

the major crystallographic journals currently require; the CIFs

are subject to extensive checks (http://journals.iucr.org/

services/cif/checkcif.html) in order to ensure their integrity.

These files are freely available (Glasser, 2016) and large

collections have been made into databases, which may be free

or commercial, such as the Cambridge Crystallographic

Database (CSD, for organic materials – now exceeding one

million entries; Groom et al., 2016; http://www.ccdc.cam.ac.uk/

products/csd/), the Inorganic Crystal Structure Database

(Zagorac et al., 2019), the free Crystallography Open Data-

base (Gražulis et al., 2009), the free American Mineralogist

Crystal Structure Database (Downs & Hall-Wallace, 2003),

the free RCSB Protein Data Bank (PDB; Berman et al., 2000)

and so forth (Glasser, 2016). However, the CIF generally

provides only the basic information, and the molecular metrics

of bond lengths, bond angles and torsion angles around bonds

may still need to be generated.

There are many molecular visualization programs which

permit the user to import CIFs, display atoms, and select atom

pairs to generate bond lengths, atom triplets to generate bond

angles and even sequential atom quadruplets to generate bond

torsions. Principal among these are the CSD’s online WebCSD

(Thomas et al., 2010) with its free downloadable Mercury

program (Macrae et al., 2020; https://www.ccdc.cam.ac.uk/

Community/csd-community/freemercury/), and the free down-

loadable Jmol (http://www.jmol.org/), Avogadro (https://

avogadro.cc/), VESTA (Momma & Izumi, 2011) and CrystalO-

graph (https://www.epfl.ch/schools/sb/research/iphys/teaching/

crystallography/crystalograph/) programs (but the last

provides only bond lengths).

It is the purpose of the current paper to introduce the

reader to the methods of calculation of molecular metrics from

crystal space (Dunitz, 1995; Julian, 2014). In order to allow

these rather complex calculations to be readily performed by

the reader, two separate live Excel implementations of the

methods are supplied, in which users can easily insert their

own data. One is a ‘black-box’ implementation of the BASIC

code in Appendix I of Dunitz’s book (Dunitz, 1995, pp. 495–

497), while the second lays out the matrix calculations in

detail, demonstrating the mathematical processes involved.

These programs parallel an earlier implementation by the

author using the proprietary MathCad software (Glasser, 1993).

We do not delve into the complexities of reciprocal spaces

applicable in crystallographic calculations, since this extends

into specialist applications of crystallography. However, it is of

interest to note that the direct and reciprocal lattices are

mutual Fourier transforms, with the momentum difference

between incoming and diffracted X-rays of a crystal being a

reciprocal lattice vector (https://www.doitpoms.ac.uk/tlplib/

reciprocal_lattice/index.php).

2. Calculations using Cartesian coordinates

The atomic data in CIFs are listed in fractional coordinates, x,

y, z, but it may be simpler to calculate the molecular metrics

using Cartesian coordinates, X, Y, Z. (It is, however, possible

to obtain the same results directly from the fractional coor-

dinates, and this is considered in a subsequent section.)

2.1. Cartesian coordinates, X, Y, Z

The following matrix equation (McRee, 1993a,b; http://

www.ruppweb.org/Xray/tutorial/Coordinate%20system%20

transformation.htm) (easily applied using the Excel array

function MMULT) transforms fractional coordinates, x, y, z,

in crystal space into Cartesian coordinates, X, Y, Z, using

the crystal cell constants a, b, c, �, �, �:

X

Y

Z

0
@

1
A ¼

a b cos � c cos�

0 b sin �
cðcos �� cos� cos �Þ

sin �

0 0
V

ab sin �

2
6664

3
7775 �

x

y

z

0
@

1
A;

ð1aÞ

where the volume of the unit cell is

V ¼ abcð1� cos2 �� cos2 �� cos2 � þ 2 cos� cos� cos �Þ1=2:

ð1bÞ

The OpenBabel Chemical Formatter (O’Boyle et al.,

2011; http://www.cheminfo.org/Chemistry/Cheminformatics/

FormatConverter/index.html) provides a convenient facility to

convert CIFs directly to the Cartesian XYZ format.

The volume, V, may equivalently be obtained in matrix

terms (using the Excel function MDETERM) as the square root

of the determinant of the metric matrix, G, which is introduced

in Section 3.

2.2. Vectors

We use bold face, e.g. v, to represent a vector, while |v| or

italic v represents the magnitude (length – a scalar) of the

vector. The italic form is used in algebraic expressions.

Vectors are described in terms of their coordinates along

basis axes. For a general vector pi pointing from the coordinate

origin to a point i (e.g. an atom centre) along the crystal axes a,

b, c,

pi ¼

xia

yib

zic

0
@

1
A!

Xi

Yi

Zi

0
@

1
A; ð2aÞ

where the arrow represents transformation through equation

(1a) from coordinates in crystal space to Cartesian coordi-

nates.

The vector length is calculated using the square root of the

dot (or scalar) product function of the vector with itself:

jpij
2
¼ pi � pi ¼

Xi

Yi

Zi

0
@

1
A �

Xi

Yi

Zi

0
@

1
A ¼ X2

i þ Y2
i þ Z2

i : ð2bÞ

For a general pair of vectors, p and q at an angle �, the dot

product yields a scalar value:
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p � q ¼ jpjjqj cos � ¼

Xp

Yp

Zp

0
B@

1
CA �

Xq

Yq

Zq

0
B@

1
CA

¼ XpXq þ YpYq þ ZpZq; ð2cÞ

where each of these vectors is referenced to the coordinate

origin. In Excel, the dot product can be simulated by the

function SUMPRODUCT.

In the operation of the dot product function, the cosine first

provides a projection of one vector onto the other; then the

product function multiplies and sums the components toge-

ther [equation (2c)]. In physics, for example, this may corre-

spond to work as the product of force times distance in the

same direction as determined by the angle � between the

vectors. When the two vectors are parallel (as in the deter-

mination of a bond length), � is zero and the cosine multiplier

has the value one.

The vector length rji between points i and j, corresponding

to a bond length, is obtained from the coordinate differences

with the vector being multiplied by itself:

r2
ji ¼ jrjij

2
¼ rji � rji ¼ ðXj � XiÞ

2
þ ðYj � YiÞ

2
þ ðZj � ZiÞ

2

¼ �X2
ji þ�Y2

ji þ�Z2
ji: ð2dÞ

Bond angles, �, can be calculated using either the dot

(scalar) product or the cross (vector) product function; the

latter generates a pseudovector norm (defined below), n,

orthogonal to the vector pair rji and sjk which lie at an angle �
with respect to one another. The value of this vector norm n is

only required if a torsion angle is to be calculated, as will be

seen in the Torsion paragraph below.

The bond angle is calculated with respect to the atom

sequence i—j—k with each bond vector, rji and sjk, referenced

to the coordinates of the central atom j of the triplet; for

example, �Xr = (Xj � Xi).

� can be determined from the arc cosine of the dot product

(Cockcroft, 2006):

rs ¼ rji � sjk ¼ jrjijjsjkj cos �ijk ¼

�Xr

�Yr

�Zr

0
B@

1
CA �

�Xs

�Ys

�Zs

0
B@

1
CA

¼ �Xr�Xs þ�Yr�Ys þ�Zr�Ys: ð3aÞ

Algebraically (Cockcroft, 2006)

rs ¼ r � s ¼ jrjjsj cos �;

where

r ¼ �xraþ�yrbþ�zrc and s ¼ �xsaþ�ysbþ�zsc;

r � s ¼ ð�xraþ�yrbþ�zrcÞ � ð�xsaþ�ysbþ�zscÞ

¼ �xr�xsða � aÞ þ�yr�ysðb � bÞ þ�zr�zsðc � cÞ

þ ð�yr�zs þ�ys�zrÞðb � cÞ

þ ð�zr�xs þ�zs�xrÞðc � aÞ

þ ð�xr�ys þ�xs�yrÞða � bÞ;

and

cos � ¼ ½a2�xr�xs þ b2�yr�ys þ c2�zr�zs

þ bc cos �ð�yr�zs þ�ys�zrÞ

þ ca cos �ð�zr�xs þ�zs�xrÞ

þ ab cos �ð�xr�ys þ�xs�yrÞ�=rs: ð3bÞ

Alternatively, the cross product, r � s, yields the pseudo-

vector, n, which is normal to the plane defined by r and s. The

bond angle, �ijk, is determined using the arc sine function:

rji � sjk ¼ jrjijjsjkj sin �ijk nijk

�Xr

�Yr

�Zr

0
B@

1
CA�

�Xs

�Ys

�Zs

0
B@

1
CA

¼

�Yr�Zs ��Zr�Ys

�Zr�Xs ��Xr�Zs

�Xr�Ys ��Yr�Xs

0
B@

1
CA: ð3cÞ

A pseudovector (or axial vector), being perpendicular to

the plane of the three atoms forming the bond, changes sign

when converted to its mirror image, so that the cross product is

non-commutative:

r� s ¼ �s� r: ð3dÞ

The standard selection for the sign of the torsion is positive

when r rotates to s according to the right-hand rule. The cross

product, r� s ¼ jrjjsj sin �, is the signed area of the paralle-

logram bounded by the vectors r and s. Similarly, the (scalar)

triple product, a � b� c (https://en.wikipedia.org/wiki/Triple_

product), represents the signed volume, V, of the unit cell with

cell constants a, b, c, �, �, � [for the algebraic form of V, see

equation (1b)]. Excel does not have a cross-product function,

but a user-defined cross-product function is listed in the

supplementary information file.

Torsion angles, �, are calculated as the twist around the

central bond j—k of the two planes defined by the orthogonal
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Figure 1
The three bond lengths (1.48, 1.51 and 1.44 Å), two bond angles (109.1
and 110.7�) and single torsion angle (+59.8�) for the atom sequence N—
C—C—O(H) in l-serine. The diagram was prepared using Jmol and the
CIF available as supporting information to the article by Moggach et al.
(2005) (CSD-LSERIN11.cif from the CSD).



pseudovectors of the angle triplets i—j—k and j—k—l (see

Figs. 1 and 2). Thus, we use the dot product of the pair of

triplets to generate the cosine of the torsion angle, cos �ijkl ,

from which we evaluate �ijkl through the arc cosine function:

�ijkl ¼ cos�1
ðrji � rjkÞ � ðrkj � rklÞ

jrji � rjkjjrkj � rklj

� �

¼ cos�1
ðrji � rjkÞ � ðrkj � rklÞ

rs

� �
: ð4aÞ

It remains to determine the sign of �ijkl (between �180 and

+180�), which is accomplished in equation (4b) by calculating

first the cross product of the orthogonal axial vectors of the

two planes defining the bond angles (this cross product

generates a new vector, now parallel to the planes) and then

the scalar dot product of this vector with the vector repre-

senting the central bond j—k:

sign of ðrkj � rlkÞ � rjk: ð4bÞ

By the right-hand rule, if these parallel vectors point in the

same direction the torsion angle is positive, but it is negative if

they point in opposite directions.

3. The metric matrix and crystal (vector) space

Converting from the fractional coordinates of crystal (vector)

space to Cartesian coordinates of standard space is conve-

nient, as shown in Section 4, but it takes no account of the

symmetry of crystals. It is sometimes appropriate to perform

geometry in the crystal space directly (for example, to

generate symmetry-related atoms absent from the asymmetric

unit data provided in the CIF) (De Graef & McHenry, 2011,

2012; https://dictionary.iucr.org/Asymmetric_unit). This intro-

duces the scalar metric matrix, G (also known as the metric

tensor, g, when it use extends to nonlinear processes and is no

longer a scalar), which uses the six crystal constants, a, b, c, �,

�, �, as the basis vectors in evaluations of dot products:

r2 ¼ r � r ¼ ð�xaþ�ybþ�zcÞ � ð�xaþ�ybþ�zcÞ

¼ �x2
ða � aÞ þ�y2

ðb � bÞ þ�z2
ðc � cÞ þ 2�y�zðb � cÞ

þ 2�z�xðc � aÞ þ 2�x�yða � bÞ: ð5aÞ

We collect the basis vectors into a metric matrix, G, where

G ¼

a � a a � b a � c

b � a b � b b � c

c � a c � b c � c

0
B@

1
CA

¼

a2 ab cos � ac cos �

ba cos � b2 bc cos�

ca cos� cb cos� c2

0
B@

1
CA; ð5bÞ

so that

r2
¼ jrj2 ¼ r � r ¼ ð�x �y �z ÞG

�x

�y

�z

0
@

1
A:

Defining

�x

�y

�z

0
@

1
A ¼ X;

so that ð�x �y �zÞ ¼ XT, where the superscript T represents

the transpose,

r2 ¼ jrj2 ¼ r � r ¼ XTGX;

r2 ¼ a2�x2 þ b2�y2 þ c2�z2 þ 2bc cos��y�z

þ 2ca cos ��z�xþ 2ab cos ��x�y: ð5cÞ

As noted earlier, the volume of the unit cell is equal to the

square root of the determinant of G, which can be found in

Excel using the function MDETERM.

In computation, it is convenient to record the six terms in

equation (5c) a2, b2, c2, . . . , abcos� individually, since they

might be used repeatedly for both bond length and bond angle

calculations (Cockcroft, 2006). In the algebraic expansion,

equation (5c) provides the terms which need to be summed in

order to calculate a bond length. However, it is simpler in

Excel to calculate the metric matrix expression of equation

(5c) directly using the MMULT array function, without

requiring the six-term expansion.

The metric matrix can be used to calculate bond angles

directly, without having to calculate bond lengths |r| and |s|

independently, as follows:

r � s ¼ jrjjsj cos � ¼
�xr

�yr

�zr

0
@

1
A � �xs

�ys

�zs

0
@

1
A:

This relation can also be expressed in terms of the metric

matrix G:
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Figure 2
View down the atom sequence (H)O—C—C—N in l-serine, highlighting
the right-hand screw twist around the central C—C bond relating the O
atom to the N atom, yielding a torsion angle of +59.8�. The diagram was
prepared using Jmol and the CSD-LSERIN11.cif file (Moggach et al.,
2005).



r � s ¼ jrjjsj cos � ¼
�xr �yr �zr

�xs �ys �zs

� �
G

�xr �xs

�yr �ys

�zr �zs

0
B@

1
CA

¼ ð r s ÞG
r

s

� �
¼

r � r s � r

r � s s � s

� �
: ð6Þ

Hence

� ¼ cos�1 r � s

ðr � rÞ1=2
ðs � sÞ1=2

� �
¼ cos�1

ðr � s=rsÞ:

Torsion angle calculations are generally regarded as being

too complex to be formulated with fractional coordinates, and

are often performed using Cartesian coordinates, as discussed

above. However, the BASIC program provided by Dunitz

(1995) does not have this limitation.

4. An example calculation (for L-valine) using both
algebraic expansions and vector methods

For this exercise we will demonstrate how the equations

introduced in Sections 2 and 3 are implemented in practice,

using the example of l-valine (Torii & Iitaka, 1970) with the

data and results as appear in the Valine worksheet of the

supplementary workbook gj5247sup2.xlsx.

Atom numbering:

Unit cell constants: a = 9.71, b = 5.27, c = 12.06 Å, �= 90, �=

90.8, � = 90�.

Transformation matrix for conversion from fractional

coordinates, x, y, z, to Cartesian coordinates, X, Y, Z:

X

Y

Z

0
@

1
A ¼

a b cos � c cos �

0 b sin �
cðcos�� cos � cos �Þ

sin �

0 0
V

ab sin �

2
6664

3
7775 �

x

y

z

0
@

1
A;

ð1aÞ

where the volume of the unit cell

V ¼ abcð1� cos2 �� cos2 �� cos2 � þ 2 cos � cos � cos �Þ1=2;

ð1bÞ

Vcell ¼ 6:17071:

Note: in Excel, angles must be in radians, where rads =

degs*pi()/180.

Algebraic result, after matrix multiplication:

X

Y

Z

0
@

1
A ¼ xaþ yb cos � þ zc cos�

yb sin � þ zcðcos�� cos � cos �Þ= sin �
zV=ab sin �

2
4

3
5: ð1cÞ

The fractional atomic coordinates input from the

LVALIN.cif file from the CSD are given in Table 1.

Coordinate transformation, from fractional to Cartesian,

using atom C1 as an example:

X

Y

Z

0
B@

1
CA ¼

�0:2234� 9:71þ � � �

�0:123� 5:27 sinð90� 3:142=180Þ þ � � �

0:3635� 617:1= � � �

2
64

3
75

¼

�2:2304

�0:6482

4:3834

0
B@

1
CA:

Alternatively, by direct matrix multiplication following

substitutions into equation (1a)

X

Y

Z

0
B@

1
CA ¼

9:71 0 �0:1684

0 5:27 0

0 0 12:06

0
B@

1
CA
�0:2234

�0:123

0:3635

0
B@

1
CA

¼

�2:2304

�0:6482

4:3834

0
B@

1
CA:

The resulting Cartesian atomic coordinates are given in

Table 2.

Bond lengths [equation (2d) or (5c)]:

Using Cartesian coordinates,

r2 ¼ jrjij
2
¼ rji � rji ¼ jrjijjrjij

¼ ðXj � XiÞ
2
þ ðYj � YiÞ

2
þ ðZj � ZiÞ

2

¼ �X2
ji þ�Y2

ji þ�Z2
ji: ð2dÞ

Using fractional coordinates,

r2 ¼ a2�x2 þ b2�y2 þ c2�z2 þ 2bc cos��y�z

þ 2ca cos ��z�xþ 2ab cos ��x�y: ð5cÞ

The resulting bond lengths are C8—C9 = 1.534 Å, C7—C8 =

1.547 Å and C1—O4 = 1.265 Å.

Bond angles [equations (3a) or (6)]:
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Table 1
The input fractional atomic coordinates.

C1 C7 C8 C9 C10 N1 O1 O4

x �0.2234 �0.3649 �0.4025 �0.4574 �0.2757 �0.3753 �0.1295 �0.2084
y �0.123 �0.0062 0.0412 �0.1998 0.1525 0.2332 0.0167 �0.3534
z 0.3635 0.3457 0.2224 0.1658 0.1597 0.4116 0.3996 0.3367

Table 2
The resulting Cartesian atomic coordinates.

X �2.2304 �3.6014 �3.9457 �4.4693 �2.7039 �3.7135 �1.3247 �2.0803
Y �0.6482 �0.0327 0.2171 �1.0529 0.8037 1.2290 0.0880 �1.8624
Z 4.3834 4.1687 2.6819 1.9994 1.9258 4.9634 4.8187 4.0602



A bond angle is calculated with respect to the atom

sequence i—j—k with each bond vector, rji and sjk, referenced

to the coordinates of the central atom j of the triplet.

Consider the Cartesian coordinates for the bond angle

O1—C1—C7 (Table 3), extracted from the supplementary

Valine spreadsheet.

Using the scalar dot product with Cartesian coordinates,

and expanding algebraically,

rs ¼ rji � sjk ¼ jrjijjsjkj cos �ijk ¼

�Xr

�Yr

�Zr

0
B@

1
CA �

�Xs

�Ys

�Zs

0
B@

1
CA

¼ �Xr�Xs þ�Yr�Ys þ�Zr�Zs: ð3aÞ

In our Excel Valine worksheet, the bond angle for O1—

C1—C7 is calculated in cell J24 using the Excel expression

= ACOS(SUMPRODUCT(M24:M26,O24:O26)/(M27*O27)) = 117.80�

where M24:M26 and O24:O26 refer to the Cartesian coordi-

nate differences: �Xr, �Yr, �Zr for bond O1—C1 and �Xs,

�Ys, �Zs for bond C7—C1, normalized by dividing by the

lengths of the respective bonds, M27 and O27. Note that the

bond differences are all calculated with respect to the central

atom, C1.

Expressing this calculation in matrix terms [equation (6)],

r ¼

0:9057

0:7362

0:4353

0
@

1
A; s ¼

�1:371

0:6155

�0:2146

0
@

1
A; � ¼ cos�1

ðr � s=rsÞ;

� ¼ cos�1
ð�0:8820=1:246� 1:518Þ ¼ 117:8�;

where r �s is determined in Excel as SUMPRODUCT(|r|,|s|).

Algebraically, with fractional coordinates,

cos � ¼ ½a2�xr�xs þ b2�yr�ys þ c2�zr�zs

þ bc cos�ð�yr�zs þ�ys�zrÞ

þ ca cos�ð�zr�xs þ�zs�xrÞ

þ ab cos �ð�xr�ys þ�xs�yrÞ�=rs: ð3bÞ

Alternatively, a bond angle can be found using the vector

cross product:

rji � sjk ¼ jrjijjsjkj sin �ijk nijk

�Xr

�Yr

�Zr

0
B@

1
CA�

�Xs

�Ys

�Zs

0
B@

1
CA

¼

�Yr�Zs ��Zr�Ys

�Zr�Xs ��Xr�Zs

�Xr�Ys ��Yr�Xs

0
B@

1
CA: ð3cÞ

The cross product can be determined using the user-defined

function CVp (listed in the supplementary file) with the pair of

bonds in Table 3. This generates a vector normal to the plane

of the bond pair:

jrjijjsjkj sin �ijk ¼ rs sin �ijk ¼

�Xr

�Yr

�Zr

0
B@

1
CA�

�Xs

�Ys

�Zs

0
B@

1
CA

¼

Xrs

Yrs

Zrs

0
B@

1
CA ¼

�0:4259

�0:4024

1:5668

0
B@

1
CA:

The length of this vector is |vrs| = (Xrs
2 + Yrs

2 + Zrs
2)1/2 = 1.673.

Hence

�rs ¼ sin�1
ðvrs=rsÞ ¼ sin�1

½1:673=ð1:246� 1:518Þ�

¼ 1:085 rad ¼ 62:2 or 117:8�:

A choice needs to be made between the angle and its

supplement. Note that the incorrect acute angle is also

returned by the algebraic method unless the bond vectors are

first referenced to the central atom j of the sequence ijk.

Torsion angles are best found by the complex method of the

Torsion worksheet, using equations (4a) and (4b), or by simple

substitution into the gj5247sup1.xlsx workbook.

5. Conclusions

Procedures by which bond lengths, bond angles and torsion

angles can be calculated from either Cartesian or fractional

crystal coordinates, individually or by use of metric matrices,

are illustrated and also demonstrated using live Excel

spreadsheets. These procedures exemplify the otherwise

hidden methods used in crystallographic and molecular

visualization programs.

6. Supplementary files

Supporting information:

(i) An Excel macro-enabled workbook, gj5247sup1.

xls, which calculates torsion angles, bond angles and bond

lengths using fractional coordinate data inserted by the user

into the worksheet. This Excel file contains a macro.

(ii) An Excel workbook, gj5247sup2.xlsx, consisting of

four worksheets labelled SF6, Serine, Valine and Torsion,

which lays out the matrix calculations involved in calculating

molecular geometry from fractional coordinates. All the

calculations are performed live, using standard Excel func-

tions.
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Table 3
Cartesian coordinates for the O1—C1—C7 bond angle.

Bond r = O1—C1 Bond s = C7—C1

�Xr 0.9057 �Xs �1.3710
�Yr 0.7362 �Ys 0.6155
�Zr 0.4353 �Zs �0.2146
r = |r| 1.246 s = |s| 1.518



(iii) The gj5247sup3.pdf file describes the contents and

operations within the four worksheets of gj5247sup2.xls,

and describes a user-defined Excel cross-product function.
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