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Crystal orientation mapping experiments typically measure orientations that are

similar within grains and misorientations that are similar along grain boundaries.

Such (mis)orientation data cluster in (mis)orientation space, and clusters are

more pronounced if preferred orientations or special orientation relationships

are present. Here, cluster analysis of (mis)orientation data is described and

demonstrated using distance metrics incorporating crystal symmetry and the

density-based clustering algorithm DBSCAN. Frequently measured (mis)or-

ientations are identified as corresponding to similarly (mis)oriented grains or

grain boundaries, which are visualized both spatially and in three-dimensional

(mis)orientation spaces. An example is presented identifying deformation

twinning modes in titanium, highlighting a key application of the clustering

approach in identifying crystallographic orientation relationships and similarly

oriented grains resulting from specific transformation pathways. A new open-

source Python library, orix, that enabled this work is also reported.

1. Introduction

The distribution of crystal orientations in a polycrystalline

material (i.e. crystallographic texture) and characteristic

misorientations between neighbouring crystals (i.e. orienta-

tion relationships) are affected by material processing and

influence material properties (Kocks et al., 1998; Sutton &

Baluffi, 2007). Measuring the local crystal orientation

throughout a material is therefore common in modern mate-

rials characterization. Such mapping is usually achieved using

scanning diffraction techniques such as electron backscatter

diffraction (EBSD) (Schwartz, 2009), scanning electron

diffraction (Zaefferer, 2000; Rauch et al., 2008) and X-ray

microLaue diffraction (Ice & Pang, 2009). These techniques

use a small (nm–mm) probe to address numerous locations

across the specimen while recording diffraction data at each

position. Such data can be used to determine the local crystal

‘orientation’, conventionally defined1 (Rowenhorst et al.,

2015) as the passive rotation, gi, between the crystal coordi-

nate system, hi, and a reference specimen coordinate system, r

(Morawiec, 2004), i.e.

r ¼ gihi: ð1Þ

Determining the crystal orientation at each two-dimensional

pixel or three-dimensional voxel produces a crystal orienta-

tion map. The misorientation, m, between crystals at two

ISSN 1600-5767

1 It is also common for the active rotation convention to be adopted, i.e. for the
crystal orientation to be defined as transforming the specimen reference frame
into the crystal reference frame. For comments on dealing with orientation
data represented using different conventions, see Section 2.
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locations is then the passive rotation between crystal coordi-

nates,

mij ¼ g�1
i gj; ð2Þ

where gi and gj are the orientations of each crystal, as illu-

strated in Fig. 1. Since crystal orientations and misorientations

are both described as passive rotations in three dimensions,

they can be represented and analysed similarly provided that

crystal symmetry is treated appropriately.

Crystal (mis)orientations may be represented as vectors in

three-dimensional neo-Eulerian vector spaces based on

parametrization of the corresponding axis and angle of rota-

tion (Frank, 1988, 1992). Visualizing (mis)orientation data

within the symmetry-reduced fundamental zone (or asym-

metric domain) of such spaces has recently become more

accessible owing to the availability of open-source software

packages (Bachmann et al., 2010; Groeber & Jackson, 2014).

Clusters of (mis)orientations are typically observed within the

fundamental zone because (mis)orientation measurements

within an individual grain or along a grain boundary are

similar. Furthermore, measurements from multiple crystals

add to the same cluster if there are preferred crystal orien-

tations or special orientation relationships. Identifying clusters

in (mis)orientation data therefore provides a route to identify

grains and grain boundaries as well as preferred crystal

orientations and orientation relationships. This approach has

recently been used to identify grains and crystallographic

orientation relationships via the manual identification of

(mis)orientation clusters (Callahan et al., 2017; Krakow et al.,

2017b,c; Sunde et al., 2019). However, clusters that cross

fundamental zone boundaries appear split as a result of the

crystal symmetry relating the boundaries, which makes the

visualization less clear (Krakow et al., 2017b). This motivates a

computational approach to (mis)orientation cluster analysis,

both to remove manual steps and to improve visualization.

Clustering of crystal orientations must account for crystal

symmetry, which implies that a (mis)orientation is only known

up to the action of elements of the proper point group

(Krakow et al., 2017b). Recently a number of authors have

considered the statistics of such ambiguous rotations (Arnold

et al., 2018; Chen et al., 2015a; Niezgoda et al., 2016), and

hierarchical clustering of (mis)orientations in the presence of

crystal symmetry has been demonstrated (Krakow et al.,

2017a). Furthermore, a model-based clustering algorithm

accommodating symmetry, based on a mixture of von Mises–

Fisher and Watson distributions and with parameters esti-

mated using expectation maximization, has also been reported

for orientations (Chen et al., 2015a,b). In this work, we report

on density-based clustering of (mis)orientations in the

presence of crystal symmetry and establish an open-source

Python library, named orix, for handling crystal (mis)or-

ientation data.

2. The orix Python library

Here, we describe orix-0.2.3 (released May 2020), which

defines various classes and methods that enable (i) calcula-

tions to be performed with three-dimensional rotations, (ii)

the application of crystal symmetry to rotations for all proper

point groups and (iii) the visualization of (mis)orientations in

three-dimensional neo-Eulerian vector spaces (Krakow et al.,

2017b). All rotation calculations are performed in the

quaternion representation and conversions between common

representations, including Euler angles and axis–angle pairs,

are supported (Rowenhorst et al., 2015).

The passive rotation convention defined by equation (1)

and the axis alignment conventions set out by Krakow et al.

(2017b) are adopted for (mis)orientations in orix. The

(mis)orientation data must therefore be converted to these

conventions if the data are represented in the active rotation

convention or with alternative axis alignments. Often the raw

orientation mapping data will be expressed as an array of

Euler angles output by automated indexing software. In this

case, an orix.Rotation object can be initialized in the

correct orix convention, starting from most common conven-

tions (Rowenhorst et al., 2015), using the from_ euler()

method.

Orix is released open source (Crout et al., 2020) under the

GPL-3 licence and depends only on core packages in the

scientific Python stack, namely NumPy (van der Walt et al.,

2011), SciPy (Virtanen et al., 2019) and Matplotlib (Hunter,

2007). The code is packaged on both the Python Package

Index (PyPI; https://pypi.org/) and the conda-forge repository

(https://conda-forge.org/) for use across Linux, Windows and

OS X platforms. A comprehensive set of tests is packaged with

the code, providing a strong platform for code maintenance

and for further development of the package. Usage examples,

including the methods described in this paper, are provided

online (Johnstone & Crout, 2020) as a collection of Jupyter

notebooks (Kluyver et al., 2016).

The development of orix was heavily inspired by the much

more extensive MATLAB toolbox MTEX (Bachmann et al.,

2010). We decided to establish a Python library in order to

interface more easily with the wider scientific Python stack, for

example enabling us to directly use clustering algorithms

implemented in scikit-learn (Pedregosa et al., 2011) in this

work.
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Figure 1
Schematic representation of orientations, gi, and misorientations, m, as
transformations between reference frames.



3. (Mis)orientation clustering method

A cluster analysis is an attempt to partition a set of ‘objects’

fo j o 2 Og, such as (mis)orientations, into a meaningful set,

K, of subsets fC j C 2 Kg (o 2 C), in which the ‘distance’

between objects within each subset C is less than the distance

between objects in different subsets (Everitt et al., 2011). To

apply this broad definition, a metric for the distance, dðoi; ojÞ,

between two objects in the set must be defined such that the

partition has ‘meaning’ and the conditions dðoi; oiÞ ¼ 0 and

dðoi; ojÞ ¼ dðoj; oiÞ are satisfied (Everitt et al., 2011).

Furthermore, an appropriate clustering algorithm must be

selected. Here, distance metrics for (mis)orientations

including crystal symmetry and the suitability of density-based

clustering algorithms for orientation mapping applications are

explained.

3.1. Distance metrics for crystal (mis)orientations

We define the distance, dðoi; ojÞ, between two (mis)or-

ientations as the minimum rotation angle relating them.2 This

angle is symmetric, i.e. it is the same regardless of which

orientation is the starting point, and zero for identical

(mis)orientations, making it a suitable distance metric for

clustering. The minimum rotation angle also has the significant

advantage of being a physically intuitive distance metric,

which makes subsequent clustering parameters similarly

intuitive.

For crystal (mis)orientations, it is physical to consider

symmetry equivalence. Crystal symmetry implies that the

orientation of a crystal with proper point group symmetry, S, is

equivalent following a transformation fs j s 2 Sg. This crystal

symmetry should be considered in order to determine the

minimum rotational angle amongst symmetry-equivalent

rotations and requires different treatment for orientations and

misorientations. An orientation g is equivalent to the set of

orientations defined by the equivalence group,

g ¼ gs; s 2 S: ð3Þ

The rotation between orientations is a misorientation as

defined by equation (2), and combining this definition with

equation (3) yields an expression for symmetrically equivalent

misorientations,

m ¼ s1ms2; s1 2 S1; s2 2 S2; ð4Þ

where S1 and S2 are the symmetry groups of the crystal in each

orientation.

The distance between two orientations, gi and gj, associated

with crystals with the symmetry groups Sk and Sl, respectively,

is thus given by

dðgi; gjÞ ¼ min
sk2Sk

skmsl: ð5Þ

The distance between two misorienations is defined similarly

as the rotation between two misorientations, mi to mj, which,

accounting for the crystal symmetry of the two pairs of crystals

associated with each misorientation using equation (4), gives

dðmi;mjÞ ¼ min
sk2Sk

skm�1
i slsqmjsr: ð6Þ

Here i; j are indices indicating (mis)orientations associated

with an orientation map and k; l; q; r are indices indicating the

symmetry group corresponding to the crystal phase associated

with each (mis)orientation.

3.2. Density-based clustering of (mis)orientations

A distance matrix, Dij, containing the distances between all

(mis)orientations, may be defined using equations (5) and (6)

and used to initialize a clustering algorithm. In clustering

(mis)orientation data, we aim to identify an unknown number

of small dense clusters associated with grains, grain boundaries

and special orientation relationships while excluding spurious

data points resulting from incorrect automated indexing.

Density-based clustering methods are well suited to this

application because they are based on identifying clusters as

regions of higher density than the remainder of the data set

while identifying points in sparse regions as noise or boundary

points. This contrasts with centroid- and model-based methods

that typically require a good estimate of the number of clus-

ters and hierarchical clustering, which does not provide a

unique partition and is not very robust to outliers (Everitt et

al., 2011). We note that model-based and hierarchical clus-

tering methods have nevertheless been demonstrated to

provide useful (mis)orientation clustering (Chen et al., 2015a;

Krakow et al., 2017a).

We perform density-based clustering using the DBSCAN

algorithm (Ester et al., 1996) implemented in scikit-learn

(Pedregosa et al., 2011). This algorithm identifies clusters as

regions containing a high density of data points separated by

regions containing a low density of data points. Data points in

high-density regions are identified as core samples, defined as

data points within a distance � of at least a minimum number n

of other data points. A cluster is then determined by taking a

core sample, expanding the cluster set to include all neigh-

bouring data points within the distance �, identifying which of

these data points are also core samples and recursively

expanding the set around newly included core samples in the

cluster. The cluster is eventually bounded by a set of non-core

samples that are within the maximum distance � of a core

sample in the cluster but are not themselves core samples. Any

data point that is not a core sample and is at a distance of at

least � from any core sample is considered an outlier, i.e. not

part of any cluster. In contrast to other algorithms, for

example the assumption of convex clusters in k-means clus-

tering, the DBSCAN algorithm allows clusters to have any

shape.

It is crucial that � is chosen appropriately for the data set

and distance metric. If � is too small, most data points will not

be included in any cluster. If � is too large, close clusters will

not be separated properly. A significant advantage of the

distance metrics defined in Section 3.1 is that � has an intuitive

physical interpretation as the upper limit on the absolute
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2 We note that an alternative approach could be to map the (mis)orientation
data into a space with a uniform metric so that the Euclidean distance could be
used. Such an approach could be computationally efficient but the
corresponding parameters are less physically intuitive.



rotation angle (in radians) between any data point and a core

sample in a cluster. The parameter n primarily controls noise

tolerance and should be increased for noisy or large data sets.

Physically, this parameter sets a minimum number of spatial

coordinates in a valid grain or grain boundary. In general, a

range of parameters can be trialled to determine optimal

values. In this work, we obtained reasonable results using � =

0.05, n = 40 for orientations and � = 0.05, n = 10 for misor-

ientations.

4. (Mis)orientation clustering results

An orientation map obtained via EBSD mapping of a

commercially pure hexagonal close packed (h.c.p.) titanium

(6/mmm, space group 194) sample, following high-strain-rate

deformation, was used to illustrate the density-based

(mis)orientation clustering method. This data set was down-

loaded from an online repository (Krakow & Hielscher, 2017)

for this demonstration and was previously described in detail

by Krakow et al. (2017b). The orientation map contains data

from two parent grains, each containing deformation twins.

4.1. Clustering orientations to find grains

The orientation clusters determined by density-based clus-

tering of the data are shown in Fig. 2(a). The clusters are

plotted within the asymmetric domain of axis–angle space

(Krakow et al., 2017b) for the proper point group, 622, of h.c.p.

titanium and the mean orientation of the largest parent grain

(cluster 1) is taken as the reference orientation. Clusters 2–5

are all rotated about [100] with respect to the reference parent

grain (cluster 1), suggesting that they may correspond to twins,

whereas clusters 6 and 7 are rotated about other axes.

Plotting the spatial location associated with data points in

each orientation cluster, as shown in Fig. 2(b), provides a clear

visualization of the grain structure and illustrates that the

clustering result is physically meaningful. Clusters 2–5 corre-

spond to lenticular grains, typical of deformation twins, within

the larger parent grain (cluster 1). We note that similar twin

variants are grouped together by the clustering analysis in

cluster 2. Cluster 6 corresponds to the second parent grain and

cluster 7 to a lenticular deformation twin within that grain.

Some data points are not assigned to any cluster and corre-

spond to automatically identified misindexed pixels. We note

that despite the asymmetrical shape of some clusters (e.g.

clusters 1 and 2) resulting from deformation within the grain

this has not caused issues with this clustering.

4.2. Clustering misorientations at grain boundaries

The misorientation between horizontally adjacent pixels

was computed from the orientation mapping data. Misor-

ientations with rotation angles less than 7�, corresponding to

the grain orientation spread within the largest grain in this

highly deformed material, were discarded in order to identify

grain boundaries. The misorientation clusters determined by

density-based clustering of these data are shown in Fig. 3(a).

These misorientations are plotted within the asymmetric

domain of axis–angle space for misorientations between two

h.c.p. titanium crystals, each with proper point group

symmetry 622, without application of grain exchange

symmetry (Krakow et al., 2017b). Four clusters are identified,

three of which (clusters 1–3) are situated across the boundary

of the asymmetric domain and are identified as belonging to

the same cluster owing to the inclusion of crystal symmetry in

the distance metric.

The mean misorientation associated with each cluster

highlighted in Fig. 3(a) was calculated as the quaternion mean

(Morawiec, 1998) of misorientations in the cluster. The
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Figure 2
(a) Crystal orientations plotted within the fundamental zone for
symmetry group 622 in axis–angle space and coloured to indicate cluster
membership as determined using the DBSCAN algorithm. Axes are
labelled in the crystallographic basis at no rotation. (b) Map of the
twinned Ti microstructure coloured by cluster membership of the
orientation associated with each pixel.



minimum rotational angle between these cluster centres and

theoretical misorientations associated with near coincident

site lattice (n-CSL) orientation relationships (Bonnet et al.,

1981), which result from deformation twinning (Lainé &

Knowles, 2015), were computed to determine the closest

n-CSL to each cluster centre. Clusters 1–3 were found to be

within ca 1.2� of n-CSL relationships associated with defor-

mation twinning, whereas cluster 4 was 4� from the nearest

n-CSL relationship, as reported in Table 1. This suggests that

clusters 1–3 correspond to deformation twin boundaries,

whereas cluster 4 does not. Inspecting the spatial distribution

of misorientation clusters, as in Fig. 3, confirms that clusters

1–3 correspond to deformation twin boundaries, whereas

cluster 4 corresponds to the boundary between parent grains.

All remaining points correspond to misindexed pixels. Some

data points are not assigned to any cluster and correspond to

automatically identified boundaries of misindexed pixels.

5. Discussion

Density-based clustering using a distance metric that accounts

for crystal symmetry has been demonstrated here to success-

fully characterize deformation twinning in experimental

orientation mapping data. This includes treatment of spurious

misindexed pixels and elongated asymmetrical clusters due to

distortions within grains. The DBSCAN algorithm used here

requires only two parameters to be set and therefore minimal

prior knowledge. The clustering results enhance the practical

utility of three-dimensional misorientation spaces as a tool for

visualizing orientation mapping data by automatically identi-

fying clusters. In particular, clusters that cross the boundaries

of the fundamental zone are identified and can be indicated

when plotting the data, making visualizations easier to inter-

pret. Plotting the spatial distribution of (mis)orientation

clusters further provides an easy way to relate observations in

real space and (mis)orientation space.

The clustering analysis is not without limitations. Density-

based clustering algorithms are known to struggle with data

sets in which the overall density is high as a density drop is

needed to identify cluster boundaries. This could occur when

an orientation map contains data from a large number of

grains, and in such cases an alternative solution may be more

suitable, for example recently reported model-based clus-

tering (Chen et al., 2015a,b) or hierarchical clustering (Krakow

et al., 2017a) approaches. As discussed in Section 3.2, these

methods typically have the disadvantage of requiring an esti-

mate for the number of clusters. A further limitation is that

clusters are labelled but no parameters associated with the

(mis)orientation distribution are estimated. Using the cluster

centres as a starting point for fitting local (mis)orientation

distribution functions may therefore be an important exten-

sion.

Physical insight is obtained by relating observed (mis)or-

ientation clusters to special (mis)orientations, typically

predicted via a crystal growth or deformation model. In the

example presented above, this approach enabled identification

of similar, though spatially separated, deformation twin

variants and the corresponding active deformation twinning

modes, based on predicted nCSL orientation relationships.
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Table 1
Comparison of misorientation cluster mean values with near coincident
site lattice misorientations (Bonnet et al., 1981) calculated for titanium
with an assumed c/a = 1.588.

Cluster Nearest n-CSL Theoretical misorientation Distance (�)

1 n-CSL7a [100] 64.40� 0.44
2 n-CSL13a [100] 76.89� 0.70
3 n-CSL11a [100] 34.96� 1.19
4 n-CSL13b [210] 57.22� 4.44

Figure 3
(a) Crystal misorientations plotted in the fundamental zone for the
symmetry group pair (622, 622) in axis–angle space and coloured to
indicate cluster membership as determined using the DBSCAN
algorithm. Axes are labelled in the crystallographic basis at no rotation.
(b) Map of grain boundaries coloured by cluster membership of the
misorientation at each boundary element.



This identification of (mis)orientation clusters that are

consistent with hypothetical models could be extended by

considering the probability of sampling the cluster from a

random (mis)orientation distribution to assess statistical

significance of the observed cluster. Furthermore, clustering

analysis in (mis)orientation space does not use any spatial

information and therefore groups spatially separated grains

and grain boundaries with similar (mis)orientations. While this

is sometimes the desired output, in other cases incorporating

spatial information using conventional methods such as the

‘flood fill’ approach for grain identification may be preferable.

Overall, we envisage the (mis)orientation clustering approach

being most useful for validating crystal growth and deforma-

tion models as illustrated here.

6. Conclusions

This work demonstrates that density-based clustering of

crystal orientations and misorientations, using a distance

metric accounting for crystal symmetry and the DBSCAN

algorithm, can provide important physical insights using very

little prior knowledge. In particular, we used this approach to

identify characteristic misorientations associated with defor-

mation twinning as an illustrative example of how the

approach may be used to identify special orientation rela-

tionships and similar crystallographic transformation variants

as key applications of the approach. A Python library, named

orix, was established to provide various classes and methods

required for the manipulation of (mis)orientation data, and it

is hoped that this library will serve as a platform for further

developments.
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