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Unit cell and periodicity are key concepts in crystallography and classically were

thought to be inherent properties of ordered media like crystals. Aperiodic

crystals (including quasicrystals) forced a change of paradigm, affecting the

actual definition of a crystal. However, aperiodicity is usually not taught in

crystallography undergraduate courses. The emergence of low-cost 3D-printing

technologies makes it possible to tackle hands-on learning of the commonly

taught crystallography concepts related to periodicity and to introduce in an

uncomplicated manner aperiodic crystals and their related concepts that usually

are skipped. In this paper, several examples of the use of 3D printing are shown,

including 2D and 3D examples of periodic and aperiodic ordered media; these

are particularly useful to understand both conventional periodic crystals and

quasicrystals. The STL files of the presented models are made available with the

paper.

1. Introduction

Crystallography started in the 17th century as the science for

the study of the external shapes of crystals. Systematic study of

crystal shapes led to enunciation of the law of the constancy of

interfacial angles and soon it was argued that crystals must

consist of ordered arrangements of atoms or molecules in a

lattice (space-lattice hypothesis). In the early 20th century,

soon after the discovery of X-rays (1895), diffraction of an

X-ray beam by a crystal contributed simultaneously to

revealing the nature of X-rays (electromagnetic waves) and to

confirming the space-lattice hypothesis. This led to the

development of modern X-ray diffraction techniques and

X-ray crystallography. Diffraction techniques are widely used

to identify and ascertain the crystal structures of all kinds of

solid substances, from organic to inorganic solids, pharma-

ceuticals, biological substances such as proteins and viruses etc.

Effective application of X-ray diffraction techniques in

geology, solid-state chemistry and materials science requires a

basic understanding of crystallography.

From the academic point of view, crystallography is often

present in secondary school chemistry courses through the

study of crystal growth and sometimes as an accessory part

within earth sciences courses (as part of mineralogy). Crys-

tallography is sometimes present in innovative teaching tasks,

including project-based learning, through experiments and

competitions of crystal growth. The aesthetic qualities of

crystals, as well as the symmetry of their idealized repre-

sentations and that of lattices, can grab the attention of

students and motivate them to pursue further studies of the

subject. Crystallography and X-ray techniques are present in

geology graduate programmes (Hluchy, 1999) as an indepen-

dent topic or as a significant part of mineralogy courses.
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Moreover, many physics, chemistry (Fanwick, 2007; Pett, 2010)

and materials science graduate programmes also include

introductory notes on crystallography (Borchardt-Ott, 2012).

Some undergraduate institutions have adapted the pedagogy

of hands-on research to crystallography with the use of single-

crystal desktop instruments (Crundwell et al., 1999), and many

other affordable virtual (Arribas et al., 2014) and tangible

resources are available as educational supporting material for

a number of important concepts in crystallography (Gražulis

et al., 2015, and references therein). As many of these concepts

require capacity for abstraction and spatial vision, many

educators are taking advantage of the rise of 3D-printing

technologies to develop interactive haptic environments for

education. Of the 47 peer-reviewed articles listed in a recent

systematic review of 3D printing in chemistry education

(Pernaa & Wiedmer, 2019), many deal with the production of

physical models of molecular and crystal structures.

Periodicity and unit cell are key concepts in crystallography

and they were fundamental in the classical definition of a

crystal (i.e. ‘a periodic array of atoms or group of atoms

packed along the three space dimensions’; Authier & Chapuis,

2017). Periodicity of common crystals implies that they can be

generated by a list of independent finite translations, and this

results in a finite number of allowed rotational symmetries

(only two-, three-, four- and sixfold rotational symmetry is

permitted) (Sharma, 1983); therefore the number of symmetry

groups is also limited (e.g. 32 for 3D crystallographic point-

group symmetry). These restrictions are part of the well

known crystallographic restriction theorem, closely related to

Haüy’s crystallographic ‘law of rationality’ (Coxeter, 1973).

However, in the 1980s, the discovery of quasicrystals

(Shechtman et al., 1984) broke the established paradigm as

these intermetallic compounds can exhibit forbidden symme-

tries such as five-, eight-, ten- or 12-fold symmetry axes

(Kortan et al., 1989; Fisher et al., 1999) and accordingly they

exhibit diffraction patterns with Bragg peaks arranged with

the same forbidden symmetries (Tsai & Cui, 2015; Maciá

Barber, 2019). Quasicrystals are a type of ‘aperiodic crystals’

along with incommensurately modulated phases (IMPs) and

composite crystals (CCs). However IMPs and CCs can be

seen, respectively, as incommensurate modulations and

intergrowths of d-dimensional periodic structures (Janssen et

al., 2018). The possibility of exhibiting non-crystallographic

rotational diffraction symmetry is restricted to quasicrystals

because the other types of aperiodic crystals have periodic

average structures. By 1992, the IUCr had replaced the clas-

sical definition of a crystal by ‘any solid with an essentially

discrete diffraction diagram’ (Senechal, 2015) (i.e. sharp Bragg

peaks and possibly a weak continuous background). For an

updated and more detailed definition of a crystal and a

discussion of it and some related concepts (such as order and

non-crystalline order) readers are referred to the article by

Grimm (2015).

Crystals and lattice periodicity are often taught in crystal-

lography undergraduate courses without mention of aperiodic

crystals, or they are mentioned just as a very particular subject.

Tangible models of periodicity for teaching in classrooms are

sometimes used. The unit cell, along with its atomic content,

can be used to build a potentially infinite model of a crystal.

3D-printed models of unit cells have been suggested as

educational materials produced from standard crystallography

files (Chen et al., 2014; Rodenbough et al., 2015), and some

crystal structure modelling software such as Mercury (Macrae

et al., 2020) allows users to generate directly 3D-printable

models. In contrast, tangible materials for teaching aper-

iodicity of quasicrystals are scarce (Rossi et al., 2020). In the

present paper several examples of the use of 3D printing are

offered along with the corresponding STL files. These are 2D

and 3D examples of periodic and aperiodic ordered media,

particularly useful to aid understanding of both conventional

periodic crystals and quasicrystals.

Printable STL files were obtained from designs of tiles,

polyhedra and unit-cell models that were made using freely

downloadable Google SketchUp software. The files were then

printed using acrylonitrile butadiene styrene (ABS) filament

on a UP Plus 3D printer. The pieces were generally spray

painted and occasionally hand painted using acrylic paint. In

the following sections periodic and aperiodic lattices are

treated separately. For both types of lattices, simpler 2D

models are shown first and then more complex 3D ones.

2. Periodic lattices

2.1. Theoretical background

There are many fundamental concepts derived or attached

to the definition of periodic crystals, and many are common to

both 2D and 3D lattices. Some of the relevant concepts that

can be explained using the presented models of periodic

lattices are commented on very briefly below.

Restriction theorem. The application of symmetry opera-

tions contained in a periodic lattice must leave the set of

lattice points, as well as the atomic content of the lattice,

unchanged. As a result of this, rotational symmetry of periodic

media is limited to one-, two-, three-, four- and sixfold axes (or

centres in two dimensions) as established by the crystal-

lographic restriction theorem (Scherrer, 1946).

Unit cell. The internal order of periodic crystals can be

illustrated in many ways. The crystal lattice is often repre-

sented by a regular grid of equivalent points, and a set of

linearly independent vectors is selected to describe all possible

translations between equivalent points; these are used to

define the unit cell. The choice of the vectors, and therefore

the unit cell itself, is not unique. Generally, the unit cell is

selected to be as small as possible but keeping the symmetry of

the lattice (and its atomic content). The unit cell can be shifted

by all combinations of lattice vectors filling the space without

gaps or overlap.

Asymmetric unit. Within the unit cell, the asymmetric unit

can be defined as a portion without internal symmetry

(considering the atomic content) from which, by application of

the symmetry operations of the space or plane group, the

whole unit cell and ultimately the whole space can be filled.

The term ‘asymmetric unit’ does not imply that the region has
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an asymmetric shape and, regarding their regular limits, the

only constraints are defined by mirror planes and rotation

axes. Consequently, pieces bearing curved faces can also be

conceived as asymmetric units (Bashkirov, 1959).

Point symmetry versus space (or plane) symmetry. Point

symmetry is often described as the symmetry of isolated

shapes (crystal morphology) and their symmetry operations

always leave at least one point unmoved. In contrast, space

symmetry refers to the symmetry of lattices and translation

appears now as an operation (in lattice vectors, glide planes/

lines and screw axes). The addition of translation to the 32

point-symmetry groups produces 230 possible space groups

(Aroyo, 2016b). Similarly, in two dimensions there are only ten

point groups and 17 plane groups.

Chirality. Chiral groups are those containing only symmetry

operations of the first kind (i.e. operations that relate

congruent objects) and having two enantiomorphic variants of

the group. In contrast, achiral groups do not have variants and

often contain operations of both the first and second kind (i.e.

operations that relate enantiomorphous objects). For achiral

groups containing operations of the second kind, two enan-

tiomorphic versions of the asymmetric unit coexist within the

unit cell.

2.2. Models and suggested activities on periodic 2D lattices

A set of several polygonal tiles is proposed as a way to

experience the crystallographic restriction theorem. These are

intended to let the student experience several configurations

of periodic tilings trying to fill the plane without leaving gaps.

The student can find that this is easily achievable using

rectangular and regular three-, four- and six-sided polygons

[Figs. 1(b), 1(c), 1(d) and 1( f)], but that it is not possible using

five-, seven- or eight-sided polygons [Figs. 1(e), 1(g) and 1(h)].

L-shaped tiles illustrate onefold rotational symmetry and it is

worth noting that they also fill the plane without leaving gaps

[Fig. 1(a)]. Besides finding the appropriate configurations to

fill the space, other exercises that can be done with these tiles

include the determination of the unit cell, the asymmetric unit

and the corresponding plane group. Again, the tile with the

lowest symmetry is particularly interesting because the unit

cell is not so obvious and, as in this case the unit cell contains a

single asymmetric unit, it is also interesting to check that the

area of the tile constitutes the asymmetric unit as well as the

unit cell (Fig. 2).

However, practice on plane symmetry determination can be

performed in many other ways. There exist interactive tools to

draw symmetry patterns with the desired plane-group

symmetry (Eck, 2016). Also, decorative motifs in Moorish tiles

and woodwork (Grünbaum et al., 1986; Aboufadil et al., 2013),

Persian-style carpets (Bier, 1992; Atanassova & Vassileva,

2017) and particularly the beautiful artworks by Escher (Bool

et al., 1992) can be used to identify equivalent lattice points,

symmetry elements, the unit cell, and ultimately the point and

plane symmetry (Aroyo, 2016a). All these can also be adapted

to 3D-printed tiles that allow the construction of the symmetry

pattern itself besides analysing the corresponding symmetry.

As an example, an Escher-inspired lizard has been turned into

a printable tile. The student could enjoyably practice with
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Figure 1
3D-printed tiles of several polygons with one- to eightfold rotational
symmetry and configurations trying to fill the plane without gaps. (a)
L-shaped tiles with onefold symmetry; (b) rectangular tiles with twofold
symmetry; (c) equilateral triangular tiles with threefold symmetry; (d)
square tiles with fourfold symmetry; (e) pentagonal tiles with fivefold
symmetry; ( f ) hexagonal tiles with sixfold symmetry; (g) heptagonal tiles
with sevenfold symmetry; (h) octagonal tiles with eightfold symmetry.

Figure 2
Detail of the L-shaped tiling. A set of equivalent points have been
highlighted in red and a possible primitive unit cell has been drawn; the
bits of tiles within a cell form a complete L-shaped tile.

Figure 3
3D-printed Escher lizards. (a) Three identical lizards assembled in three
different ways to highlight the three types of threefold rotational points;
(b) the lizards can tile the plane without leaving empty gaps.



them. It can be quickly noted that three different orientations

of the lizard suffice to fill the plane describing a periodic

arrangement [Fig. 3(b)]. A deeper analysis could include the

finding of three different threefold rotational centres

[Fig. 3(a)] and the corresponding plane group (p3). Addi-

tionally, a tile corresponding to the unit cell has been designed

[Fig. 4(b)]. These can also be used to build the same symmetry

pattern [Fig. 4(a)] and to verify that the unit cell contains three

lizards. Finally, tiles of the corresponding asymmetric unit

have been designed, and these can be printed to build a single

unit cell [Fig. 4(c)]. The student could note that all asymmetric

units required to fill the unit cell are identical (the cell contains

asymmetric units of only one hand) as the group (p3) is a

purely rotational group where all symmetry operations are of

the first kind. However, the group is achiral because a tiling

using a mirrored version of the lizard would produce the very

same p3 plane group. The number of asymmetric units

required to fill the cell is three, indicating that this is the order

of the group. Also, it can be checked that an asymmetric unit

contains the required parts to build exactly a single lizard

[Fig. 4(c)]. In fact, it could be noted to the student that,

conventionally, the limits of unit cells and asymmetric units are

flat but the only true constraints regarding flat surfaces only

affect asymmetric units where faces coincide with planes of

mirror symmetry. Therefore, any of the three-lizard compo-

sites shown in Fig. 3(a) could perfectly act as unit cells and a

single lizard can also be considered a possible asymmetric unit.

2.3. Periodic 3D lattices

2.3.1. Theoretical background. Besides the theoretical

concepts mentioned previously (Section 2.1), two more

concepts are relevant to the models representing periodic 3D

lattices.

Holohedries. Despite the complexity of 3D space groups,

the corresponding lattices built as a grid of translation-

equivalent points can be classified into just 14 types (Bravais

lattices) (Aroyo et al., 2004) and there are 14 corresponding

types of unit cells. Some of these cells contain exactly a single

point of the Bravais lattice and they are called primitive cells.

In contrast, other cells are larger and contain several lattice

points (up to four for the F, or face-centred, cubic cell, cF).

However, regardless of the primitive or non-primitive nature

of the Bravais cells, they always exhibit the highest symmetry

of their corresponding crystal system (holohedry) and

obviously, as they are always parallelepipeds, they can be

stacked in three dimensions, filling all the space without gaps

or overlap.

Relation between rhombohedral P and hexagonal R cells.

Also in the context of Bravais cells and lattices, the relation

and transformation of the coordinate system between rhom-

bohedral and hexagonal lattices within groups of the trigonal

system is one of the subjects that is often perceived as

confusing by students, in part for historical reasons (Nespolo et

al., 2018). The hexagonal crystal family (h) includes both the

rhombohedral and hexagonal lattice systems and the groups of

their corresponding crystal systems (trigonal and hexagonal).

Some space groups of the trigonal crystal system are

conventionally described in a hexagonal lattice (actually two

different hexagonal settings are possible) and others in a

rhombohedral lattice, but all of them could be described using

any of both lattice types. Therefore, for rhombohedral lattices,

there is an equivalence between the primitive (P) rhombo-

hedral unit cell and a non-primitive (R) hexagonal cell

(Giacovazzo, 1992).

2.3.2. Models and suggested activities on periodic 3D
lattices. It would be trivial to 3D-print parallelepipeds to

experiment with assemblies of unit cells to check that they

indeed fill the space. Anyone interested could download the

STL files featuring illustrative examples of unit cells (for each

lattice type), disregarding whether they are primitive or not,

provided by Casas & Estop (2015). However, readers should

note that in the mentioned reference a hexagonal prism

(comprising a composition of three different hexagonal unit

cells) exemplifies the hexagonal lattice instead of the corre-

sponding single unit cell. These models can also be used to

check that their point symmetry matches that of holohedral

point groups (Hahn et al., 2016).

Within groups of the trigonal system, the relation between

rhombohedral (P) and hexagonal (R) cells is often illustrated

using an image with their corresponding axonometric projec-

tions [see for instance Fig. 5.1.3.6 of Arnold (2005) or Fig. 1.17

of Giacovazzo (1992)]. 3D printing can contribute to devel-

oping understanding of such a relation, allowing the student to

build hexagonal cells using rhombohedral cells. A dissection

puzzle consisting of a central single primitive rhombohedral

cell along with 32 bits of rhombohedral cells conveniently cut

has been designed [Fig. 5(a)], with the vertices corresponding

to lattice points painted in black. The pieces can be easily

stuck using Blu-Tack or a similar product. Within the

supporting information, along with all the printable files, the

interested reader can find in Fig. S1 the different steps to

assemble the whole puzzle that forms four non-primitive R

hexagonal cells [Fig. 5(b)]. These R cells contain two extra

lattice points besides the one at (0, 0, 0) – they are located at
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Figure 4
3D-printed hexagonal unit cells containing Escher lizards. (a) By
translating the unit cells on the plane it is possible to tile it without
leaving empty gaps. (b) Within a unit cell there are exactly three lizards.
(c) By rotating and translating the asymmetric unit tiles it is also possible
to tile the plane and to form the unit cell. Within a unit cell there is a full
asymmetric unit and four halves of it. The unit-cell limits and its
symmetry are indicated (left); the asymmetric unit contains exactly the
parts to form a single lizard (right).



(2/3, 1/3, 1/3) and (1/3, 2/3, 2/3) and can be seen by partially

disassembling the puzzle [Fig. 5(c)].

Besides solid unit cells defined by lattice points, 3D printing

can also be used to produce unit cells filled with their atomic

contents (Rodenbough et al., 2015). The addition of the atomic

contents allows the description of any of the 230 crystal-

lographic point groups. One of the technical issues in the

production of such models is tuning the way the atoms are

bonded to each other and whether the limits of the cell itself

need to be printed. A low quantity of supports and attachment

points produces cleaner but also weaker models. However, a

model of a whole unit cell has low versatility for playing with

operations, elements and other symmetry concepts. For that

matter, a model of the asymmetric unit would be much more

useful. To illustrate the full potential of 3D-printed models of

asymmetric units including atomic positions, a model of the

monoclinic P21/c group has been chosen. This group is known

to be the most frequent space group, among both organic

(36%) (Mighell et al., 1983) and inorganic (39%) (Urusov &

Nadezhina, 2009) compounds. The printable model comprises

two enantiomorphic asymmetric units and 1
4 portions of them

in such a way that the full unit cell can be assembled [Figs. 6(a)

and 6(b)]. The student can be guided to understand that this

implies that P21/c contains symmetry operations of the second

kind (and therefore is necessarily achiral); another interesting

consideration is that the limits of the unit cell do not neces-

sarily correspond to the limits of the asymmetric unit.

The asymmetric unit has been designed to contain three

atoms (two of one type and another of a different kind), and

the atoms have been placed close to the external surface of the

asymmetric unit in order to avoid the need for long supports to

hold them in place. Besides the edges of the asymmetric unit,

extra shafts parallel to the edges along a and b have been

added at heights of 1
4, 1

2 and 3
4 to give robustness to the model

and to have a reference of the mentioned heights. The models

can be used to visualize separately the symmetry elements of

the P21/c group (a twofold screw axis, a c glide plane and a

centre of symmetry). This can be proposed to students as an

exercise to confirm that screw axes only contain symmetry

operations of the first kind and therefore two identical

asymmetric units are required to illustrate the objects that

relate this element [see Fig. 6(c)]. In contrast, both the glide

plane and the centre of symmetry also contain symmetry

operations of the second kind and relate enantiomorphic

asymmetric units [see Figs. 6(d) and 6(e)].

3. Aperiodic arrays

3.1. Aperiodic 2D tilings

3.1.1. Theoretical background. Similarly to periodic

lattices, aperiodic lattices (or rather arrays) corresponding to

aperiodic crystals are better understood with 2D examples of

aperiodic tilings. Non-periodic plane tessellation or tiling is a

topic in geometry with applications in many scientific fields,

including crystallography. The evolution of knowledge on

aperiodic tilings shows a clear similarity with that related to

quasicrystals. A 3D generalization of aperiodic tilings was

proposed by Ammann (Senechal, 2004) and, soon after the

discovery of quasicrystals, aperiodic tilings were considered

possible models for quasicrystals.

Some of the relevant concepts that can be explained using

the presented models of aperiodic tilings are commented on

very briefly below.

Prototiles. A set of tiles (actually called prototiles) whose

tilings are all non-periodic is called aperiodic. Such a set of

prototiles was conjectured, in the mid-20th century, not to

exist (Wang, 1961). However, in 1966, Berger found the first

one consisting of 20 426 prototiles (Berger, 1966) and, before

long, many other sets were found with fewer tiles. In the early

1970s Penrose (Penrose, 1974) and Ammann (Ammann et al.,
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Figure 6
3D-printed unit cell and asymmetric units of space group P21/c. (a)
Schematic representation of space group P21/c; (b) 3D-printed P21/c unit
cell assembled using two full unit cells and eight quarters of a unit cell; (c)
two identical asymmetric units related by a twofold screw axis; (d) two
enantiomorphic unit cells related by a c glide plane; (e) two
enantiomorphic unit cells related by a centre of symmetry.

Figure 5
3D-printed dissection puzzle of a set of four R hexagonal cells. (a) The 33
required pieces grouped and labelled by forms; (b) the assembled puzzle;
(c) some pieces have been removed from the assembled puzzle to show
the two extra lattice points of one of the R cells.



1992) found sets with only two prototiles, thus differing only

by one tile with respect to the periodic tiling of crystal-

lographic plane groups. In fact, there is ongoing research to

construct aperiodic tilings from a single prototile (Baake et al.,

2012).

Matching rules. To force the non-periodicity of possible

tilings, the prototiles have an additional structure usually in

the form of deformations, decorated edges or a decorated

surface. These are generally referred to as matching rules

(Goodman-Strauss, 1998). These decorations should fit

consistently to build a non-periodic array.

Inflation. Even respecting the matching rules, sometimes it

is possible to end up with a configuration that cannot be

infinitely extended without leaving gaps. To avoid this, an

aperiodic tiling should be constructed in such a way that the

pattern could be reproduced exactly at a larger scale by a

composition process usually called ‘inflation tiling’. Inflated

tiles are patches of tiling built using prototiles (and occa-

sionally half-prototiles) that reproduce the shape of the

prototiles at a higher scale. Interestingly the inflation process

could be infinitely repeated at larger and larger scales (and the

inversion process, called deflation, as well). The scale ratio

between a tiling and its inflated version is called the inflation

factor.

Metallic ratios. Among the best-known examples of aper-

iodic tilings, Penrose tilings (Penrose, 1974) have an inflation

factor of ð51=2 þ 1Þ=2, which is known as the golden ratio (’, or

sometimes �). The symmetry of Penrose tilings contains five-

fold symmetry. Interestingly the golden ratio (’) can also be

found in the ratio of the chord length to the side length of a

regular pentagon. Among the Ammann tilings (Grünbaum &

Shephard, 2016) there are two (A4 and A5) with an inflation

factor of 21=2 þ 1, which is known as the silver ratio (�S). The

A5 tiling contains eightfold symmetry. Remarkably, the silver

ratio (�S) is found in a regular octagon as twice the ratio of the

inradius to the side length.

Proof of aperiodicity. A self-similar array of tiles (i.e. one

that can be infinitely inflated) can fill all the plane without

leaving gaps. The resulting array is necessarily aperiodic

(without translational symmetry), because once we establish

the non-existence of translations in a patch that can be

inflated, no translation will exist at any other scale.

3.1.2. Models and suggested activities on aperiodic 2D
tilings. The construction of a bidimensional periodic lattice

using appropriate tiles would be trivial for most students; in

contrast, the construction of an aperiodic array is less obvious.

Three two-prototile tilings are proposed [Fig. 7(a)] to provide

the student with experience of aperiodic arrays: the P2 (kite

and dart) and P3 (rhomb) tilings by Penrose and the A5

(Ammann–Beenker) tiling by Ammann (Grünbaum & Shep-

hard, 2016). One of these tilings (P2) has actually already

starred in a recent publication on the use of Penrose tiles for

teaching the aperiodicity concept (Rossi et al., 2020). It is

worth repeating that only the set of prototiles whose tilings are

all non-periodic is called aperiodic. Taking into account only

the shape of the suggested tiles, it is actually possible to build

periodic plane lattices and this could also be a suggested

exercise for students, along with symmetry identification and

plane group and unit-cell determination. For examples of

periodic lattices using the P2 prototiles see the work of Rossi

et al. (2020).

To assemble successfully a non-periodic tiling with the

presented prototiles, the student can be prompted to follow

decorations and inflation. (i) Taking advantage of the possi-

bilities of 3D printing, the known original decorations of these

tilings that force aperiodicity have been designed as relief

decorations; therefore the student has to place the tiles in such

a way that the decorations must always be connected between

neighbouring tiles. (ii) As a further guide, the student must

follow a pattern that could be inflated [Fig. 7(e)]. Actually, a

first exercise with the models could be the construction of

single inflated tiles [Figs. 7(b), 7(c) and 7(d)] and verification

that the inflation factor (i.e. the scaling factor relating a

teaching and education

1588 Lluı́s Casas � Teaching periodicity and aperiodicity using 3D-printed tiles J. Appl. Cryst. (2020). 53, 1583–1592

Figure 7
3D-printed prototiles for aperiodic tilings. (a) The pair of prototiles for
P2, P3 and A5 aperiodic tilings; (b) the P2 prototiles and their inflated
version; (c) the P3 prototiles and their inflated version; (d) the A5
prototiles and their inflated version; (e) P3 aperiodic tiling with the same
tiling at a higher scale (using the inflated prototiles) drawn on it; ( f )
bisected P2 and P3 prototiles showing identical obtuse (orange) and acute
(light blue) Robinson triangles.



prototile to its inflated version) is ’ [the golden ratio,

ð51=2 þ 1Þ=2] for P2 and P3 tilings and �S (the silver ratio,

21=2 þ 1) for the A5 tiling. The notion of inflation, the possi-

bility of repeating the process at larger scales, can be used to

discuss self-similarity and to use this as a proof of the inex-

istence of translational symmetry.

Additional exercises can be proposed using the similar P2

and P3 tilings. Both Penrose tilings can be bisected to form

golden triangles and gnomons, which sometimes are called

acute and obtuse Robinson triangles, respectively [Fig. 7( f)].

The student could verify that these isosceles triangles are truly

golden as the ratio of the duplicated side length to the base is

indeed the golden ratio (for the acute triangle) or its reci-

procal (for the obtuse triangle) (Loeb, 1989).

Finally, once a large area has been tiled following the

appropriate rules, the student could try to find the plane

symmetry of them, in particular noting the absence of any

translational symmetry. P2 and P3 tilings have exactly the

same symmetry consisting of a single fivefold rotation point

and five reflection lines and many points with local pentagonal

symmetry [Figs. 8(a) and 8(b)]. In contrast, the A5 tiling,

formed by squares and 45� rhombuses (lozenges), has a single

eightfold rotation point and eight reflection lines, and many

points with local octagonal symmetry [Fig. 8(c)].

To sum up, the possibility of assembling the tilings from 3D-

printed decorated pieces allows the students to experience

many related concepts, including rotation points, reflection

lines, local symmetries, inflation, inflation factors, metallic

ratios etc. Additionally, empirical measurements could be

done to verify the appearance of golden and silver ratios as

well as their values.

3.2. Aperiodic 3D arrays

3.2.1. Theoretical background. The mathematical descrip-

tion of aperiodic crystals is often carried out considering

atoms as multidimensional atomic surfaces arranged periodi-

cally in a superspace; the projection in a 3D space results in an

aperiodic arrangement of atoms (Yamamoto, 1996). There are

alternative descriptions of aperiodic crystals, for instance a

model based on quasi-unit cells (Steinhardt et al., 1998) that

overlap each other or a statistical method based on the

concept of average unit cell (Strzalka et al., 2016). These

methods are complicated for undergraduate students and they

would not be advisable as a first introduction to aperiodic

crystals. Nevertheless, some theoretical concepts should be

mentioned in order to understand and take full advantage of

the presented models of aperiodic crystals.

Icosahedral tiling. Analogously to the 2D tilings, it is

possible to produce a 3D aperiodic tiling using a number of

polyhedra that act as prototiles in a sort of 3D Penrose tiling

known as an icosahedral tiling. The resulting structure exhibits

icosahedral point-group symmetry (Litvin, 1991), a symmetry

found in several aperiodic crystals exhibiting fivefold rotation

axes such as the triacontahedron, the icosahedron or the

pentagonal dodecahedron (Zupaniè et al., 2011; Canfield et al.,

2010). Interestingly, these morphologies were reported by

Romé de L’Isle in the 18th century (Pina & López-Acevedo,

2016).

Golden rhombohedra. The simplest icosahedral tilings

employ only two rhombohedric prototiles, known as the

golden or Ammann rhombohedra (Kramer & Neri, 1984). In

fact, Ammann was the first to suggest that these polyhedra

could tile space aperiodically (Senechal, 2004), although these

rhombohedra had already been described much earlier by

Kowalewski (1938). Golden rhombohedra are rhombohedra

whose faces consist of congruent golden rhombuses [i.e.

rhombuses whose diagonals are in the golden ratio (’)]. For

one of the golden rhombohedra three obtuse angles meet at

the two polar axis vertices (oblate), and for the other three

acute angles meet at the two polar axis vertices (prolate). A

theoretical approach to generate 3D icosahedral tilings with

such golden rhombohedra has been undertaken by several

authors (Kramer & Neri, 1984; Ogawa, 1985; Levine &

Steinhardt, 1986; Socolar & Steinhardt, 1986) using different

methods. However, such an aperiodic array using only two

prototiles would require an intricate selection of proper

matching rules in the form of decorations that are very diffi-

cult to state (Hann et al., 2016; Lifshitz, 2011).

Cut-and-project method. Among the different methods to

obtain or describe aperiodic arrays, the cut-and-project

method is particularly common. This method produces the

aperiodic array from an irrational 3D slice through a higher-

dimensional periodic lattice (Kramer & Neri, 1984; Lord,

1991). For example, using the cut-and-project method, the
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Figure 8
3D-printed aperiodic tilings. (a) P2 tiling with pentagonal symmetry; (b)
P3 tiling with pentagonal symmetry; (c) A5 tiling with octagonal
symmetry.



Penrose tiling can be obtained by cutting a 2D slice through a

4D hyperrhombohedral lattice and the icosahedral tiling by

cutting a 3D slice through a 6D hypercubic lattice (Steurer &

Haibach, 1999).

Golden isozonohedra. Among zonohedra (i.e. convex

polyhedra whose faces are centrally symmetric), golden

isozonohedra are those whose faces are golden rhombuses.

There exist only five golden isozonohedra: the oblate and

prolate golden rhombohedra, the triacontahedron, the

rhombic dodecahedron, and the rhombic icosahedron. Socolar

& Steinhardt (1986) proposed the construction of the icosa-

hedral tiling using four golden isozonohedra (all but the oblate

rhombohedron) as a set of four prototiles. This tiling keeps the

icosahedral symmetry in the 3D tiling.

3.2.2. Models and suggested activities on aperiodic 3D
crystals. The accurate mathematical description of aperiodic

crystals is intricate. Although schematic diagrams can be used

to interpret the cut-and-project method for generating an

aperiodic unidimensional array from a 2D periodic lattice

(Fang et al., 2017), a hands-on learning approach using

convenient tools could be a better way to approach this

complicated subject. On the other hand, the construction of a

3D model of an aperiodic crystal is possibly a more attractive

and challenging activity than building plane aperiodic tilings.

The 3D printing of many copies of the two golden rhom-

bohedra (Fig. 9, inset) will produce the pieces to allow many

worthwhile exercises connected to icosahedral tilings. To start

with, the student could examine the geometry of printed

golden rhombohedra to verify that all the faces of both are

identical golden rhombuses, i.e. their diagonals are in the

golden ratio (’) and the volume ratio between the prolate and

oblate rhombohedra is also ’.

The next step would be to try to use the golden rhombo-

hedra to assemble a body containing fivefold symmetry and

without leaving empty spaces. Twenty rhombohedra (ten

oblate and ten prolate) can be assembled to form a rhombic

triacontahedron [see Fig. 9(a)] as already shown by Kowa-

lewski (1938). Then, several triacontahedra can be assembled,

for instance sharing faces, leaving spaces that can be

completely filled with oblate and prolate rhombohedra

[Fig. 9(b)]. However, it is easy to find combinations where the

characteristic pentagonal symmetry is lost and it is actually

impossible to keep the ideal icosahedral symmetry considering

only the golden rhombohedra as prototiles (Madison &

Madison, 2019).

Another step would be to use the golden rhombohedra to

assemble the other golden isozonohedra besides the tria-

contahedron (and the golden rhombohedra for themselves).

These are the rhombic dodecahedron and the rhombic

icosahedron. The first comprises two prolate and two oblate

rhombohedra, and the latter five prolate and five oblate

rhombohedra. Once assembled, another suggested exercise

for students could be to determine the point-group symmetry

of the five isozonohedra [Fig. 10(a)]. In particular it should be

noted that the rhombic icosahedron contains a single fivefold

symmetry axis (point symmetry would correspond to group

5m) and the triacontahedron contains six fivefold symmetry

axes (point symmetry would correspond to group 53m). The

construction of the four prototiles (i.e. all isozonohedra but

the oblate rhombohedron) suggested by Socolar & Steinhardt

teaching and education
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Figure 10
(a) The five golden isozonohedra: from left to right, oblate rhombohe-
dron, prolate rhombohedron, rhombic dodecahedron, rhombic icosahe-
dron and triacontahedron. The last three can be assembled combining the
two golden rhombohedra. (b), (c) Two examples of tilings exhibiting a
topography with fivefold symmetry using assemblies of 3D-printed
golden rhombohedra previously assembled as zonohedra.

Figure 9
(a) Steps showing how to assemble a rhombic triacontahedron using ten
oblate and ten prolate 3D-printed golden rhombohedra. Inset: the oblate
(light blue) and prolate (orange) golden rhombohedra. (b) The
triacontahedra can form 3D ensembles filling the empty spaces with
golden rhombohedra.



(1986) could be a good starting point to attempt the

construction of an aperiodic array keeping the icosahedral

symmetry (Fig. 10). Using pre-assembled isozonohedra the

student could find it easier to build assemblages of golden

rhombohedra which define a surface topography that holds

the fivefold symmetry axes [Figs. 10(b) and 10(c)]. Also, the

student could try to verify that in such icosahedral tilings the

frequency of appearance of the prolate rhombohedron is ’
times higher than that of the oblate rhombohedron.

Finally, a more elaborate assemblage could be done by

painting in a different colour every type of zonohedron

[Fig. 11(a)]. In this way, it is possible to create a tiling that

keeps the icosahedral symmetry including both the surface

topography and the colour distribution. Some suggested

exercises could be to build the inflated zonohedra as described

and beautifully illustrated in the work of Madison (2015a,b),

as well as self-similar layers and slices perpendicular to the

fivefold axis (Madison, 2015a; Madison & Madison, 2019);

examples are given in Fig. 11(b). The inflation factor of these

self-similar layers is ’3 (Katz & Duneau, 1986).

4. Conclusion

Different 3D-printed designs have been presented to apply

hands-on learning to a number of concepts usually taught in

basic crystallography courses using both 2D and 3D examples:

e.g. periodicity, the crystallographic restriction theorem, unit

cell, point symmetry, asymmetric unit, chirality, lattices and

symmetry elements. A similar approach has been undertaken

to introduce a number of notions that concern aperiodic

crystals and that, commonly, are not taught due to their

difficulty both conceptually and from a mathematical point of

view. These include non-periodicity, aperiodicity, self-simi-

larity, proof of the absence of translational symmetry and the

potentially infinite size of aperiodic media.

The presented and discussed materials comprise the

following. (i) Several designs intended for the study of peri-

odic media: eight types of polygonal tiles and an Escher-

inspired lizard tile (including the single lizard and a corre-

sponding unit cell and asymmetric unit), a dissection puzzle of

four hexagonal cells including ten types of pieces, a model of

the unit cell (bearing atoms) of a monoclinic space group

containing ten pieces. (ii) Other designs intended for the study

of aperiodic media: three pairs of prototiles for aperiodic 2D

tilings and five polyhedra for 3D tilings. All these designs are

made freely available as printable STL files that can be found

in the supporting information. The printed materials and their

related examples should provide students and teachers with

additional resources to overcome the difficulties of learning

and teaching concepts of both periodic and aperiodic crystals.

Educators are encouraged to use and adapt these models in

their lectures.
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Figure 11
(a) 3D printings of the four types of zonohedra used as prototiles in the
icosahedral tiling painted in different colours. (b) Three examples of
tilings using the zonohedra that exhibit a fivefold symmetry axis.
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