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Two evaluation concepts for nondestructive depth-resolved X-ray residual stress

analysis in the near-surface region of materials with cubic symmetry and nearly

single crystalline structure are introduced by simulated examples. Both concepts

are based on the same data acquisition strategy, which consists in the

determination of lattice-spacing depth profiles along the hhkli poles by stepwise

sample rotation around the scattering vector. Segmentation of these profiles

parallel to the sample surface provides the lattice strain state as a function of

depth. The first evaluation concept extends the crystallite group method

developed for materials with pronounced crystallographic texture by the feature

of depth resolution and can be applied to samples with arbitrary orientation.

The second evaluation concept, which adapts the linear regression approach of

the sin2 method for the case of single crystalline materials, is restricted to

samples with (001) orientation. The influence of the strain-free lattice parameter

a0 on residual stress analysis using both evaluation concepts is discussed on the

basis of explicitly derived relations.

1. Introduction

X-ray residual stress analysis (XSA) has a long tradition

whose roots reach back to the 1930s [see, for example, Noyan

& Cohen (1987) and Hauk (1997)]. Since then numerous

methods have been developed. The majority of them target

the analysis of the residual stress state in polycrystalline

materials with an almost random orientation distribution of

the crystallites, which can be regarded as quasi-isotropic on a

macroscopic length scale. The elastic anisotropy of the crys-

tallites the material consists of is taken into account by the

diffraction elastic constants (DEC), Shkl
1 and 1

2 Shkl
2 . They are

independent of the measurement direction (’,  ) in the

sample reference system but depend on the analyzed crystal

lattice planes hkl. The DEC can be determined experimentally

or calculated on the basis of different grain interaction models

such as those proposed by Voigt (1910) (homogeneous strain),

Reuss (1929) (homogeneous stress), or Eshelby (1957) and

Kröner (1958) (elastic polarizability).

Materials with preferred crystallographic orientation

behave as elastically anisotropic on a macroscopic length scale

as well. Diffraction stress analysis of such materials requires a

treatment which differs from that to be applied to specimens

featuring preferred orientation of the crystallites (Welzel &

Mittemeijer, 2003). The relationship between the lattice strain

"hkl
’ obtained in some direction (’,  ) and the stress compo-

nents �ij can be described by means of stress factors

Fij(’,  , hkl) (Dölle & Hauk, 1978, 1979). Their calculation
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from the elastic single crystal constants requires knowledge of

the orientation distribution function as weighting factor when

averaging over the reflecting crystallites in the measurement

direction (Behnken & Hauk, 1991; Behnken, 2003).

Very sharp crystallographic textures allow crystallites with

almost identical orientation to be grouped together and

treated as single crystals for stress analysis. The relationship

between the lattice strains and the components of the residual

stress tensor is then given by the generalized Hooke law, with

the fourth-rank tensors of the elastic compliances and stiff-

nesses, 4~SS and 4~CC, respectively, acting as connecting factors

(Nye, 1985). On the basis of this approach the crystallite group

method was introduced by Willemse et al. (1982) and applied

to residual stress analysis in cold-drawn wires. Later, the

concept was further developed (Hauk & Vaessen, 1985; Hauk

& Oudelhoven, 1988) and used to determine the residual

stress state in plates with a pronounced rolling texture as well

as in materials with strong fiber texture (Baron & Hauk, 1988).

A limitation of most XSA methods developed so far for

materials with pronounced texture is that they only provide

average values of the residual stress state at the near-surface

region irradiated by the X-ray beam. The number of

measurement directions is restricted to the hhkli poles of the

texture, which prevents a continuous variation of the infor-

mation depth � by changing the inclination angle  between

the surface normal and the measurement direction. Therefore,

approaches for residual stress gradient analysis suitable for

materials with almost random orientation distribution of the

crystallites such as the universal plot method (Ruppersberg et

al., 1989, 1991), the low incidence beam angle diffraction

method (Van Acker et al., 1994; Mohrbacher et al., 1996), the

multi-wavelength method (Eigenmann et al., 1990) and the

mixed �–� mode technique (Dümmer et al., 1999; Erbacher et

al., 2008) cannot be applied. They are based on the

measurement principle of the sin2  method (Macherauch &

Müller, 1961), according to which evaluable diffraction lines

are available in any measurement direction.

The aim of the present work is to extend the XSA metho-

dology for materials with nearly single crystalline structure by

the possibility of depth resolution. The data acquisition

strategy proposed to achieve depth resolution is based on the

scattering vector method (Genzel, 1994). It allows the deter-

mination of lattice-strain depth profiles "hklð�Þ along the hhkli

poles of strongly textured materials by stepwise sample rota-

tion around the scattering vector (Genzel, 1999; Genzel et al.,

1999). Segmentation of these profiles parallel to the surface

provides sets of strain data which form the basis of two

evaluation concepts proposed in this paper for the determi-

nation of the residual stress state as a function of depth. Both

evaluation concepts use the stress factors to relate the lattice

strains to the stress components to be determined. The first

concept follows the crystallite group method by calculating the

unknown stress components from sets of overdetermined

systems of equations. Its applicability is not restricted to a

special crystallographic orientation of the sample. The second

concept adapts the linear regression approach of the sin2  
method. Since this concept requires a sufficient number of

hhkli poles along fixed azimuth directions ’, its applicability is

restricted to samples with a special orientation of the surface.

The focus of this paper is on a straightforward and

comprehensible introduction of the proposed evaluation

strategies. This is achieved by the example of a simulated

residual stress distribution of the surface area of a hypothe-

tical single crystal featuring a (001) surface. To obtain a

realistic scenario, the corresponding lattice parameter depth

profiles were subjected to scatter with additional uncertainties

for the individual data points, as also observed in experimental

investigations performed on additively manufactured samples

of stainless steel 316L and Inconel 718 with a pronounced

mosaic structure. The presentation of these results together

with the applied measurement strategy will be the subject of a

separate publication. Using a similar approach, it was shown

by Genzel (2001) with the example of a silicon layer with a

pronounced h110i texture that lattice strain measurements

along the texture poles lead to correct stress depth profiles

only if the anisotropic stress factors are used for the evalua-

tion.

The paper is structured as follows. In Section 2 the funda-

mental relations underlying the two stress evaluation concepts

are given. In Section 3 explicit relations are derived to eluci-

date the influence of uncertainties of the strain-free lattice

parameter a0 on the evaluated residual stress state. Simulated

examples to illustrate both concepts proposed in this paper are

given in Section 4. The paper is completed with some

concluding remarks and a short summary.

2. Depth-resolved XSA in materials with single
crystalline structure

2.1. Fundamental relations

X-ray stress analysis is based on the measurement of lattice

spacings dhkl
’ by means of Bragg’s law, � ¼ 2d sin �, in various

directions (’,  ) with respect to the sample reference system

fSg (see Fig. 1). The lattice strain "hkl
’ ¼ ðd

hkl
’ � dhkl

0 Þ=dhkl
0 (dhkl

0

is the strain-free lattice spacing) in the measurement direction

is related to the components of the stress tensor, �ij, by the

fundamental equation of XSA. Taking into account the depth
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Figure 1
(a) Schematic view of the orientation relations between the different
reference coordinate systems ({S} – sample; {C} – crystal; {L} –
laboratory). (b) Transformation relations between the individual
coordinate systems.



dependence of the residual stress state within the sample this

equation can be written in the following formal way:

"hkl
’ ð�Þ ¼ Fijð’; ; hklÞ �ijð�Þ ði; j ¼ 1; 2; 3Þ: ð1Þ

In equation (1) Fij are the stress factors and � is the infor-

mation depth to which the diffraction signal can be assigned. It

depends on the diffraction geometry as well as on the mate-

rial’s absorption given by the linear absorption coefficient �,

which is a function of the photon energy E. A general

formulation for � was derived by Genzel (1994):

� ¼
sin2 � � sin2  þ cos2 � sin2  sin2 �

2� Eð Þ sin � cos 
; ð2Þ

where � describes the rotation of the sample around the

scattering vector ~gghkl. The correlation between the experi-

mentally accessible stress depth profiles �ij(�) and the actual

distributions in real space, �ij(z), is given by

�ijð�Þ ¼

R
�ijðzÞ expð�z=�Þ dzR

expð�z=�Þ dz
: ð3Þ

Owing to the form of equation (3) the profiles �ij(�) are called

Laplace stress profiles. Their back transformation into the real

space is difficult and currently still the subject of research. The

application of the inverse numerical Laplace transform

(Genzel, 1996) in many cases fails since the systems of equa-

tions to be solved are ill-conditioned (Craig & Thompson,

1994). Frequently used approaches are based on the descrip-

tion of the �ij(z) profiles by single polynomials (Ruppersberg

et al., 1991), series of polynomial sections (Leverenz et al.,

1996) or exponentially damped functions (Hauk & Krug,

1988) which can be easily transformed into the Laplace space.

The unknown parameters can be determined by least-squares

fitting of the Laplace transforms to the experimental data.

However, because of the empirical description of the residual

stress depth distributions and the fact that different approa-

ches provide similarly good fit results in the Laplace space, this

strategy is also associated with uncertainties (Behnken &

Hauk, 2001; Denks et al., 2009).

The stress factors in equation (1) describe the dependence

of the measurable lattice strains on the mean residual stresses.

For materials featuring a pronounced crystallographic texture,

which allows groups of crystallites to be treated with nearly

the same orientation as a single crystal, the Fij can be

expressed as functions of the transformation matrices, which

describe the orientation relations between the three involved

reference coordinate systems (see Fig. 1), and the components

of the compliance tensor 4~SS. For cubic crystal symmetry one

obtains for the normal components (Hauk, 1997)

Fiið’;  ; hklÞ ¼ s12 þ
1
2 s44!

2
3i þ s0

P3

m¼1

�2
3m	

2
im ði ¼ 1; 2; 3Þ

ð4Þ

with s0 ¼ s11 � s12 �
1
2 s44. As Fig. 1(a) reveals, in the matrices

x and c only the third-row components !3i and �3m are of

interest. They represent the orientation of the measurement

direction (i.e. the lattice strain "hkl
’ ) within the sample and the

crystal reference system, respectively:

~xx3ð’; Þ ¼

cos ’ sin 

sin ’ sin 

cos 

0
B@

1
CA;

~cc3ðhklÞ ¼
1

h2 þ k2 þ k2ð Þ
1=2

h

k

l

0
B@

1
CA:

ð5Þ

The measurement direction defined in equations (5) refers to a

crystallite whose orientation relative to the sample system can

be described by a set of Eulerian rotations ð
1;�; 
2Þ (Bunge,

1969), which are merged in the matrix

vð
1;�; 
2Þ ¼

cos
1 cos
2 � cos
1 sin
2 sin
1 sin �

� sin
1 cos � sin
2 � sin
1 cos � cos 
2

sin
1 cos
2 � sin
1 sin
2 � cos
1 sin �

þ cos 
1 cos � sin
2 þ cos 
1 cos � cos 
2

sin � sin
2 sin � cos 
2 cos �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð6Þ

The stress factor concept can formally be applied to materials

with almost random orientation distribution of the crystallites.

In this case the Fij become linear combinations of the ordinary

diffraction elastic constants Shkl
1 and 1

2 Shkl
2 :

Fijð’; ; hklÞ ¼ 1
2 Shkl

2 !3ið’; Þ!3jð’; Þ þ �ijS
hkl
1

ði; j ¼ 1; 2; 3Þ; ð7Þ

where �ij is the Kronecker delta and !3i(’,  ) are the vector

components defined by equation (5).

2.2. Application of the stress factor concept to materials with
mosaic-like crystal structure

2.2.1. General least-squares fit approach. This approach is

based on an algorithm that includes the following steps (see

Fig. 2):

(1) Acquisition of lattice-spacing depth profiles dhpkplpð�Þ by

stepwise sample rotation around the scattering vector ~gghkl for a

sufficiently large number P of hhkli poles p.

(2) Analytical description of the discrete depth distributions

by means of polynomial functions that are fitted to the data.

(3) Identification of overlapping depth ranges for the indi-

vidual poles hhpkplpi; division of these ranges into N sublayers

parallel to the surface.

(4) Solving equation (8) (see below) for the unknown stress

components �ii for each sublayer n (n = 1, . . . , N); generation

of �ii(�n) depth profiles.

(5) Back transform of the �ii(�) depth profiles into the real

space to obtain �ii(z) profiles.

Since the three matrices c, x and v are not independent of

each other, it is appropriate to replace x in equation (4) by
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x ¼ cv�1. In this way it is taken into account that the angles ’
and  for strongly pronounced textures can no longer be

chosen arbitrarily but depend both on the lattice directions

hhkli in the crystal and on their orientation within the sample

defined by ð
1;�; 
2Þ. For the normal stress components �ii

(i = 1, 2, 3) the system of equations to be solved for each

predefined depth �n then becomes

"h1k1 l1 ð�nÞ ¼ s12 þ
1
2 s44

P3

m¼1

	ð1Þim�
ð1Þ
3m

� �2

þ s0

P3

m¼1

	ð1Þim�
ð1Þ
3m

� �2

" #

� �iið�nÞ;

"h2k2 l2 ð�nÞ ¼ s12 þ
1
2 s44

P3

m¼1

	ð2Þim�
ð2Þ
3m

� �2

þ s0

P3

m¼1

	ð2Þim�
ð2Þ
3m

� �2

" #

� �iið�nÞ;

..

.

"hPkPlP ð�nÞ ¼ s12 þ
1
2 s44

P3

m¼1

	ðPÞim �
ðPÞ
3m

� �2

þ s0

P3

m¼1

	ðPÞim �
ðP
3m

� �2

" #

� �iið�nÞ:

ð8Þ

The allocation of the matrix elements of c and v to the indi-

vidual poles hhpkplpi (p = 1, . . . , P) in the above system of

equations is indicated by the bracketed superscripts. If equa-

tion (8) is solved for the unknown stress components �ii in the

form given above, which reads more concisely as ~"""""" ¼ F~rr
where F is the (R � P) matrix of the stress factors (R is the

number of involved normal stress components �ii, and P the

number of measured hhkli poles), a value for the strain-free

lattice parameter a0 is required as input parameter to calculate

the components of the strain vector ~"""""" on the left-hand side.

If the residual stress state in the near-surface region can be

assumed to be biaxial (i.e. �33 � 0), the proposed algorithm

allows the evaluation of a0 as well. In this case the system of

equations (8) is rewritten as ~aa ¼ F~rra0 þ
~11a0 [~11 ¼ ð1; . . . ; 1ÞT is

the unity vector], which reads for each predefined depth �n

and pole hhkli (hereinafter abbreviated by p)

aðpÞð�nÞ ¼ F
ðpÞ
11 x1 þ F

ðpÞ
22 x2 þ x3 ðp ¼ 1; . . . ;PÞ: ð9Þ

Here, x1 ¼ �11ð�nÞ a0, x2 ¼ �22ð�nÞ a0 and x3 ¼ a0 are the

parameters to be evaluated. The use of equation (9) and the

second approach introduced in Section 2.2.2 requires the

normalization of the lattice spacings dhkl to the edge length of

the unit cell, a100. Therefore, we use in the following ahkl =

dhkl(h2 + k2 + l2)1/2 instead of dhkl.

The uncertainties �0 of the strain-free lattice parameter a0

are known to represent a considerable source of error in XSA

(Evenschor & Hauk, 1975; Dölle & Hauk, 1976). Their influ-

ence on the results obtained must therefore be carefully

evaluated for each newly developed XSA method. In

Section 3 the relationship between �0 and the resulting shift

Dr
�!

of the residual stress state is derived in explicit form for

the evaluation algorithms proposed here.

2.2.2. Linear regression approach. The advantages of the

formalism outlined in Section 2.2.1 are that there are no

restrictions concerning the orientation of the crystallite

group(s) within the sample and that the data obtained for any

pole hhkli can be included in the evaluation procedure. A

disadvantage of this approach is the lack of clarity regarding

the representation of the lattice strains versus a given para-

meter, as is the case for example with the sin2  method.

In the following we demonstrate that the stress factor

concept, which allows for a linear regression analysis of strain

data obtained from multiple reflections hkl by means of

energy- (Klaus & Genzel, 2017; Klaus et al., 2017) or angle-

dispersive (Marciszko-Wiąckowska et al., 2019) diffraction,

can be applied also to single crystalline materials if the sample

surface possesses a (001) orientation. In this case v becomes

the identity matrix I3, i.e. the coordinate systems {S} and {C} in

Fig. 1 coincide. If the normalized lattice spacings ahkl
’ are

determined under these conditions for distinct poles hhkli at

the azimuths ’ ¼ 0� (poles hh0li), ’ ¼ 90� (poles h0kli) and

’ ¼ 45� (poles hhhli), respectively, sin2  can be expressed in

terms of the Miller indices:

sin2  ¼

h2

h2 þ l2
for ’ ¼ 0�;

k2

k2 þ l2
for ’ ¼ 90�;

2h2

2h2 þ l2
for ’ ¼ 45�:

8>>>>><
>>>>>:

ð10Þ

Assuming a biaxial residual stress state we obtain from

equations (1) and (4) the following relations between the

lattice spacings and the principal stress components for any

depth �n:

ah0l
’¼0� ð�nÞ ¼ �11ð�nÞ a0 s11 � s12ð Þ

h2

h2 þ l2
þ s12

� �
þ s12 �22ð�nÞ þ 1
	 


a0; ð11aÞ
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Figure 2
Illustration of the formalism for depth-resolved XSA in materials
featuring a mosaic crystal structure using the crystallite group approach.
The subscripts ’ and  have been omitted because of the dependency
x ¼ cv�1.



a0kl
’¼90� ð�nÞ ¼ �22ð�nÞ a0 s11 � s12ð Þ

k2

k2 þ l2
þ s12

� �
þ s12 �11ð�nÞ þ 1
	 


a0; ð11bÞ

ahhl
’¼45� ð�nÞ ¼

1
2 �11 þ �22ð Þð�nÞ a0 s11 � s12ð Þ

2h2

2h2 þ l2
þ 2s12

� �
þ a0

ð11cÞ

1
2 ah0l

’¼0� þ a0kl
’¼90�

� �
ð�nÞ ¼

1
2 �11 þ �22ð Þð�nÞa0

� s11 � s12ð Þ
x2

x2 þ l2
þ 2s12

� �
þ a0: ð11dÞ

In equation (11d) x stands for h and k, which have the same

value when averaging is performed over the two azimuths

’ ¼ 0� and ’ ¼ 90�. The above equations allow two different

linear representations of the data (see Fig. 3). If the lattice

spacings are plotted versus the stress factors (the terms in the

square brackets), the slopes of regression lines fitted to the

data are proportional to the product of the respective stress

component and the strain-free lattice parameter a0 [Fig. 3(a)].

In this representation the value of a0 can be determined

directly from the intersection of the regression line obtained

from equations (11c) and/or (11d) with the ordinate axis Fhkl =

0. Note that in these plots the abscissa values of the data are

different for the individual azimuthal directions ’ ¼ 0, 90 and

45�, respectively, as well as for the plot of the averaged data

according to equation (11d).

Alternatively, the data can be plotted versus sin2  
according to the relationships in equation (10) [Fig. 3(b)]. This

form of linear representation is more descriptive, since it

shows the variation of the lattice spacings as a function of their

orientation in the sample. The value for the strain-free lattice

parameters cannot be read off directly, but it is obtained from

the value of the regression line for the relations (11c) and

(11d), respectively, at the position sin2  ¼ �2s12=ðs11 � s12Þ.

Because in both representations the plots obtained for

’ ¼ 45� and for the data averaged over ’ ¼ 0� and ’ ¼ 90�

have the same slope, the data sets can be combined in a single

plot and evaluated together.

3. Influence of the strain-free lattice parameter on
residual stress evaluation for a biaxial stress state

3.1. General least-squares fit approach

In the following, the depth dependence of the residual

stress/strain state is omitted, since the below considerations

apply to any depth �n. Equation (9) can be rewritten as

follows:

aðpÞ � a0 ¼ F
ðpÞ
11 x1 þ F

ðpÞ
22 x2 ðp ¼ 1; . . . ;PÞ: ð12Þ

In matrix notation the above equation reads ~yy ¼ F~xx, with

~xx ¼ ða0�11; a0�22Þ
T, ~yy ¼ ½ðað1Þ � a0Þ; . . . ; ðaðPÞ � a0Þ�

T and F the

(2 � P) matrix of the stress factors [see equation (8)]. We now

consider two cases: (a) The strain-free lattice parameter a0 is

known exactly and the overdetermined linear system of

equations given by (12) can be solved in the usual way. (b) a0 is

subject to an uncertainty �0 which leads to a shift Dr
�!

in the

quantitative analysis of the residual stress state. Applying the

least-squares method [see, for example, Press et al. (1992)] and

making use of Gauss transformation yields for case (a)

FTF
� �

~xx ¼ FT~yy! ~xx ¼ FTF
� ��1

FT~yy ð13Þ

and for case (b)

FTF
� �

~~xx~xx ¼ FT ~yyþ ~11�0

� �
¼ FT~yyþ FT~11�0 !

~~xx~xx ¼ FTF
� ��1

FT~yyþ FT~11�0

� �
: ð14Þ

Taking the difference between equations (14) and (13), a

direct connection is obtained between the relative uncertainty

�0=a0 and the shift of the stress state Dr
�!

:
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Figure 3
Application of the linear regression approach according to equations (11a)–(11d) to a biaxial stress state with �11 =�500 MPa and �22 = +100 MPa. The
material used in the simulation was an austenitic steel (a0 ¼ 3:60 Å); the elastic single crystal compliances sij were taken from Landoldt-Börnstein
(1984). The poles hhkli involved in the evaluation correspond to the poles for the azimuthal directions ’ = 0, 45 and 90� in Fig. 4. See text for further
details.

Table 1
Influence of elastic anisotropy on the accuracy of stress determination.

Poles (FTF)�1FT~11 (MPa)

Soft (3� < 0.6) (2.6, 2.6)T

Hard (3� > 0.6) (80.2, 80.2)T



Dr
�!
¼ ~~rr~rr � ~rr ¼ ~~xx~xx� ~xx

� � 1

a0

¼ FTF
� ��1

FT~11
�0

a0

: ð15Þ

According to equation (15) Dr
�!

scales with ðFTFÞ�1FT~11.

Owing to the single crystal elastic anisotropy, the stress factors

F
ðpÞ
ii , which form the matrix F, depend on the choice of the

poles hhkli included in the least-squares fitting procedure. In

Fig. 4 the poles were divided into ‘hard’ and ‘soft’ directions

based on the direction-dependent Young modulus Yhkl, the

inverse of which is proportional to the orientation factor 3�:

Yhkl
� ��1

¼ s11 �
2
3s0 3�; 3� ¼ 3

h2k2 þ k2l2 þ h2l2

h2 þ k2 þ l2ð Þ
2
: ð16Þ

The value 3� = 0.6 has been chosen as the boundary between

the ‘soft’ and the ‘hard’ directions. This is the crystal direction

where the diffraction elastic constants for the polycrystal, Shkl
1

and 1
2 Shkl

2 , correspond to the mechanical constants, Smech
1 and

1
2 Smech

2 , obtained by averaging over all crystal orientations. It

can be seen that the hard directions are in the vicinity of the

[111] pole (‘hardest’ direction) and the h110i poles, while the

soft directions are found near the h100i poles (‘softest’

directions).

Table 1 reveals that the choice of the measurement direc-

tions has a strong impact on the magnitude of ðFTFÞ�1FT~11.

Taking into account in the analysis only the soft directions

shown in Fig. 4 results in a shift of the residual stress state

which is more than 30 times smaller than the shift obtained by

applying the formalism exclusively to the hard directions in

Fig. 4. For a relative uncertainty of �0=a0 ¼ 10�3 the effect on

the residual stress state (i.e. its shift) would only be about

3 MPa in the first case, but 80 MPa in the latter case.

4. Linear regression approach

In contrast to the general least-squares approach considered

above, the uncertainty of a0 is of minor importance for the

linear regression approach (see Fig. 3). Here the residual

stress component in the azimuthal direction ’ is given by the

quotient of the slope m of the regression line and a0. Taking

into account an uncertainty �0, Taylor series development

yields

� ¼
m

a0 þ�0

¼
m

a0

1�
�0

a0

þ � � �

� �
ð17Þ

and thus

�� ’ ��0=a0: ð18Þ

The above equation reveals that the relative uncertainty

�0=a0 results in a shift of the stress which is about three orders

of magnitude smaller than the stress value itself.

5. Examples

5.1. Input parameters

In the following the XSA strategies introduced in Section 2

are illustrated by means of a simulated example, which refers

to a single crystalline austenitic steel sample featuring a (001)

surface orientation. The strain-free lattice parameter

a0 ¼ 3:60 Å is assumed to be constant in the considered depth
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Figure 4
(a) Stereographic projection of the poles hhkli used to demonstrate the two evaluation concepts introduced in this paper. (b) Direction-dependent
Young’s modulus Yhkl for austenitic steel according to equation (16).

Figure 5
Near-surface biaxial residual stress state on which the simulations are
based.



range. The near-surface zone is subject to the biaxial residual

stress state shown in Fig. 5.

Normalized lattice-spacing depth profiles ahkl(�), such as

would be determined by energy-dispersive diffraction, were

calculated for the hhkli poles shown in Fig. 4. The correlation

between the positions of the diffraction line Ehkl on the energy

scale and the normalized lattice spacings is given by (Giessen

& Gordon, 1968)

Ehkl keV½ � ¼
6:199

sin �

h2 þ k2 þ l2ð Þ
1=2

ahkl½Å�
: ð19Þ

The ahklð�Þ profiles in Fig. 6 were calculated for � ¼ 13�. The

information depth covered by the � rotation lies for the indi-

vidual reflections hkl in the range ½�hkl
min . . . �hkl

max�. The minimum

and the maximum depths correspond to incidence angles

�min ¼ 0:1� and �max ¼ arcsinðsin � cos hklÞ, respectively, with
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Figure 6
Lattice-spacing depth profiles ahkl(�) for the stress state in Fig. 5, calculated for selected hhkli poles in Fig. 4 and divided into (a) ‘soft’ and (b) hard’
directions.

Figure 7
Simulated lattice-spacing depth profiles for selected hhkli poles (cf. Fig. 6). The solid lines denote the default profiles (cf. Fig. 6); the dashed lines mark
the curves obtained by a least-squares fit of polynomial functions of fifth order to the discrete data. Note the very different � ranges covered for the
individual hhkli poles.



 hkl from equation (10). Depending on their orientation

relative to the principal stress directions and the minimum

information depth that can be achieved, the ahkl(�) profiles are

characterized by more or less steep gradients near the surface

and become nearly horizontal with increasing depth. Signifi-

cantly larger differences occur for the soft crystal directions.

Data were assigned to the calculated depth profiles at

discrete positions, and scatter and individual uncertainties

were added, which are consistent with those measured in

experimental investigations on samples from additive manu-

facturing. The data were fitted by polynomial functions (Fig. 7).

The data base aðpÞð�nÞ required for the application of the two

evaluation concepts was generated by segmentation for depth

ranges which include a sufficiently large number of lattice-

spacing depth profiles (see Fig. 6).

5.2. Application of the general least-squares approach

Figs. 6 and 7 reveal that the number of poles which can

contribute to the evaluation at some depth �n decreases

towards both very small and large depths. Consequently, very

close to the surface and at large depths there will be fewer data

available for the solution of the systems of equations (8) and

(9), respectively, which will lead to higher uncertainties in

these depth ranges. In Fig. 8(a), a total of 17 poles is consid-

ered, but the number of poles contributing in areas I to IV

varies. The large scattering in the first micrometres below the

surface is due to the fact that the high-energy diffraction lines

of type {620} and {640} do not yet provide data there. At the

boundaries between the individual areas, jumps occur since

the �hkl
max limits of several groups of reflections are reached (I/II:

202, 022, 311, 131; II/III: 402, 042, 113; III/IV: 204, 024, 602,

062). The large uncertainties in area IV are caused by the fact

that there only the high-energy lines provide a contribution.

Fig. 8(b) illustrates the situation if only the hard directions are

used in the analysis. In this case, the deviations from the

defaults are much larger compared with the evaluation

including all (i.e. hard and soft) poles [see Fig. 8(a)]. This is

similar to the findings in Section 3 for the impact of a0

uncertainties.
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Figure 8
Residual stress and strain-free lattice-parameter depth profiles obtained from the general least-squares approach according to equation (9), taking into
account different sets of hhkli poles shown in Fig. 4. (a) Analysis for the poles hh0li, h0kli and h311i. (b) Analysis under exclusive consideration of the
hard directions [cf. Fig. 4(b)].

Figure 9
Examples for the ahkl

’ –Fhkl plots according to equations (11a), (11b) and (11d) for two information depths �. In the left diagram, the three poles that
contribute to the plots are indexed. In the right diagram, all poles hh0li and h0kli marked in Fig. 4(a) along the azimuthal directions ’ = 0 and 90� are
involved. Note the different abscissa values for the plots averaged over the two azimuths [cf. Fig. 3(a)].



5.3. Application of the linear regression approach

While for the general least-squares approach considered in

the previous section there are no restrictions with respect to

the usable hhkli poles, the evaluation by means of the linear

regression approach is limited to the poles along the axes [100]

and [010] as well as to the [110] direction. But in contrast to

the general least-squares approach, the results can be

presented and interpreted more clearly. Fig. 9 shows for two

selected depths that only three poles at a very small depth

contribute to the regression analysis, compared with seven

poles in a deeper region. Consequently, the results achieved

close to the surface are subject to larger uncertainties. This

applies both to the slope of the regression line used to

calculate the stress and to its value obtained for the averaged

data set 1
2 ða

h0l
’¼0� þ a0kl

’¼90� Þ at the position Fhkl = 0, which is

identical to the strain-free lattice parameter a0 in the case of

biaxial stress analysis.

The �ð�Þ and a0ð�Þ profiles determined by applying the

linear regression approach to all nodes allocated in the

selected � range are shown in Fig. 10. The diagrams confirm

that the regression analysis leads to results comparable to

those obtained for the general least-squares approach (see

Fig. 8). However, it should be noted that the total depth range

considered in Fig. 10 is only half of the range shown in Fig. 8.

For larger depths (not shown in the diagrams) the results

become less stable, because there only three reflections (’ =

0�: 206, 406, 604; ’ = 90�: 026, 046, 064) contribute to the

analysis.

6. Concluding remarks

Depth-resolved X-ray residual stress analysis on materials

with (nearly) single crystalline structure requires a treatment

which differs from that applicable to polycrystalline materials

with random orientation distribution of the crystallites or

weak crystallographic texture, since the number of available

measurement directions is restricted to a few hhkli poles and

the elastic behavior of the material is anisotropic on the

macroscopic length scale. In the present work, concepts are

proposed on the basis of theoretical considerations which take

into account the above-mentioned boundary conditions. This

approach has been chosen because simulations allow one to

assess the results by the deviations from the defaults and to

study the influence of individual parameters (here, the direc-

tion-dependent Young modulus and the number of hhkli poles

involved in the evaluation).

The focus of this work is on the evaluation side. The data

base used to introduce the two evaluation concepts was

generated by calculating lattice-spacing depth profiles at

distinct hhkli poles for a biaxial residual stress state in the

near-surface region of a hypothetical austenite single crystal

with (001) orientation. This orientation represents a special

case for the general least-squares fit approach (Section 2.2.1).

In the case of any other orientation only the matrix v [equa-

tion (6)] changes, while the further evaluation algorithm

remains unaffected.

The use of the linear regression approach in the form

proposed in Section 2.2.2, on the other hand, requires a (001)

orientation. We restricted the assessment of the proposed

concepts to the depth profiles obtained in the Laplace space

because of the challenges involved in their back transforma-

tion into the real space (see Section 2.1). The corresponding

issues concern all XSA methods equally, the depth resolution

of which is based on the exponential attenuation of X-rays, so

that a discussion of this point would go beyond the scope of

this paper.

Simulations cannot replace experiments performed on real

samples featuring a characteristic microstructure. Domain size

and micro-strain distributions caused by lattice defects such as

dislocation (networks) and stacking faults give rise to

diffraction line broadening and shifting, which superimpose

the line shifts caused by macro residual stress fields. Therefore,

XSA experiments make a careful separation of micro- and

macrostructural influence factors mandatory. A feasible

approach in this respect is to subject the diffraction lines to an

additional profile analysis (Mittemeijer & Scardi, 2004).

The theoretical study presented in this paper is not based on

the assumption of a specific microstructure. However, we

added to the simulated data sets noise and measurement

uncertainties consistent with those observed in experiments

on stainless steel 316L and the nickel-base alloy Inconel 718

produced by additive manufacturing. The presentation of

these results will be the subject of a separate publication, as

the investigations are associated with additional issues that

require detailed consideration. This implies for example the

treatment of smeared-out hhkli poles, which are observed

when the X-ray beam illuminates near-surface areas which

consist of subgrains slightly tilted or twisted relative to each

other.

We see potential applications for the proposed methods in

the nondestructive stress analysis of materials and compo-

nents featuring a mosaic block structure consisting of crystals

slightly tilted against each other in representative areas. These

include materials from additive manufacturing, pronounced
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Figure 10
Results of the analysis obtained by the linear regression approach. Note
the smaller evaluated depth range compared with Fig. 8.



rolled textures or epitaxially grown layers. Extremely coarse

grained materials, whose individual grains can be regarded

technically as single crystals, are also conceivable. In this case,

the general least-squares fit approach can be regarded as an

extension of the single grain measurement method (Reimers,

1992, 1995) to enhance it by the feature of depth resolution.

7. Summary

Two data evaluation concepts for depth-resolved X-ray stress

analysis on materials with nearly single crystalline structure

and cubic crystal symmetry have been introduced in a theo-

retical study. Both concepts allow the determination of resi-

dual stress gradients at the near-surface region if only a few

measurement directions in the form of the hhkli poles are

available for the acquisition of lattice-spacing depth profiles.

The proposed methods differ in their applicability and the way

in which the results can be visualized. While the general least-

squares approach is applicable to samples with arbitrary

orientation, the linear regression approach requires samples

with a (001) surface. However, the latter allows the stresses to

be determined directly from the slope of plots of lattice

spacings versus the stress factors or sin2  . For the general

least-squares approach the influence of the uncertainty of the

strain-free lattice parameter a0 is shown to depend signifi-

cantly on the direction-dependent Young modulus assigned to

the hhkli poles involved in the evaluation. Under the

assumption of a biaxial residual stress state both approaches

allow the refinement of a0 as a function of depth.
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