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Two of the microstructural parameters most influential in the properties of

polycrystalline materials are grain size and crystallographic texture. Although

both properties have been extensively studied and there are a wide range of

analysis tools available, they are generally considered independently, without

taking into account the possible correlations between them. However, there are

reasons to assume that grain size and orientation are correlated microstructural

state variables, as they are the result of single microstructural formation

mechanisms occurring during material processing. In this work, the grain size

distribution and orientation distribution functions are combined in a single

multivariate grain size orientation distribution function (GSODF). In addition

to the derivation of the function, several examples of practical applications to

low carbon steels are presented, in which it is shown how the GSODF can be

used in the analysis of 2D and 3D electron backscatter diffraction data, as well as

in the generation of representative volume elements for full-field models and as

input in simulations using mean-field methods.

1. Introduction

When polycrystalline materials are studied, it is usually

observed that local microstructural properties such as crystal-

lographic orientation, grain size and aspect ratio are regularly

distributed along the volume of the material with non-uniform

frequencies. Parametric statistical distributions allow these

frequencies, and therefore, in some way, the complexities of

the microstructure, to be represented in an efficient manner. It

is common in the materials science community to work with

distributions of crystallographic orientations and grain sizes

(Bunge, 1987; Randle & Engler, 2014; Ohser & Mücklich,

2000), since these two properties are some of the most influ-

ential in material behaviour at the macroscopic level.

However, the possible correlation between them is usually

overlooked, even though such a relationship can be expected

in many – if not most – practical cases, since both properties

directly influence, and are influenced by, the diverse metal-

lurgical processes to which the material may have been

subjected, such as heat treatments or mechanical deformation.

When deformed mechanically, grains will respond differently

depending on their size and orientation. During phase trans-

formation, nucleation will occur according to variant selection

rules and the new grains will grow with different velocities

depending on their orientations and orientation relationships

with neighbour grains. If the evolutions of orientations and

grain sizes are intrinsically related, it is expected that their

distributions will be too. The derivation and discussion of a

multivariate grain size and orientation distribution function
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that takes into account this correlation is the main topic of this

article.

1.1. Statistical description of microstructures

As a result of the metallurgical processes that a material has

undergone, certain orientations will be found with higher

probability. It is then said that the material has developed a

crystallographic texture. The main consequence of this texture

is that the material will exhibit different macroscopic prop-

erties along different directions, i.e. anisotropic behaviour.

A distribution of crystallographic orientations can be

represented either in a discrete form, when it consists of a

simple list of orientations with their corresponding volume

fractions, or using a continuous function, known as the

orientation distribution function (ODF). The latter method

offers the advantage of requiring a much lower quantity of

data, which facilitates the numerical analysis of textures,

assuming it is possible to find a function that properly fits the

real distribution.

An efficient representation of a continuous ODF can be

obtained by applying the harmonic series expansion method.

This technique, developed by Bunge (1969, 2013) and later

implemented by Van Houtte (1984, 1995) in the MTM-FHM

software for texture analysis, consists of using a finite series of

generalized harmonic functions such that the probability

density of an orientation g, represented as a triplet of Euler

angles ð’1;�; ’2Þ, is given by

f ðgÞ ¼
PL
l¼0

PMðlÞ
�¼1

PNðlÞ
�¼1

C��
l T

::
��
l ð’1;�; ’2Þ; ð1Þ

where T
::
��
l is a symmetrized generalized harmonic function

and the factors C��
l are called the C coefficients of the ODF,

which can be considered as the set of independent parameters

that define a texture. The expressions for the harmonic func-

tions and the MðlÞ and NðlÞ summation limits for different

symmetries can be found in the book by Bunge (2013). This

series will converge when its order (the value L) approaches

infinity. In practice, the higher-order terms are usually small

enough to be neglected. A value typically used in the analysis

of textures with cubic symmetry is L ¼ 22, since this is the

maximum suitable value when ODFs are extracted from pole

figures obtained using conventional techniques (the suitable

value is highly dependent on the texture maximum; for very

strong texture, a value higher than 22 is required, but for

conventionally processed metal products L ¼ 22 suffices).

In this work, only microstructures of cubic crystal symmetry

will be considered, so this notation will be slightly simplified

and the harmonic series expansion of an ODF will be repre-

sented as

f ðgÞ ¼
PnðLÞ
i¼0

citiðgÞ; ð2Þ

where for each possible combination of values of l, � and � a

value of i corresponds such that ci ¼ C��
l , and tiðgÞ is the

respective symmetrized generalized harmonic function. For

the case of L ¼ 22, there will be a total of 186 C coefficients

(of which the first one, c0, will always be 1). If orthorhombic

sample symmetry is assumed, the number of independent

coefficients for L ¼ 22 will be reduced to 125 (also including

c0 ¼ 1).

Although the harmonic method was initially developed for

the analysis of pole figures using X-ray diffraction techniques

(Van Houtte, 1984), it is also commonly used nowadays for the

study of measurements using the electron backscatter

diffraction (EBSD) technique (Schwartz et al., 2009); there are

a large number of software packages available for the deri-

vation of ODFs from experimental data and their analysis that

employ this method or similar ones (Van Houtte, 1995;

Bachmann et al., 2010; Beausir & Fundenberger, 2017; Adams

et al., 1993). However, the harmonic series expansion method

is not the only one available. There are also ODF calculation

techniques based on the use of kernels different from the

generalized harmonic functions (Matthies et al., 1987; Helming

& Eschner, 1990; Schaeben, 1994). In recent years, methods

based on the use of the hyper-spherical harmonics have also

been developed (Mason & Schuh, 2008). Although these

methods present clear objective advantages over more

conventional techniques from a mathematical point of view,

their use is still rare in the field of texture analysis.

The study of crystallographic texture is often comple-

mented with the study of the misorientations between

different material points or grains. In its most complete form,

the grain boundary network is described by the misorientation

distribution function (MDF), which expresses the frequency of

certain misorientations (Patala et al., 2012). Usually, this

information is further condensed in the form of a disorienta-

tion frequency function, which is limited to the distribution of

disorientation angles, and does not include information about

the rotation axis. Moreover, there have been several attempts

to correlate misorientations and topological data (Beausir et

al., 2009; Adams et al., 1987). In these studies, an MDF is

calculated with respect to different distances, allowing one to

subsume the ODF and MDF and include also indirect infor-

mation about grain sizes and shapes, and their arrangement in

the microstructure.

Another property that directly influences macroscopic

behaviour is grain size. Mechanical properties, for instance,

are influenced by the Hall–Petch effect (Hall, 1951; Petch,

1953), which accounts for the higher mechanical strength of

materials with smaller grains due to the difficulty of the

dislocations overcoming grain boundaries. In general

(although not always), grain sizes are distributed such that the

frequency of ratios with respect to an average size �g can be

approximated by a normal distribution with standard devia-

tion �g on a logarithmic scale. In this case, the grain sizes will

approximately follow a log-normal distribution (Bergmann &

Bill, 2008):

pðdÞ ¼
1

d logð�gÞð2�Þ
1=2

exp
� logðd=�gÞ

2

2 logð�gÞ
2

" #
: ð3Þ

Here, d is the grain size, and the �g and �g values are defined

as the geometric average and geometric standard deviation of
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the grain sizes, respectively, both of them weighted with

respect to volume:

�g ¼ exp

P
i logðdiÞViP

i Vi

� �
;

�g ¼ exp

P
i logðdi=�gÞ

2
ViP

i Vi

" #1=2
8<
:

9=
;;

ð4Þ

with Vi the volume of grain i and di its equivalent diameter

such that Vi ¼ ð4=3Þ�ðdi=2Þ3.

1.2. Combining grain size and orientation distributions in a
single multivariate distribution function

As previously said, it cannot be expected that the distri-

butions of grain size and crystallographic orientation will be

independent. Therefore, they will be better represented using

a joint probability function. From a theoretical point of view,

combining the distributions of grain orientations and sizes in a

single multivariate function should enable a more accurate

representation of the real microstructure. Unlike a traditional

ODF, a combined distribution would allow one to distinguish

the cases in which an orientation with a large volume fraction

is the consequence of a relatively low number of large grains

from those where there are a large number of small grains.

This can make a big difference, for example, when creating a

virtual representation of a microstructure for the simulation of

a deformation process. A combined distribution would also be

better suited to the analysis of experimental data for the study

of processes related to the growth of grains, such as phase

transformation, recrystallization and grain growth pheno-

mena, since it would allow identification of correlations that

cannot be observed using independent distributions. A similar

argument can be made with respect to misorientations. If it is

expected that grain sizes and crystallographic orientations will

be correlated, this correlation should also manifest when the

relationship between grain sizes is taken into account when

calculating the distribution of misorientations.

In this article, a simple method to derive a multivariate

grain size and orientation distribution function, or GSODF, in

the form of a continuous function is presented. The expression

of the joint distribution as a single continuous function allows

the information to be condensed in a simple analytical

expression which facilitates further analysis. In Section 2, a

precise formulation for this function is given. Section 3 shows

several examples of how the GSODF and grain-size-

dependent misorientations can be applied to the analysis and

simulation of low carbon steel microstructures. Finally,

Sections 4 and 5 discuss the obtained results and present some

conclusions.

2. Grain size and orientation distribution function

The GSODF is defined as a multivariate function Fðd; gÞ of

grain size d and crystallographic orientation g. If the ODF

corresponding to the grains of size d is given by the function

fdðgÞ and the grain size distribution of the material is given by

a function pðdÞ, then the GSODF is simply given by the

product of p and fd:

Fðd; gÞ ¼ pðdÞfdðgÞ: ð5Þ

Fðd; gÞ can be interpreted as the joint probability density

function of finding a material point with crystallographic

orientation g that belongs to a grain with equivalent diameter

d. The conventional ODF and grain size frequency function

can be derived from the GSODF as the marginal distributions

of g and d, respectively.

In the following, a method is presented to derive the above

function from experimental data or virtual microstructures.

2.1. Grain definition and grain size distribution

The starting point for the method is a list of grains with the

size and crystallographic orientation of each of them.1 Such a

list can easily be obtained from EBSD experimental data using

conventional analysis techniques. For example, a simple

pipeline could consist of some basic cleaning of the raw data

(removing or replacing low-quality points), the definition of

grain boundaries on the basis of a misorientation limit (usually

between 5 and 10�) and the calculation of grain orientations,

averaging over their points. Grain sizes are obtained from the

number of data points corresponding to each grain and the

step size employed in the measurements. Virtual micro-

structures can be processed in a similar manner.

From this list of grains, it is trivial to extract the grain size

distribution and fit to it a probability function. The most

suitable function will depend on the specific microstructure

under consideration. In many practical cases, a log-normal

distribution is considered a reasonably accurate approxima-

tion. However, the method presented here would also work

for any other grain size distribution function [see, for example,

Vittorietti et al. (2019)], and even for discrete distributions.

2.2. ODF by grain size

The whole list of grains is subdivided into N bins corre-

sponding to different size ranges, such that the grains in bin n

have a size in the range ðDn�1;Dn� (with D0 ¼ 0). The range

limits Dn can be defined on the basis of different strategies, for

instance to get bins of the same width, or such that the number

of grains in each bin is the same. To each bin corresponds an

equivalent diameter �n, given by the geometric average

formula in (4) applied to the grains in the bin (note that this

value will be, in general, different from the middle point

between Dn�1 and Dn).

An ODF analogous to (2) is then calculated for the subset of

grains in each of the bins using the series expansion method

described in Section 1.1. It is assumed that this ODF repre-

sents the distribution of orientations for grains of the corre-

sponding equivalent size, f�n
ðgÞ. Since the harmonic functions

tiðgÞ are always the same, any variation on the obtained ODFs

will be the result of a variation of the C coefficients. Therefore,
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the C coefficients must be dependent on the grain size

[ci ¼ ciðdÞ]:

fd2ð0;D1�
ðgÞ ¼ f�1

ðgÞ ¼
P

i

cið�1ÞtiðgÞ;

fd2ðD1;D2�
ðgÞ ¼ f�2

ðgÞ ¼
P

i

cið�2ÞtiðgÞ;

..

.

fd2ðDN�1;DN �
ðgÞ ¼ f�N

ðgÞ ¼
P

i

cið�NÞtiðgÞ:

ð6Þ

The set of f�n
ðgÞ functions define a discrete set of ODFs for

a fixed number of grain sizes. In order to express the GSODF

as a continuous function, it is necessary to express the

dependence of the C coefficients on grain size as a series of

continuous functions ciðdÞ, such that the GSODF can be

evaluated for any grain size. These functions may be difficult

to find for some or all values of i, depending on the particular

microstructure under study. Nevertheless, if the function is not

trivial to find, it can always be approximated by linear inter-

polation between the coefficients obtained for each size. As an

extreme case, a first-order approximation of the real function

may be obtained by dividing the initial set of grains into only

two bins. In the particular case a linear relationship is

assumed, the grain-size-dependent ODF will be given by

fdðgÞ ¼
P

i

ai þ bi logðdÞ
� �

tiðgÞ: ð7Þ

An ODF linearly dependent on logðdÞ is therefore char-

acterized by a set of intercept coefficients ai and a set of slope

coefficients bi. The function is linearized with respect to logðdÞ,

instead of d, in accordance with the use of geometric averages

to calculate equivalent sizes.

In many problems, it can be convenient to have a straight-

forward way to calculate the ODF for the equivalent grain size

(either of a whole microstructure, or for the small range in

which it is used for interpolation if that is the case). Therefore,

it can be more practical to present the grain-size-dependent

ODF in the alternative form

fdðgÞ ¼
P

i

cið�Þ þ bi log d=�ð Þ
� �

tiðgÞ; ð8Þ

where � is the geometric average of the diameters of all the

grains in the range for which the linear relationship is

considered valid.

2.3. GSODF

Once the C coefficients are expressed as functions of grain

size, all that is needed to obtain the GSODF is to multiply the

size-dependent ODF by the grain size frequency function as

in (5):

Fðd; gÞ ¼ pðdÞ
P

i

ciðdÞtiðgÞ ð9Þ

and for the linear case

Fðd; gÞ ¼ pðdÞ
P

i

ai þ bi logðdÞ
� �

tiðgÞ

¼ pðdÞ
P

i

cið�Þ þ bi log d=�g

� �� �
tiðgÞ: ð10Þ

This expression condenses, using only two sets of C coeffi-

cients, the information contained in the original list of grains,

and additionally allows the calculation of probabilities for

orientation and grain size values not present in the original

data. The set of f�n
ðgÞ ODFs in (6) can be considered as an

intermediate representation between the continuous GSODF

and a discrete list of grains, in which probabilities for different

orientations are described as continuous functions, but only

for a discrete set of grain sizes.

2.4. Disorientation and size ratio joint distribution

For the study of misorientations, the disorientation distri-

bution is calculated with respect to size ratios. If, for each grain

i, the boundaries are identified such that the disorientation �ij

and volume ratio rij ¼ Vi=Vj are known, then the probability

density function will simply be given by the boundary area

between all the grains with a certain size ratio and disor-

ientation angle with respect to the total boundary area:

Fðrij; �ijÞ ¼

P
ij AijP
i Ai

; ð11Þ

where the convention is that the area between two non-

neighbour grains is zero. The same formula can be applied to

2D microstructures, simply replacing volumes by areas and

boundary areas by boundary lengths.

In the next section, the validity of the assumptions made is

tested for a number of particular cases. The goal is to study the

capacities of the GSODF function to describe real micro-

structures and show several examples of its usage.

3. Applications

The method presented in the previous section has been

applied to several cases related to the analysis and modelling

of low carbon strip steel microstructures. Texture development

and grain size in these materials are of the utmost importance

because, although rolled steels always show similar char-

acteristics, subtle details resulting from the processing route

followed can lead to important differences in the final prop-

erties of the material (Kestens & Pirgazi, 2016).

The first example demonstrates how the GSODF can be

obtained from 3D EBSD experimental data for an extra low

carbon (ELC) steel. Additionally, the GSODF is calculated

from a single EBSD layer in order to evaluate the method

when only 2D EBSD data are available. Further examples are

presented corresponding to two different grades of dual phase

(DP) steel, each of them characterized using 3D EBSD, and to

two interstitial free (IF) steels after warm and cold rolling. The

goal of these examples is twofold: first, they allow observation

of the grain size dependence of texture in a wider range of

microstructures; and second, they serve to illustrate several
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uses of the GSODF and related

concepts. It is also shown how an

obtained GSODF can be applied in

modelling problems.

3.1. Materials and methods

An overview of the EBSD experi-

mental data available for each of the

materials is presented in Table 1 and

Fig. 1. The table shows the number of

processed points and the resulting

number of total and valid grains, as well

as the layer spacing in 3D EBSD. In the

figure, the grains considered for the

calculation of the GSODF of each

material are displayed.

3.1.1. Experimental procedure. 3D

EBSD measurements were carried out

using the sequential sectioning tech-

nique via automated mechanical

polishing. In this technique, consecutive

steps of sample preparation and EBSD

scanning are employed to obtain 2D

EBSD sections which are later used for

the reconstruction of the 3D microstructure. A field emission

gun scanning electron microscope (QUANTA450 FEI)

equipped with an EDAX-TSL EBSD system was employed to

scan the 2D sections, and an automated polishing machine was

used to perform the parallel sectioning with uniform rota-

tional speed. Plane parallelism of the individual layers is also

controlled by a series of micro-Vickers indentations around

the measured area. The final 3D microstructure was obtained

by processing the collected scans with the alignment method

of Pirgazi (Pirgazi et al., 2015; Pirgazi, 2019).

Conventional EBSD was performed in the cold-rolled IF

steel using a JEOL JSM 6500F field emission gun scanning

electron microscope with an EDAX/TSL detector. For the

warm-rolled one, an HKL Nordlys II detector was used, also

attached to a JEOL JSM-6500F field emission gun scanning

electron microscope.

3.1.2. Data processing and basic characterization. The

Dream3D software (Groeber & Jackson, 2014) was used to

process the EBSD data and to obtain the list of grains with

crystallographic orientation and volume described in Section

2.1. Grain boundaries are defined with a misorientation of 5�,

with the exception of the rolled IF steel samples for which 2� is

used, in order to capture the high number of subgrains in the

samples. Bad data points are removed and substituted by

accepted neighbouring points (allowing a minimum defect size

of 5 points), and average rotations and volumes are calculated

for each grain. Other additional quantities not used in the
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Figure 1
Experimental EBSD data. Non-valid points (small grains located on the edge) are shown semi-
transparently. The size of the samples is indicated in the figure (all dimensions are in mm). Further
details are given in Table 1.

Table 1
Number of EBSD data points and grains (total and valid) for each of the
materials presented in Fig. 1, and spacing between successive layers (2D
EBSD scans) in 3D EBSD.

Material Z spacing Points Grains Valid

ELC 4.0 mm 9047108 30443 28605
ELC 2D 438755 2679 2679
DP A 1.3 mm 4200420 27438 15446
DP B 1.2 mm 2691220 8527 5635
IF (warm) 259306 1376 1228
IF (cold) 5430642 16543 16247

Figure 2
Grain size distributions and ODFs for the ELC, DP and IF steels. For the
ELC and DP grades, the grain size distribution graph also includes the
fitted log-normal (as a solid line) and the corresponding �g and �g values.
Only the ’2 ¼ 45� section of the ODF is displayed, in a different colour
for each material (’1 grows from 0 on the left to 90� on the right and �
from 0 at the top to 90� at the bottom). Below, the intensity levels of the
ODFs in random units.



GSODF calculation, such as aspect ratios and misorientations,

are also calculated at this stage. The small grains on the edges

of the sample are declared non-valid with the objective of

avoiding the bias introduced by sectioned grains. As a result of

this filtering, the number of valid grains shown in Table 1 is

obtained.

Once the grain list is available, and before proceeding with

the fitting of the GSODF function, a more traditional char-

acterization of the material is performed. Fig. 2 shows the

grain size distributions and the ’ = 45� sections of the ODFs

calculated for each of the cases presented in Fig. 1. For the

ELC and DP materials, a log-normal function was fitted to the

grain size distribution (the corresponding geometric average

and standard deviation values are given in the figure too).

ODFs were calculated using the MTM-FHM software (Van

Houtte, 1995), using a Gaussian spread of 5� and L ¼ 22 with

triclinic sample symmetry (however, for simplicity, only the

values for ’1 < 90� are displayed in the figures). Important

fibre and individual components for cubic crystals are

described in detail by Kestens & Pirgazi (2016).

3.2. GSODF of ELC steel: fitting from 3D and 2D EBSD data

The first example shows in detail how the GSODF can be

fitted from 3D and 2D EBSD data. The ELC steel experiment

described in the previous section is used with this purpose,

taking advantage of the extensive data set available, consisting

of more than 28 000 valid grains.

The total set of grains is divided into bins by size ranges,

such that all bins have an equal number of grains, and the

ODF for each of these bins is calculated using the MTM-FHM

software. A fixed number of grains per bin is chosen instead of

using other binning strategies because this way the ODFs of all

bins will be calculated in similar conditions. If, for instance,

bins of the same width were used, the ODF of each bin would

be calculated with a different number of grains, and the

calculated ODF would appear artificially sharper for those
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Figure 3
GSODF fitting for ELC material using 3D EBSD data. At the top, the grains selected for each of the bins and the corresponding size range (in mm) are
displayed. The graphs in the middle show (from top left going clockwise) the dependence of the C coefficients on grain size (using a different colour for
each coefficient), all the C coefficients (in order) at the top right, the fitted ai and bi coefficients, and the grain size distribution (in logarithmic scale).
Below, the plots of the ODFs predicted from the fitted GSODF for the equivalent sizes corresponding to each of the bins at the top are shown. ODF
levels are the same as in Fig. 2.



bins with a low number of grains. The number of bins, five, is

arbitrarily chosen; the number of bins will be further discussed

in Section 4.

Fig. 3 shows, at the top, how the total set of grains is divided

into bins and the ’2 ¼ 45� section of the ODFs calculated for

each of them. All the obtained textures are quite similar,

although a small increment in sharpness is observed as the

grain size increases. While the intensities of the predominant

gamma fibre components grow, those of the rotated cube

components decrease. Another difference is that the inten-

sities along the gamma fibre are more equally distributed

when the grain size increases, whereas for small grains there is

a distinct peak in the 111h211i component.

The figure also includes a graph of the obtained C coeffi-

cients with respect to the logarithm of the equivalent

diameter. As can be seen in the graph, in this case the beha-

viour of the C coefficients is actually very close to linear for

the entire size range, so formula (9) can simply be replaced

with (10). The values of the intercept and slope coefficients are

then obtained by applying the least-squares method for each

of the coefficients. The fitted lines are shown in the graph too,

as well as the ai and bi coefficients and the R2 values obtained

in each of the fittings. A remarkably good fit is obtained: all

the R2 values are close to 0.999 and the C coefficients of the

measured ODF in Fig. 2 (displayed with filled circles in the

graph) lie on the fitted line.

Finding such a strong linear relationship was not an

expected result. The result is welcomed because it greatly

simplifies the calculations, but it also raises many questions

such as what might be the underlying reason for this linear

dependence; will this behaviour be observed in more materials

with a wide variety of microstructures, or is it just a coin-

cidence? These issues will be further discussed in Section 4.

Finally, as an additional validation, the ODFs for the

equivalent sizes of each of the bins calculated using the

obtained GSODF, shown at the bottom of Fig. 3, can be

compared with the size-dependent ODFs previously calcu-

lated (at the top of the figure). The predicted and measured

textures are almost indistinguishable.

The results obtained from the 2D experiment are shown in

Fig. 4. In this case, the fitting process is performed using only

the 2D EBSD data of the middle layer in the 3D EBSD

experiment. Other layers are not used either in the preli-

minary data processing or for the GSODF fitting. As in the 3D

case, the set of grains is first divided into five bins; then the

corresponding ODFs are calculated and, after fitting of the

GSODF, used to predict the ODF for the equivalent size of

each bin.

The number of grains available in a single 2D scan is much

lower than the total number in the 3D data set (2659 instead of

28 605, so the ODFs of the bins are calculated using

approximately 530 grains). Hence, the calculated ODFs are

not so smooth as when using the 3D data. As a result, the

quality of the fits of the ai and bi coefficients is slightly lower

too, although the obtained R2 values are still higher than 0.99.

Since the GSODF combines the data of all the bins’ ODFs, the

ODFs predicted for the equivalent sizes are closer to the

global ODF calculated from the 2D EBSD shown in Fig. 2

than to the ODFs of the bins. They are also very close to the

ones obtained from 3D EBSD.

3.3. Comparison of two different DP grades

Additionally, the GSODF is used for the analysis of the two

DP steel grades. The goal is to observe the utility of the

GSODF to compare materials which, although different, are

relatively similar, and determine if the GSODF can be used to

differentiate between them. DP steels are chosen as a char-

acteristic example of high-strength steels widely used in the

automotive industry (Galán et al., 2012). The DP-A material is

a DP steel developed in the laboratory for research purposes,

while DP-B is a typical commercial grade. Commonly, there is

between 10 and 15% volume fraction of martensite in these

materials. Identifying the phases is further complicated by the

deformation present in the material and the method used to

recreate the 3D microstructure from 2D measurements. In

order to avoid these complications, the GSODF is calculated

for the combined ferrite and martensite phases, after points

with a very low image quality are removed. As Fig. 2 shows,

the resulting grain size distribution closely resembles a log-

normal, although the DP-B distribution could in fact be a

binormal distribution, resulting from the combination of

ferrite and martensite distributions. The fitting is performed

using 3D EBSD experiments following the same procedure as

described in the previous section, with the only difference
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Figure 4
GSODF fitting for ELC material using a single 2D EBSD scan. Grain-
size-dependent ODF plots for bins of different size ranges are shown at
the top (cf. global ODF plot in Fig. 2), and predicted ODFs at the bottom.
Sizes are given in mm. The middle graph shows the C coefficients and the
fitted lines (results from the 3D EBSD are shown in grey for comparison).
The R2 values from the fitting are also displayed. ODF levels are the same
as in previous figures.



being that eight different size bins are used. Size ranges are

defined again such that all bins have the same number of

grains.

Fig. 5 shows the size-dependent experimental textures and

the ones predicted by the GSODF for the corresponding

equivalent sizes (in order to keep the figures simple, ODF

sections are displayed only for some of the bins), as well as the

R2 values from the fitting. Also, in the present case, the C

coefficients exhibit a strong linear dependence on logðdÞ. The

textures for all sizes in grade A are quite similar, and therefore

this material has a low texture dependence with respect to

grain size. The GSODF can easily reproduce this result.

However, in the DP grade B, which has much larger grains,

there is a clear dependence of the intensity of the alpha and

gamma fibre components on grain size. Although there are

some problems reproducing the high intensities observed at

lower grain sizes, in general the fitted GSODF satisfactorily

reproduces the experimental textures.

Once the GSODF has been calculated, it can be used to

estimate the frequency of any combination of grain size and

crystallographic orientation. In the case of DP and other high-

strength steel products, some of the most interesting texture

components are those in the gamma fibre, due to their

importance for the forming behaviour (Galán-López &

Kestens, 2018). Fig. 6 shows the intensity corresponding to

each of the gamma fibre components represented with respect

to grain size in a 3D graph. It is shown here as an example of

how the GSODF can be used to evaluate and compare sheet

steels. For instance, the graphs clearly show the average size of

the grains in the gamma fibre, and that the distribution of

orientations along the fibre is more uniform in grade A. Both

observations can be directly linked with forming behaviour: a

smaller size will mean more work is necessary to deform the

material, while a more homogeneous gamma fibre will be

translated into lower planar anisotropy. Equally important is

the observation that high gamma fibre intensity corresponds

to lower-than-average grain size, which implies that good deep

drawability and high strength can go hand in hand. This

information can also be applied in the study of the formation

mechanism of gamma fibre grains.

3.4. Influence of rolling conditions on microstructural
development of IF steel

The last materials studied are the two IF steel grades rolled

under different conditions. While one sample was subjected to
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Figure 5
GSODF fitting for DP-A and DP-B steel grades. The figure includes the ’ = 45� sections of the ODFs calculated from several size bins at the top (cf.
global ODF plots in Fig. 2), the R2 values obtained by fitting the ai and bi coefficients in the middle, and plots of the predicted ODFs at the bottom (ODF
levels: see Fig. 2).

Figure 6
Distribution of grains with crystallographic orientation in the gamma
fibre by size for the DP grades A and B. Frequency is given in random
units. (Note, the scale of the ‘Equivalent Diameter’ axis is two times
larger in the top graph.)



a thickness reduction of 77.5% in a traditional cold-rolling

setup, the other one was processed using asymmetric rolling

up to a thickness reduction of 80%, with reheating up to

1173 K between rolling passes. It is well known that warm- and

cold-rolled microstructures exhibit different recrystallization

behaviour (Yoshinaga et al., 1999), so there must be some

differences in the microstructures formed during rolling. The

goal of this example is to discuss the potential of the GSODF

to study this problem and, more generally, for the analysis of

highly deformed microstructures.

3D EBSD data are not used in this case, only common 2D

scans of a relatively small size (see Table 1 and Fig. 1). The

rolled sheets were not subsequently annealed in order to

preserve the subgrains in the deformed microstructure. Grain

boundaries were defined with a misorientation of only 2�

(different from the 5� used in previous sections) to include

these subgrains in the analysis. As a result, the grain size

distribution is highly biased towards the smallest grain sizes

and does not match a log-normal. Therefore, the GSODF will

be based on a discrete grain size distribution.

Fig. 7 shows the obtained results, in the same format as

Fig. 5. The fitting is performed using eight bins with the same

number of grains. It is observed that the fitting quality is lower

than in previous cases, especially for the warm-rolled material,

as could be expected from the low number of grains. Never-

theless, the fitted GSODF can still predict the dependence of

the ODF on grain size with remarkable accuracy.

It is interesting to observe that the variation of the ODFs

with grain size is quite different for the two materials. For the

cold-rolled steel, a strong gamma fibre component is observed

for all grain sizes, but only the largest grains exhibit a

comparatively strong alpha fibre component (these strong

alpha fibre components can also be clearly observed in the

global ODF presented in Fig. 2). The ODFs obtained for the

warm-rolled material for small and large grains are completely

different, with the particularity of a strong peak in the

component 411h148i for the largest grains, which is also one of

the dominant components in the global ODF of Fig. 2.

Although finding the reason for this behaviour is out of the

scope of this article, this result presents a clear example of the

kind of new insight that the GSODF offers for the solution of

this sort of problem.

In order to show another example of how studying the

correlation between crystallographic orientations and grain

size can aid in the investigation of microstructural data, the

analysis is complemented with the study of the grain-size-

dependent distribution of misorientation angles. Although

misorientation data cannot be extracted from a simple list of

grains as used until now, this information can be easily

retrieved from the original EBSD data (or from a virtual

microstructure). Using Dream3D, the neighbours of each

grain are found, as well as the area of the common boundaries

between them. This information is then used to calculate the

misorientation distribution.

The misorientation data available on a grain-by-grain basis

can be processed by bins, analogously to how it is done for the

calculation of the ODFs, in order to calculate the disorienta-

tion and size ratio distribution function discussed in Section

2.4 which considers, for each boundary, not only the disor-

ientation angle between the grains at each side of the

boundary but also their relative sizes. The additional infor-

mation in this multivariate distribution enables a more

complete description of the character of the grain boundaries.

More precisely, it allows determination of the preferential

surroundings of grains, where grains are characterized by a

size class and a crystallographic orientation.

Using this method, the graphs corresponding to different

distributions for the IF steels were calculated, and they are

shown in Fig. 8. The 3D graphs in the figure represent the

probability density function for boundaries between two

grains with a specific volume ratio and misorientation angle,

and also the distribution of volume ratios with respect to grain

size. The difference between the two microstructures is clearly

seen in the graphs: while most interfaces in the cold-rolled

material are low-angle boundaries between large and small

grains, the distribution obtained for warm-rolled material is

much more spread out, with boundaries of different size ratios

and misorientation angles. The figure also includes the
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Figure 7
GSODF fitting for IF warm- and cold-rolled steels. The figure includes the ’ = 45� sections of the ODFs calculated from several size bins at the top (cf.
global ODF plots in Fig. 2), the R2 values obtained by fitting the ai and bi coefficients in the middle, and predicted ODFs at the bottom (ODF levels: see
Fig. 2).



marginal distributions for misorientation angle (the conven-

tional misorientation distribution), volume ratio and grain

size, with respect to boundary area.

The obtained graphs show some non-obvious facts about

the grain boundaries in the material. Normally, only misor-

ientation distributions are used (graph at the top right of the

figure). It is also interesting to observe the large portion of

these boundaries which belong to very small grains, especially

in the cold-rolled material (bottom-right graph). However,

when looking at the distribution of size ratios (middle-right

graph), it is seen that most of the boundaries are between

grains of different size. The 3D graphs in the centre summarize

this result. The conclusion that can be drawn when also taking

misorientations into account (left 3D graphs) is that there are

a very large number of small grains – with a large boundary

surface – surrounding larger grains, while the boundary area

between grains of the same size is very low. This observation

suggests that, during cold-rolling, these smaller grains form

from the fragmentation of larger grains, contradicting the

commonly accepted view in several fragmentation models

where it is assumed that grains are divided into units of similar

size. It is also remarkable that such a conclusion cannot be

easily derived from the simple observation of EBSD maps (cf.

Fig. 1), where the relative area of small grain boundaries with

respect to that of large grains is easily overlooked.

3.5. Representative volume element generation

The increasing usage of spatially resolved models that

require full topological information, both in phase transfor-

mation simulations using phase-field methods or cellular

automaton models and in mechanical problems using crystal

plasticity finite element simulation or crystal plasticity fast

Fourier transform, makes it necessary to generate accurate

representative volume elements (RVEs) (Groeber & Jackson,

2014; Bargmann et al., 2018; Kraska et al., 2009; Roters et al.,

2019). A compromise must be made between the computa-

tional resources available and the size of this RVE, and

therefore its capacity to represent the properties of the

material with statistical validity. The GSODF allows one to

produce more representative virtual microstructures by

correlating orientation and size properties in the generated

RVEs.

As an example, the ELC steel microstructure analysed in

Section 3.2 is reproduced using RVEs generated with

Dream3D. Three synthetic microstructures of different sizes

are created with the log-normal grain size frequency function

shown in Fig. 2. Both the number of cells and the size of these

cells change from one RVE to another. The dimensions and

resolution, as well as the total number of grains in the

generated microstructure, are displayed in Table 2. The goal of

using different sizes and resolutions is to offer an overview of

the capacities of the GSODF when employed for the

generation of RVEs to be used in a wide range of full-field

simulations, which may have different requirements.

Crystallographic orientations are assigned to the grains, first

dividing them into five bins of different size ranges. As is the

case for the fitting of the GSODF from experimental data, size

ranges are chosen so that all bins have the same number of
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Figure 8
Distribution of misorientation angles and size ratios at boundaries. For each material is shown: area frequency of boundaries between grains with certain
misorientation angle and volume ratio in the left 3D graph, area frequency of boundaries between grains with certain volume ratio with respect to size in
the right 3D graph, and aggregate distributions with respect to boundary area of misorientation angles, volume ratio and size, on the right.



grains. Then the ODFs for the equivalent size of each bin are

calculated from the GSODF previously found in Section 3.2,

and a discrete texture is generated using the MTM-FHM

software. Finally, the orientations in this discrete texture are

randomly assigned to the grains in the corresponding bin.

Fig. 9 shows the three RVEs generated and the corre-

sponding ODFs calculated for each size bin, as well as the

global ODF obtained when aggregating all the grains. The

smallest RVE does a poor job reproducing the experimental

texture. This result could be expected, since the number of

grains is very small: the microstructure consists of less than 250

grains, which means that there will be less than 50 grains in

each of the bins, a very low number for the calculation of a

smooth ODF. On the other hand, the two largest RVEs

successfully represent the material texture and its dependence

on grain size.

The figure also includes plots of the ODFs corresponding to

RVEs with the same topology to which orientations were

assigned, by simple random sampling, from the ODF in Fig. 2.

Not only does the GSODF allow us to express correlations

that are neglected when using a conventional ODF, but the use

of the correlation with grain size also allows us to better

reproduce the global ODF without requiring complex orien-

tation assignment schemes.

3.6. Mean-field modelling

As opposed to full-field models, which employ virtual

microstructures in the form of RVEs, mean-field models allow

the solution of macroscopic problems without finding a

detailed spatial solution. Instead, these models rely on

homogenization methods to find an ‘average’ solution based

on a non-topological (i.e. statistical) description of the

microstructure. Although the output produced by mean-field

models is much more limited, they are extremely useful for the

calculation of macroscopic behaviour, since they can usually

take into account a much larger number of grains with a

fraction of the computing time and pre-processing work

needed to perform full-field simulations. Mean-field models

can also benefit from the use of the GSODF.

The viscoplastic self-consistent (VPSC) model of Leben-

sohn & Tomé (1993) is used in this section to demonstrate how

the GSODF can be applied to simulations using a homo-

genization model. The VPSC model predicts the mechanical

behaviour of multiphase polycrystalline materials under the

assumption that grains behave as ellipsoidal inclusions in an

homogeneous matrix with the aggregate properties of the

polycrystal. The microstructural data considered in the model

are the volumetric fraction of each phase, the average grain

shape (either by phase or by crystal orientation) and a discrete

crystallographic texture for each phase. Additionally, the

model uses a number of input parameters related to the

properties of each phase, such as crystal structure, slip systems

and hardening parameters. Further details about the model

are given by Lebensohn & Tomé (1993), Galan Lopez (2014)

and the VPSC manual (Tomé & Lebensohn, 2009).

The VPSC90 implementation (Galán et al., 2014) is used to

perform simulations of a deformation process under uniaxial

tension conditions. Microstructural input data are taken from

the ELC 3D EBSD experiment described in Section 3.2. The

capability of the model to work with multiphase materials is

exploited here to simulate a microstructure with different

grain sizes. A total of eight different phases, corresponding to

eight grain size classes, are considered. The volume fraction of

each grain size class is taken from the frequency given by the
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Figure 9
The three RVEs generated with the sizes given in Table 2. The virtual microstructures produced by Dream3D are shown on the left (colours indicate
grain size: from blue for small to red for large). On the right, ’2 sections of the ODFs calculated after assigning orientations by grain size, and the global
ODFs of the whole RVE generated using, respectively, the GSODF and the conventional ODF (levels: see Fig. 2). See also Table 2.

Table 2
Number of points, spatial resolution (in mm) and number of grains in the
three RVEs generated with Dream3D.

Geometry Resolution Grains

64� 64� 64 1.00 246
196� 196� 196 0.75 2984
512� 512� 512 0.50 15459



grain size distribution (Fig. 2). For each size, an ODF is

calculated from the GSODF previously fitted, and the MTM-

FHM software is used to extract a discrete texture of 500

grains (the model will consider each size class proportionally

to the given fraction, so the number of grains can be freely

chosen). The properties of all phases are defined alike, except

that hardening parameters are modified according to the Hall–

Petch relationship and different grain shapes are defined

depending on size. These shapes are extracted from the

Dream3D software, which allows post-processing of the 3D

EBSD data set by attributing an equivalent ellipsoid to each

grain and then considering the geometric average for the

grains in each size bin.

It is considered that deformation will be accommodated by

slip on f110g and f112g planes along h111i directions. The

hardening behaviour for all slip systems is defined according

to a modified Voce law (Tomé et al., 1984):

�c ¼ �0 þ ð�1 þ �1�Þ 1� exp �� �0=�1

�� ��� �� �
; ð12Þ

where � is the shear strain accumulated in the family of slip

planes with critical shear stress �c. The �0, �1, �0 and �1 para-

meters are estimated from typical values for low carbon steel

(Smith et al., 2006), such that the law responds to the Hall–

Petch relationship:

�0 ¼ 70 MPaþ
0:74 MPa m1=2

d1=2
; �1 ¼

�0

2
;

�0 ¼ 500 MPa; �1 ¼ 100 MPa:

ð13Þ

For comparison, an additional simulation is performed in

which the material is modelled using a single phase. The

texture for this phase is calculated using the global ODF

(Fig. 2), hardening parameters are calculated by substituting

the average grain size in (13), and the shape is defined as the

(geometric) average over all the grains.

Fig. 10 shows several examples of the output that is

produced by the model. In the displayed tensile diagrams

(with points and solid line), results from the two simulations

are compared. A small difference is observed in the obtained

curves. The graph also includes the evolution of the equivalent

ellipsoid axes. The simulation with multiple size classes allows

us to compare how the shape of the grains evolves, discrimi-

nating by sizes without needing to consider individual grain

shapes (which would considerably increase computation

time). This information cannot be obtained from the single-

phase model. As the figure shows, the overall grain shape gets

totally skewed towards the shape of the larger grains when a

single phase is considered, and the information relative to the

shape of smaller grains is completely lost. Below this graph,

several ODF plots that show the difference in texture evolu-

tion for the largest and smallest grains are displayed. These

differences are small, but noticeable, especially in the intensity

of the rotated cube component. When a single phase is used,

the ODF also resembles that of the largest grains, and the

importance of these components would go unnoticed. Finally,

the figure shows a 3D graph in which the relative activity in the

slip systems on the f110g and f112g planes is represented with

respect to uniaxial strain and grain size. The graph shows a

large variation of slip system activity with respect to grain size

from the beginning of the simulation, and a different evolution

as deformation increases. Therefore, the combination of a

Hall–Petch hardening law with grain-size-dependent grain

shapes and textures allows for the simulation of complex

behaviour that cannot be captured in more conventional

simulations.

4. Discussion

In this work, a new GSODF that combines the traditional

grain size and orientation distributions in a single multivariate

distribution function has been presented. Using a simple

method, this new function can be derived from conventional

experimental data. The examples in the previous section show

that the GSODF has great potential in the analysis of

experimental data and can be easily used to enhance computer

simulations. Nevertheless, since the GSODF is a new concept,
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Figure 10
Results of VPSC simulation. Top: tensile curve and evolution of
equivalent ellipsoid axes with respect to strain. Middle: simulated texture
evolution for the smallest and largest grains. Bottom: evolution of the
ratio of slip system activity in the f110g and f112g planes during
deformation represented with respect to grain size.



it also raises several questions that deserve to be discussed in

more detail.

4.1. GSODF expression and derivation method

A general expression for the GSODF has been presented in

(5). Formula (9) is the specific version of (5) in which ODFs

are represented using the generalized harmonic series

expansion method. More specific distributions are given for

the case in which the grain-size-dependent C coefficients

exhibit a linear behaviour in (10). The GSODF may be

calculated using a similar method, in principle, with any other

texture representation. Other kernel functions instead of

generalized harmonics could be used for the description of

ODFs (several alternatives are listed in Section 1). As an

extreme case, discrete textures may be used.2 One particularly

interesting solution could be obtained in combination with

orientation representation methods based on the use of

quaternions as in the work of Mason & Schuh (2008). Since

unitary quaternions are used to represent orientations in this

formalism, additional grain size or size ratio information could

be represented using non-unitary quaternions. This may

facilitate the analysis and visualization of the function. Note

that, since the coefficients of the generalized spherical

harmonic coefficients (or C coefficients) and the coefficients of

the hyperspherical harmonics series are linearly related

(Mason & Schuh, 2009), any linear behaviour observed in the

C coefficients will also be found when using hyperspherical

harmonics.

One of the fundamental steps of the method presented here

for the derivation of the GSODF is the division of the grain list

into a number of size bins. In order to gain a better under-

standing of how the choice of this number influences the

obtained results, additional fits are performed using different

numbers of bins for the ELC, DP-B and IF warm-rolled

materials. Fig. 11 shows the first six C coefficients of the ODFs

calculated using two, four, eight, 16, 32 and 64 size bins. The

dependence of the C coefficients on grain size clearly follows a

linear relationship. Some divergence is observed in the results

for the IF warm-rolled steel (see the c5 coefficient and the R2

values in the bottom graph). However, the number of total

grains available in this case was small (only 1127), so the

number of grains used to calculate the ODFs becomes very

small (less than 150 grains when eight bins are used, only 17

grains with 64 bins) and the calculated ODFs become very

inaccurate.

As mentioned in Section 3.2, we did not expect to find such

a simple linear expression for the C coefficients. This rela-

tionship has proven to also hold valid for the two DP and the

two IF steel grades. Fig. 11 further reinforces this result:

linearity is conserved even when the number of bins is

increased. For instance, for the ELC steel, the combined R2

value of all the fits, each of them using a total of 64 points

(bins), is almost 0.98, and it is more than 0.99 when 32 points

are used. It remains to be seen if similar relationships are

observed with other steel grades, metals and alloys.

When it is known that the relationship is linear (or it is

assumed to be), the fitting can be trivially performed by

dividing the grains into only two size ranges. Moreover, it is a

convenient method to represent grain-size-dependent ODFs

in a graphical manner. The size-dependent ODF can be

defined by two sets of C coefficients and therefore can be

represented as two different ODFs: either ai and bi in equation

(7) (two top rows in Fig. 12) or cið�Þ and bi in equation (8)

(two bottom rows). The combination of cið�Þ and bi seems

particularly useful: cið�Þ is the global ODF of the material,

while bi gives the variation of the ODF as the size ratios

increase. Together with the grain size distribution, these two

‘ODFs’ constitute a concise visual representation of a linear

GSODF.

4.2. Applications

In Section 3, a number of different possible applications of

the GSODF and related concepts were shown. The examples
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Figure 11
Linear fitting of C coefficients c1 to c6 with respect to logðdÞ using two,
four, eight, 16, 32 and 64 size bins for the ELC 3D, DP-B and IF warm-
rolled microstructures. Bottom: combined R2 value of all the fittings with
respect to number of bins.

2 The combination of discrete and continuous distributions for grain size and
crystallographic orientation results in four different possibilities: a continuous
function, two ‘semi-discrete’ distributions (discrete in either grain sizes or
orientations) and a fully discrete distribution (which would in effect be the list
of grains described in Section 3.1.2).



have been presented in order to offer an overview of the

potential of the method and are not exhaustive. It is not

difficult to envisage other problems in which it would be useful

to study the correlation between grain size and crystal-

lographic orientation. Being able to correlate texture and

grain size may be useful, for example, in the study of phase

transformation and recrystallization processes, where the

texture for small grains could be associated with the nuclea-

tion texture and the evolution of grain-size-dependent

textures with the grain growth process. Similarly, in the study

of deformed microstructures, correlated orientation data

could be used to better understand complex phenomena such

as grain fragmentation or the formation of subgrains in

substantial deformation processes. Further work is still needed

to find the best way in which the concept of a GSODF can be

applied to the study of multiphase materials. On the one hand,

if it is possible to easily separate the existing phases, grain-size-

dependent textures and misorientations could be calculated

for each of these phases. On the other hand, if the distinction is

challenging, the GSODF may aid in the partition of the

material in different phases, taking into account possible

orientation relationships between parent and product phases.

It has also been shown in Sections 3.5 and 3.6 how the

GSODF can be applied in full-field and mean-field simula-

tions. How the use of the GSODF for the generation of RVEs

affects the results of full-field simulations still needs to be fully

studied. Although it is expected that a more reliable repre-

sentation of the microstructure will produce improved results,

it is difficult to evaluate a priori what difference it will make.

Nevertheless, even if the macroscopic mechanical response is

not affected, the fact of having added microstructural infor-

mation to the problem will allow additional microstructural

output (e.g. distribution of stresses and strains over different

size classes) to be obtained. Similar conclusions can be drawn

from the example presented in Section 3.6. The technique

presented requires further investigation, but shows potential.

A similar methodology could be used with any mean-field

model (also for phase transformation or recrystallization)

capable of handling multiple phases in which it is meaningful

to differentiate between grain size

classes. This approach could also be

applied in recrystallization and phase

transformation models, for instance

with the purpose of differentiating

between nucleation and growth

phenomena.

Both in full-field and in mean-field

simulations, the only difference with

conventional methods is that orienta-

tions are assigned as a function of grain

size during the pre-processing step, but

the total number of grains does not

need to be increased, and the models

themselves do not need to be modified

in any way. Therefore, simulations can

straightforwardly take advantage of the

use of the GSODF to produce a more

detailed (and, supposedly, more precise) output without

additional costs in computation time.

4.3. Further possibilities

In this work, the correlation between grain size and crys-

tallographic orientation has proven to be a promising tech-

nique for the study of microstructures. There is no reason to

think that a similar study could not be successfully performed

using a different set of microstructural properties.

The technique proposed here has been extended to the

study of the misorientation angle distribution in Section 3.4

and to grain shapes for the VPSC simulations in Section 3.6. A

similar method may be used to find a grain-size-dependent

misorientation distribution function, or to correlate a different

property with orientations, such as dislocation density or

intragranular misorientation. Going even further, more than

two properties could be combined in a single function. A

multivariate distribution function depending on n micro-

structural state variables of relevance to a particular problem

(e.g. grain size, crystal orientation, crystal misorientation,

dislocation density etc.) may provide a very concise descrip-

tion of a microstructure with much higher information density

than a precise topological description.

5. Conclusions

A simple method for the derivation of a multivariate micro-

structural distribution function including two state variables,

crystal size and orientation, has been presented. The proposed

distribution is expressed in the form of a single continuous

function, allowing higher information density than in similar

discrete representations and simplifying its analysis. Through

several examples, it has been shown that studying the corre-

lation between grain size and crystallographic orientation has

the potential to aid in the analysis and modelling of poly-

crystalline microstructures.

For all the studied low carbon steels, a simple GSODF has

been found, based on the observed linear relationship
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Figure 12
Representation of ai, bi and cið�Þ in (10) as ODFs for each of the studied cases. In the bi plots,
negative values are displayed in grey tones. The cið�Þ plots should correspond to the global textures
in Fig. 2 (levels: see Fig. 2).



between the C coefficients of the harmonic series expansion of

grain-size-dependent ODFs and the logarithm of the grain

size. It is unknown, at this point, if a similar relationship will be

found for other materials and microstructures.

It is necessary to perform further research on the correla-

tion between grain size and orientation in other materials and

after different processing routes. Moreover, the techniques

presented in this work still need to be fully explored and

evaluated in full studies with specific goals. Several possibi-

lities to build on the concepts presented here have also been

outlined and require more investigation. Hopefully, these

concepts will form a good basis for future work.
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