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The information content of a crystal structure as conceived by information

theory has recently proved an intriguing approach to calculate the complexity of

a crystal structure within a consistent concept. Given the relatively young nature

of the field, theory development is still at the core of ongoing research efforts.

This work provides an update to the current theory, enabling the complexity

analysis of crystal structures with partial occupancies as frequently found in

disordered systems. To encourage wider application and further theory

development, the updated formulas are incorporated into crystIT (crystal

structure and information theory), an open-source Python-based program that

allows for calculating various complexity measures of crystal structures based on

a standardized *.cif file.

1. Introduction

The definition of complexity is a challenging and fascinating

subject, touching different scientific disciplines such as

economics, informatics, biology, mathematics and chemistry.

Instead of defining complexity per se, it is in practice easier to

ask ‘Which system is more complex?’, nicely showing that the

challenge of defining complexity is closely related to the

identification of an appropriate scale to measure complexity.

Depending on the scientific area and the type of system,

different scales have been proposed, such as dimension,

number of unique components or simply human observation,

amongst many others. All of these scales come with their own

hurdles, such as lack of measurement techniques, definition of

unique components and subjectivity, leaving us with the

realization that every measuring system for complexity is only

useful for a certain observer, in a defined context, for a defined

purpose. In this article, the Shannon entropy is used as a

measuring system as defined by information theory (Shannon,

1948), providing us with a framework to differentiate between

the complexity of crystal structures as initially introduced by

Krivovichev (2014).

Over the years, the term ‘complex’ has been used various

times in the literature for describing crystal structures

(Pauling, 1929; Valenzano et al., 2011; Loa et al., 2012), and

indeed, parameters such as crystal class, number of different

polyhedrons, space group, and number of atoms in the

asymmetric unit or in the reduced unit cell are temptingly

simple measures. Arguably, a combination of these indices is

required to give a full grasp of the depth of crystal structure

complexity, but it raises a follow-up question of appropriate

weighting factors when one is interested in a quantitative

measure. In turn, and not surprisingly, Burdett et al. (1994)

came to the conclusion that ‘Complexity is largely a qualita-

tive, frequently intuitive, notion.’ Nevertheless, there was and
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still is interest in finding (and arguably a need to find) a

quantitative concept to evaluate crystal structure complexity.

For instance, Baur et al. (1983) defined topological and crys-

tallographic parsimony indices of crystal structures, and more

recently, the number of atoms per reduced unit cell was used

as a measure to classify various metallic alloys (Dshemuchadse

& Steurer, 2015). Such practical concepts seem suitable for

assessing structure complexity within certain material

subclasses, but exhibit drawbacks related to a limited discri-

minating character between simple crystal structures and

when one is interested in comparable measures across

different material classes. Other approaches are more

abstract, such as the algorithmic complexity descriptions based

on work by Chaitin (1975) that was adapted for crystal-

lography by Mackay (2001) and Estevez-Rams & González-

Férez (2009). For a more detailed overview of attempts to

quantify the complexity of crystal structures, we refer the

reader to the review by Krivovichev (2014).

Krivovichev (2014) applied the concept of Shannon entropy

to crystalline materials, evaluating the information content of

a crystal structure. Subsequently, he proposed a concise

concept that has the potential to capture the full multifaceted

challenges of defining the complexity of a crystal structure on

the basis of the information content. Recently, Hornfeck

(2020) has suggested a few improvements of the concept,

emphasizing the importance of theory development and the

current state of research in this relatively young area.

Importantly, comparisons between Shannon entropy, crystal

structure complexity and configurational entropy can be

drawn, opening intriguing opportunities for the assessment of

the configurational entropy of crystal structures and its change

during phase transitions (Krivovichev, 2016). In the long term,

the concept shows great promise to contribute to a general

understanding of crystalline matter and properties, where the

quantification of the configurational entropy of a crystal

structure shows the greatest potential to close the gap to

applied inorganic chemistry.

In this work we follow on from the work of Krivovichev,

proposing an updated formula that allows for evaluating the

information content, and in turn the complexity, of crystal

structures with partially occupied sites and defects. The

proposed formula and recent improvements by Hornfeck are

incorporated into crystIT (crystal structure and information

theory), an open source Python-based program. crystIT

facilitates the application of the approach by non-specialists,

the screening of crystallographic databases and method

development in general. An intuitive understanding between

crystal structure, information content and complexity is then

fostered by applying crystIT to selected research examples.

2. Theory

Shannon (1948) introduced a concept to determine the

information content of a message, known today as Shannon

entropy. Motivated by exploring limits in signal processing,

data compression and cryptography, the concept has devel-

oped into one of the central pillars in information theory. In

the following sections, the framework of Shannon’s entropy is

introduced, its application to crystal structures as given by

Krivovichev is described, and our and Hornfeck’s improve-

ments to the concept are presented.

2.1. Idea and basics of information theory

Following Shannon, the information I contained in each

symbol c of a message occurring with a probability of pc is

defined by

I
bit

symbol

� �
¼ �

X
c

pc log2 pc: ð1Þ

Looking at a standard example, the message ‘Hello’ comprises

four distinct letters, occurring with probabilities of pH,e,o = 1/5

and pl = 2/5. The message’s Shannon information is therefore

I = 1.9 bit symbol�1 and its total information content is

calculated by scaling the symbol-wise information content by

the number of symbols, i.e. Itotal = I � 5.

2.2. Information theory and crystal structures

By drawing an analogy between a message consisting of

symbols c and the reduced unit cell of a crystal structure

composed of crystallographic orbits k, Krivovichev applied

Shannon’s formula to calculate the information content as

provided by crystallographic data. Following this train of

thought, the probabilities pc are given by the quotient of the

crystallographic orbits’ multiplicities mk and the number of

atoms in the reduced unit cell v,

IG

bit

atom

� �
¼ �

X
k

mk

v
log2

mk

v
: ð2Þ

Subsequently, Krivovichev established a correlation between

the information content of a crystal structure and its perceived

complexity, qualifying IG as a quantitative and easily concei-

vable measure of crystal structure complexity derived from

information theory.

Inspecting equation (2) and looking for practical limita-

tions, the question arises as to by which means partial occu-

pancies can be considered. In its current form equation (2) is

only suitable for calculating IG of crystal structures in which

each crystallographic orbit is fully occupied by one atomic

species. In other words, the information content as calculated

by equation (2) represents the information provided by the

decoration of the space group with atomic positions, whereas

more information is contained in the specific atoms that fill

these abstract positions. Materials that adopt partially occu-

pied positions are common, such as solid solutions with

disordered sites as can be found in alloys and various minerals,

or for high-temperature disordered phases. The specifics of

these partial occupancies become important when looking at

the relation between the Shannon entropy and thermo-

dynamic entropy, potentially providing insight into the phase-

transition thermodynamics.

2.2.1. Adaptation of the information theory approach to
partially occupied sites. How does one include partial occu-

pancies in formula (2)? Coming back to the linguistic example
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introduced in Section 2.1, a repeated string of hellos is

considered, in which some words are randomly replaced by

their German translation: ‘HelloHalloHelloHelloHallo’.

According to equation (1) and based on the letters’ occur-

rence probabilities (pH,o = 1/5, pl = 2/5, pa = 2/25, pe = 3/25), the

information content per character has increased slightly: I =

2.1 bit symbol�1.

The smallest repeating unit in this string is equal in size to

the string itself, and in turn the string is, strictly speaking,

equal in length to its unit cell, which therefore consists of five

times as many positions as ‘Hello’. Now, when assuming that

this string is repeated with an average probability of ‘Hello’

and ‘Hallo’ equal to 3:2 but with a non-periodic distribution,

the scenario is better described by

H
a

e
l l o

� �
5

As a bulk analysis technique to obtain crystallographic

information, diffraction relies on periodicity, returning

averages of positions of disordered atoms (analogous to

letters). In other words, we attempt to analyse a five-letter unit

cell of the repeating pattern ‘H llo’ that is disordered at the

second position with probabilities (or occupancies) pa = 2/25

and pe = 3/25. Application of equation (2) to this disordered

unit cell would erroneously result in the same information

content as ‘Hello’, because the calculation is not based on the

types of atoms (or characters) or occupancies but only on their

positions. Hence, neither solely the atom types (the same

element may be involved in entirely different coordination

environments) nor the isolated crystallographic orbits (these

can be filled partially or by different species) are sufficient for

a crystal structure description. Note that this shows striking

parallels to the topological index defined by Baur et al. (1983)

but augmented by the implementation of information theory

and a finer consideration of topology in the form of crystal-

lographic orbits.

Therefore, we propose equation (3), wherein the sum is

formed over distinguishable species t rather than crystal-

lographic orbits k. A species t is defined by a unique combi-

nation of chemical element or vacancy and crystallographic

orbit. The probabilities p still reflect the chance of encoun-

tering a species t when observing a randomly chosen position

in the reduced unit cell. However, to consider fractional

occupancies, p is calculated by the product of the occupied

crystallographic orbit’s multiplicity m with the respective

species’ fractional occupancy value occ, divided by the total

number of positions in the reduced unit cell, P:

IG

bit

position

� �
¼ �

X
t

mt occt

P
log2

mt occt

P
: ð3Þ

By analogy with the Kröger–Vink notation (Kröger & Vink,

1956), fractional vacancies are also considered as individual

species t in equation (3), forming distinct vacancy species for

every crystallographic orbit that is only partially occupied by

atoms. We will expand on this idea in Section 2.5, but for now

we want to highlight that, by including vacancies, the sum over

all probabilities is one, as all crystallographic orbits are

formally fully occupied and P =
P

t mt occt =
P

k mk. For fully

occupied orbits, the number of positions per reduced unit cell

P is equal to the number of atoms v, transforming formula (3)

to Krivovichev’s equation [equation (2)]. Notably, aliovalently

substituted systems are also included in this approach, since

there is no difference in structural information content

whether the residual space (1 � occ) of a crystallographic

orbit is empty or occupied by a different chemical element.

The information content of the whole reduced unit cell is

then calculated by multiplication of IG by the total number of

positions in the reduced unit cell (red. u.c.),

IG;total

bit

red: u:c:

� �
¼ IG P: ð4Þ

For clarity, we consider the lead zirconate titanate ceramic

PbZr0.35Ti0.65O3 as an example. The information relevant to

this calculation is provided in Table 1 (Mir et al., 2007). A total

of P = 10 positions are occupied, distributed among three

crystallographic orbits, since titanium and zirconium ions

occupy a shared 2a Wyckoff position. IG is calculated by

plugging the given probabilities p into equation (3), resulting

in IG = 1.56 bit position�1. Following equation (4), IG,total =

15.6 bit red. u.c.�1 is obtained.

Note that atoms of the same element can be crystal-

lographically nonequivalent. For instance, in yttrium barium

copper oxide, YBa2Cu3O7�x, there are four crystal-

lographically distinguishable oxygen species (Williams et al.,

1988) and in turn their summands in equation (3) are calcu-

lated separately. Additionally, the oxygen position at Wyckoff

position 1e is only partially occupied (occ = 1 � x), so that

another term is added for the partial vacancy (occ = x). For x =

9% the information content consequently amounts to IG =

2.96 bit position�1.

2.3. Extension by Hornfeck

Recently, Hornfeck (2020) pointed out that there are

various unrelated structures that share the same IG as defined

by Krivovichev. Yet many of these crystal structures are

characterized by different numbers of spatial degrees of

freedom of their crystallographic orbits, or ‘site arities’, which

are denoted A in the context of this paper (ak for a single

crystallographic orbit’s arity, A =
P

k ak). In other words,

different materials were observed to have the same informa-

tion content, although the occupied Wyckoff positions and so

the occupied crystallographic orbits had different constraints
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Table 1
Crystallographic information for PbZr0.35Ti0.65O3 at 300 K, space group
R3c.

Species
number t Element

Wyckoff
position

Occupancy
(occ) p = mt occt / P

1 Pb 2a 1.00 0.20
2 Ti 2a 0.65 0.13
3 Zr 2a 0.35 0.07
4 O 6b 1.00 0.60



in their x, y, z coordinates. Therefore, in addition to IG,

Hornfeck proposed the arity-based coordinational complexity,

Icoor , in which the sum is formed over individual crystal-

lographic orbits k,

Icoor

bit

arity

� �
¼ �

X
k

ak

A
log2

ak

A
: ð5Þ

This measure of information essentially contains the infor-

mation on coordinates that must be defined for the complete

description of a crystallographic orbit when its Wyckoff

position is known. In order to maintain consistency, Hornfeck

subsequently renamed Krivovichev’s information content IG

as ‘combinatorial’ complexity, Icomb :¼ IG, and defined

configurational complexity Iconf as the strong additive sum of

coordinational and combinatorial complexities [see Hornfeck

(2020) for the mathematical background]. Using our updated

measure for combinatorial complexity (i.e. Icomb) and

combining it with Icoor , we obtain

Iconf

bit

position and arity

� �
¼ �

X
t

occt mt

Pþ A
log2

occt mt

Pþ A

�
X

k

ak

Pþ A
log2

ak

Pþ A
: ð6Þ

The use of arities as additional information content leads to a

more discriminating character of the complexity measure,

following a chemist’s intuition. We will pick up on this point

when discussing redundancies in Section 2.6. For now we

highlight that, in the rest of this work, we will continue to use

Krivovichev’s measure IG. To avoid any ambiguities, both

measures are implemented in crystIT.

2.4. Configurational entropy

Many different areas in chemistry are united in the quest to

understand macroscopic behaviour as a function of micro-

scopic interactions, that is, the identification of structure–

composition–property relations. When one is interested in

fundamental principles that underlie the formation of (crys-

talline) condensed matter (Harper et al., 2019), or tempera-

ture- and pressure-dependent properties (Frenkel, 1999), the

entropy S is an important parameter that ties the macroscopic

to the microscopic world.

Statistically, S can be accessed by the Boltzmann formula,

S ¼ kB ln �; ð7Þ

translating the challenge to � which ‘counts the ways of

finding the internal coordinates of a system for thermo-

dynamically equivalent macroscopic states’ (Fultz, 2010). kB is

the Boltzmann constant. A typical simplification to approach

�, and in turn S, in crystalline matter is to divide S into several

contributions such as S = Sconf + Svib, with Sconf the config-

urational entropy and Svib the vibrational entropy.1 This

simplification is based on the idea that Sconf is related to the

spatial arrangement of atoms which is temperature indepen-

dent, whilst Svib is related to a temperature-dependent

contribution describing the movement of atoms which is itself

tied to the atomic interactions. Here we only consider the

spatial arrangement of atoms and hence the concept of

Shannon entropy relates to Sconf. In other words, it seems that

information theory can provide us with a concept to calculate

Sconf for crystal structures.

Krivovichev (2016) followed up on this idea, showing that

starting from equation (7) a formula can be obtained in which

the information content as provided by crystallographic data

contributes negatively to the configurational entropy of the

structure:

Scfg ¼ Smax
cfg � IG kB N ln 2; ð8Þ

with Scfg the configurational entropy, Smax
cfg the maximum

configurational entropy obtained when all atoms (positions)

are symmetrically equivalent, IG as obtained from equation

(2), N the number of atoms in the crystal and ln(2) a

conversion factor between binary and natural logarithms, i.e.

bit and nat. This formula follows the chemist’s intuition that

information and entropy are reciprocally related. However,

there are some discrepancies in the values that are derived by

equation (8), making this area an exciting field of active

research. One important aspect is related to the scaling of Scfg

to formula units rather than atomic sites. Likewise, the

entropy of mixing and its increase along a substitution series

should be considered, suggesting that Scfg itself consists of

several contributions.

Here, we only point out that the calculation of IG for the

substitution series Cu1�xAux, with Smax
cfg = 0 for the pure

elements Cu and Au, is in agreement with the entropy of

mixing for a binary alloy after multiplication of IG by R ln(2)

[Fig. 1(a)]. This result motivates further work in this direction

and confirms how equation (3) attributes partially occupied

sites. For development purposes, the calculation of Scfg is

implemented in crystIT (see Appendix B for details).
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Figure 1
Calculated Shannon entropies IG of two examples which were calculated
using equation (3) as implemented in crystIT. (a) The Shannon entropy of
the binary solid solution Cu1�xAux. The green line indicates the expected
change of Scfg as calculated by Boltzmann for a 50:50 alloy. The blue curve
can be obtained when multiplying IG by R ln(2). Notably, the same results
are obtained when applying the formula for the entropy of mixing
(Gibbs), i.e. Smix = �kB

P
i pi ln pi with pi = xi. (b) The Shannon entropy

of CsPbI3 shows a jump when going from the ordered to the disordered
phase, highlighted by the blue line. The inset shows the perovskite
structure of CsPbI3 with Cs+ disordered in the void of the ReO3-type
network.

1 There are other potential sources of entropy such as charge carriers,
magnetic moments and nuclear spins that we neglect at this point.



2.5. Vacancy

As stated in Section 2.2.1, vacancies are considered as

individual species for information content calculation

according to equation (3). This is by analogy with the Kröger–

Vink notation, in which vacant sites are denoted Vn0
M or Vn�

X

(Kröger & Vink, 1956). Just as white spaces such as ‘ ’ are

necessary for the complete description of a language and

contribute to its information content, vacancies V are required

for the description of defective or disordered structures.

Although this approach is entirely logical from an information

theory point of view and yields mostly coherent results, the

incorporation of vacancies into the calculation has some

counterintuitive consequences.

As an example, we discuss the temperature-dependent IG

values of the perovskite CsPbI3. Whilst there is no evidence

for disorder at temperatures below 150 K, it was recently

reported that above �150 K the dodecahedrally coordina-

tated Cs+ cation becomes disordered over two sites [Fig. 1(b)]

(Straus et al., 2020). Intuitively, it would be expected that the

information content would rise continuously with increasing

occupation of the second site, but a jump in IG is observed at

the temperature at which the first Cs+ occupies the second site

(limocc!0 IG). This jump originates from the newly added

crystallographic orbit which is immediately filled by a vacancy

(1 � occ) [Fig. 1(b)]. Thereafter, the information content

behaves as expected. Note that the addition of a new crys-

tallographic orbit draws a clear line to the previously discussed

case of Cu1�xAux , where the crystallographic orbit that

becomes partially occupied by Cu and Au already exists in the

end members. But what is the meaning of this jump in IG?

From information theory the jump in IG is expected, since the

addition of a new crystallographic orbit contains a consider-

able amount of information. In fact, it is this piece of infor-

mation that is key to the crystallographic description of the

disordered structure, even for very small occupancies. In turn,

the jump in IG seems to be in agreement with both information

theory and chemistry, acknowledging the additional crystal-

lographic orbit that is required to describe the high-

temperature phase of CsPbI3.

2.6. Redundancy

Shannon entropy is highest upon equal distribution of

atomic species among crystallographic orbits or positions

(uniform distribution of probabilities p), which can be verified

by considering the partial derivatives @=@pcð�
P

c pc log2 pcÞ

with boundary conditions of
P

c pc = 1 and pc 2 (0, 1]. In turn,

the maximum Shannon entropy per character, IG, max , is given

by the logarithm of the message’s total number of unique

characters c, translating to the number of unique atom species

t in the reduced unit cell, which is T :

IG;max

bit

position

� �
¼ log2 T: ð9Þ

The redundancy R is then defined as

R ¼ 1� IG; norm ¼ 1�
IG

IG;max

: ð10Þ

Upon further investigation into the entropy of the printed

English language, Shannon (1951) noted that there are

different levels at which the entropy of a language can be

estimated. Under the assumption of no knowledge about the

language and an analysis of its composition based entirely on

strings of meaningless letters, essentially as conducted in this

work, the redundancy of English is about 50% because of

phenomena or ‘constraints’ such as the necessity of the letter

‘q’ to be followed by ‘u’, a high tendency of ‘h’ to follow ‘t’ or

the overall frequent appearance of the letter ‘e’. Although

interesting predictions can be derived from rules found by a

purely stochastic approach, an even higher level of redun-

dancy of about 75% is estimated when considering gramma-

tical rules and long-range statistical effects in written English.

Knowledge of the language therefore enables even better

prediction abilities, as demonstrated by Shannon in experi-

ments with native speakers who were supposed to guess

missing letters of fill-in-the-blank texts.

By analogy with the application of information theory to

crystal structures, Mackay (2001) wrote that ‘Pauling’s rules

reflect chemical experience corresponding to a native knowl-

edge of English in Shannon’s example.’ For instance, an

(inorganic) chemist can qualitatively construct the crystal

structure of �-crystobalite based on chemical intuition and the

information that it adopts a variation of the diamond struc-

ture. Whilst such considerations seem to be of a purely

scientific nature in the current state, a large redundancy,

particularly when combined with the ‘chemist’s grammar’,

maybe as represented by Pauling’s rules, might offer new

avenues in crystal structure prediction, the identification of

‘wrong’ crystal structures and the subsequent refinement.

Closely related to the topic of redundancy is the question of

whether all sources of information have yet been included in

equation (3). As mentioned above, Hornfeck provided a

recent update to the theory through the incorporation of

arities, clearly improving on the discriminating character of

different complexity measures. For instance, most of the

allotropes of carbon and phosphorous show different Iconf

values, whereas they are largely indistinguishable in IG.

Looking for potential sources of information that are not

yet included, we emphasize that the analysis presented here

relies fully on the crystallographic information file (CIF) and

therewith on the quality of the structure solution. Moreover,

the CIF is an idealized representation of a real crystal struc-

ture that exhibits naturally occurring point defects.

Acknowledging the constant efforts from computational

scientists in obtaining energies for the formation of point

defects, opportunities exist to incorporate these in equation

(3) via statistical approaches in the future. For instance, when

knowing the energy that is necessary to create a Schottky

defect in NaCl, it is possible to calculate the defect concen-

tration (partial occupancies) as a function of temperature and

in turn the temperature-dependent complexity. Given the

increasing notion across various material classes that defects
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are not independent (Keen & Goodwin, 2015), it remains an

open question as to whether such an extension contains

significant meaning. Looking at real crystals, the existence of

limited crystal volume, i.e. the surface as defect, is an impor-

tant point and fully neglected in this approach. Although it

only seems to be important for particle sizes in the nano-

regime, this raises interesting questions in the context of the

complexity measure of clusters that consist of a defined

number of atoms, e.g. the series of neutral and charged gold

clusters. Likewise, it is currently unclear how the information

content and IG develop when transitioning from isolated

molecules to molecular crystals or even co-crystallization

products, suggesting a role for configurational entropy in

crystallization theory.

This brings us to the last important point where our

chemical intuition raises a question about the meaning of

chemical bonds within information theory, assuming that their

existence alters the structure’s information content. On the

basis of the information given within a CIF, which is sufficient

to recreate a crystal structure, we came to the conclusion that

chemical bonds in crystalline solids are redundant informa-

tion, as these are unequivocally defined by the type of atomic

species involved and their positions. Thus, a CIF can be seen as

insensitive towards chemistry such as chemical bonds and

material class, and so is information theory.

We stress here that the field is still in its infancy, with theory

development and questions regarding interpretation limits in

the current focus, and the relationship between the config-

urational entropy of a crystal structure and information theory

as given in equation (8) representing a strong motivation.

3. The crystIT program

crystIT is an open source Python-based program for calcu-

lating the information content of crystal structures. The source

code is provided as a ready-to-use Python file, is freely

available (see Appendix B and the GitHub repository https://

github.com/GKieslich/crystIT for further details) and is based

on the formulas as given in Section 2.

As input, crystIT requires a standardized CIF. In single-CIF

mode the program returns the calculated parameters directly

into bash; see Fig. 2 for the output for K3C60 (Stephens et al.,

1991). In batch mode a CIF-containing directory is passed to

the program and the script outputs a *.csv file containing the

different complexity measures. The batch mode is set up for

large data set processing and supports multi-threading for

better performance. The menu provides access to on-the-fly

occupancy editing and options to alter settings regarding

symmetry tolerance, recursive sub-directory scanning, the

number of threads in batch mode, switching between comma

and dot as decimal separator, and the output of entropy

parameters derived from equation (8).

In attempts to identify potential problems with the

program, we observed erroneous space-group detection in

some cases, which can be circumvented by altering the

symmetry tolerance value. We also came across CIF parsing

errors in rare cases, which can be fixed by re-exporting the file

from VESTA (Momma & Izumi, 2011). For better identifica-

tion of such cases, error messages are given as output in bash

or the *.csv files.

4. Results and discussion

Having described the mathematical foundation of crystIT, we

now proceed to investigate chemical interpretations of IG. By

looking at the complexity of the crystal structures for some

selected examples, this section aims to create a more intuitive

picture between information theory and crystal structure

complexity.

4.1. Screening of the Crystallography Open Database

Krivovichev (2014) performed a database analysis based on

crystallographic data as available in the Inorganic Crystal

Structure Database (http://icsd.fiz-karlsruhe.de/icsd/). He

correlated IG with IG, total, compared different measures of

complexity and evaluated complexity for various inorganic

material classes. In order to provide a different research angle,

and to show the big-data analysis capabilities of crystIT, we

here focus on the development of complexity with time, using

the full Crystallography Open Database (COD; http://

www.crystallography.net/cod/; Gražulis et al., 2009) as input.

The COD is an ‘open-access collection of crystal structures of

organic, inorganic, metal–organics compounds and minerals,

excluding biopolymers’ and the complete data set consists of

approximately 440 000 CIFs (60 GB) as of June 2020. The data

set was batch-processed in about six hours using crystIT on a

single workstation, demonstrating the scalability and robust-

ness of the program.

Database screening studies rely heavily on the quality and

number of data entries. Therefore, an initial assessment of the
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Figure 2
An example output of crystIT, as run in single-file mode for K3C60. In
batch-file mode, a *.csv file is generated containing the output data.



number of published structures as a function of year is

important [Fig. 3(a)]. The overall exponential increase in

available crystal structures is testimony to the growing number

(and efficiency) of research capabilities, which affects the field

of crystallography as an indispensable analysis tool for

synthetic chemistry in various areas. The sharp decrease in the

number of structures per year between 2014 and 2020 reflects

the delay between the publication of crystal structures and

their incorporation into the database. Given that the number

of structures is still reasonably large, it can be assumed that the

database entries are sufficient for qualitative trend evaluation

of crystal structure complexities. For interpretation purposes,

we have divided the initial data set into three subsets: (i)

55 867 structures without carbon atoms, (ii) 132 165 structures

which contain exclusively C, H, N, P, O, S, Se, F, Cl, Br and I,

and (iii) the remaining 232 577 structures. These subsets

reflect the commonly accepted categorization of materials into

(i) inorganic, (ii) organic and (iii) metal–organic materials.

Interestingly, this categorization already reveals that the large

increase in database entries in the 1990s [Fig. 3(a)] is caused

mainly by organic and metal–organic structures, as for in-

organic structures only a linear increase is observed between

the 1940s and 2000.

In the next step, the development of the annually averaged

IG for the different subsets is assessed [Figs. 3(b)–3(d)]. The

subsets of organic and metal–organic structures behave

differently compared with the subset of inorganic structures.

For both subsets the averaged IG shows a linear increase with a

current average IG of �6–6.5 bit atom�1. This trend only

appeared around the 1990s, which is presumably related to the

significant increase in the number of organic and metal–

organic structures deposited in the database since the 1990s.

This increase is difficult to attribute to a single factor, but the

development of computer technologies, the rise of synchro-

trons as highly brilliant light sources for X-ray diffraction, the

availability of neutron sources, and advances in detector and

laboratory X-ray technologies are all important aspects that

have allowed more efficient access to structures with light

elements and larger unit cells. For the inorganic subset, a small

but linear increase in average IG is observed since 1920, and

the average and maximum IG are smaller compared with the

other two subsets. The contour plots of IG distribution versus

time (background plots in Fig. 3) show that the discovery

of less complex crystal structures, i.e. structures with IG <

4 bit atom�1 for organic and metal–organic and IG <

2 bit atom�1 for inorganic, has decreased significantly

compared with the reporting of structures with larger infor-

mation content. For instance, in all years after 1990 over 85%

(or more) of the structures deposited in the organic subset

show IG values larger than 4.5. Furthermore, structures with

IG > 9 bit atom�1 are still uncommon. It will be interesting to

see how this develops further over time.

The most complex structures found in this screening have

complexities of around IG ’ 11.5 bit atom�1 and were

discovered within the past five years. Many of these structures

seem highly complex, such as supramolecular arrays of helical

oligoamides which self-assemble around a linear rod-like

oligocarbamate (Wang et al., 2017), and various coordination

cages and multimetallic complexes with large IG values.

Additionally, there are examples that have been assigned a

large IG due to their large unit cells, in which assemblies of

smaller subunits such as an eightfold polycatenated hydrogen-

bonded and �-stacked framework of 1,3,5-tris(4-carbox-

yphenyl)benzene (Zentner et al., 2015) can be observed. Such

examples that are clearly composed of sub-units seem to show

an intrinsically large compressibility when considered in

relation to the spatial orientation and sequence of such

subunits to each other. However, any clear symmetric relation

between these subunits is captured within the crystal structure

file and in turn in the results of information theory. In any case,

it seems that, for such materials, using IG as the complexity

measure can lead to counterintuitive results – counterintuitive

when compared with chemical intuition. The algorithmic

complexity approach put forward by Chaitin (1975) would

improve on this discrepancy between calculated and perceived

complexities, but a new complexity descriptor for molecules

(how should one define a ‘subunit’?) and a measure for the

three-dimensional molecular alignment in the reduced unit

cell would need to be generated.

An interesting example in this context that reveals a certain

subjectivity of chemical intuition as a measure of complexity is

proteins, which show IG values larger than any structures

discussed herein. Depending on the focus, proteins can be

described through only a few letters, and if needed, additional

details on the structural arrangement can be provided in

various levels of depth. The approach applied in this work

focuses strictly on the information content provided by the

CIF, and in the presence of many symmetrically independent

atoms and large unit cells, as in the case of proteins, large IG
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Figure 3
Information content screening of the COD data set (June 2020), showing
the number of structures and average information content for (a) all
structures in the database and the subsets of (b) organic, (c) inorganic and
(d) metal–organic structures. The contour plots in the background
represent the frequency of how the information content is distributed,
showing �85% (or more) of the underlying data set. Note that, for the
subsets of organic and metal–organic structures, these frequencies are
only representative starting from 1987 and 1963, respectively.



values are obtained. This example demonstrates that the

concept discussed here should be seen as a concise language

which comes with its own subjectivity, determined by the

amount and type of information which the calculation is based

on. Depending on the research example, this might or might

not be in agreement with chemical intuition.

4.2. Silicon carbide polytypes

In a footnote, Pauling (1929) mentioned that, by varying the

order of close-packed ABC layers, infinitely many combina-

tions ‘with ever increasing complexity’ are possible. Inspired

by this note and motivated to test IG against Pauling’s state-

ment, we chose silicon carbides as our next example. Many

different polytypes of silicon carbide are known, which differ

only in the order in which C1/2–Si–C1/2 slabs rotate around a C3

axis, giving rise to (hypothetically) infinitely large unit cells

(Parthé et al., 1993). For instance, SiC 2H has an AB order, SiC

4H ABAC, SiC 6H ABCACB and so on [cf. Fig. 4(b)].

The information content and calculated complexity do

indeed rise with the number of layers [Fig. 4(a); IG approxi-

mately logarithmic and IG, total slightly faster than linear].

However, it is also clear that the rise in information content of

rhombohedral polytypes occurs at a lower rate than for those

that can be described by a hexagonal lattice (note that

rhombohedral lattices are typically observed when the

number of layers is a multiple of three). Looking for the origin

of this phenomenon, it can be observed that in the rhombo-

hedral cell there are two additional lattice points compared

with a hexagonal Bravais lattice. In turn, only two-thirds of the

crystallographic orbits required for the description of SiC in

the hexagonal case are necessary when describing SiC rhom-

bohedrally. Upon closer inspection, a kink in the IG devel-

opment of SiC nH is visible between eight and ten layers. This

is also related to different relative numbers of crystallographic

orbits that must be defined depending on the space group

(hexagonal P63mc, one per layer; trigonal P3m1, two per

layer).

Although the general trend is in agreement with the intui-

tive understanding of crystal structure complexity, the differ-

ences related to the rhombohedral and hexagonal series are at

minimum counterintuitive. In the context of information

theory, however, this result is expected and, at the current

state of research, seems to be an intrinsic artefact when using

crystallographic orbits as a measure of complexity calculations

of crystal structures.

4.3. Ruddlesden–Popper series

The series of Ruddlesden–Popper (RP) oxides is another

interesting example and conceptually related to silicon

carbides through the idea of increasing complexity via the

incorporation of layers with varying repetition units. The

structure of RP oxides is built from 2D slabs of perovskite unit

cells with unit-cell thicknesses n. These slabs are sandwiched

between rock salt (AX) layers to form RP oxides with the

general formula An+1BnX3n+1. Importantly, for limn!1RP the

perovskite structure ABX3 is obtained.

Similar to the silicon carbide example, an infinite number of

crystal structures can in principle be envisioned based on the

variation of n. Intuitively we therefore expect an increase in

complexity with increasing n, although experimentally known

RP examples do not exceed n = 3. We chose Srn+1TinO3n+1 and

Rbn+1CdnCl3n+1 and calculated the series’ complexities

(Table 2). All RP phases in Table 2, including the prototypical

perovskite when treated as n = 0, demonstrate a direct

proportionality between complexity and number of layers:

IG / n (R2 = 0.998). In contrast to the ABX3 compounds with

fluorides, which typically adopt the perovskite structure,

RbCdCl3 crystallizes in a structure containing double rutile-

like columns of CdCl6 that are linked by Rb atoms (Natarajan

et al., 1978). Therefore, a different complexity compared with

the rest of the RP phases is obtained for RbCdCl3, showing

that IG depends on factors beyond the empirical formula.

Surprisingly, other related compounds that do not satisfy

the general RP formula but crystallize in similar structures,

such as the oxyhalide Ca2CuCl2O2 or distorted variations, e.g.

La2CuO4, show complexities equal to those of the canonical
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Table 2
Complexity calculations for some selected RP phases with a focus on
series based on SrTiO3 and RbCdCl3.

IG values shown in italics were not used in the regression which is mentioned
in the text, since RbCdCl3 does not crystallize in a perovskite structure and the
anion-deficient compounds are only close to the RP information content.

n RP Related compounds IG (bit atom�1)

0 SrTiO3
a 1.37

0 RbCdCl3
b 2.32

1 Sr2TiO4
c Ca2CuCl2O2*h 1.95

1 Rb2CdCl4
d La2CuO4

+ i 1.95
1 Ca2CuO3

# j, Sr2CuO3
# k 1.92

2 Sr3Ti2O7
e Ba3In2Cl2O5*l 2.42

2 Rb3Cd2Cl7
f 2.42

3 Sr4Ti3O10
g 2.91

Variations from canonical RP series: * oxychloride, + distorted, # anion-deficient. CIFs
sourced from (a) Al-Shakarchi & Mahmood (2011), (b) Natarajan et al. (1978), (c) Miwa
et al. (2007), (d) Kruglik et al. (1989), (e) Lukaszewicz (1959), ( f ) Villars & Cenzual
(2012a), (g) Villars & Cenzual (2012b), (h) Grande & Müller-Buschbaum (1977), (i)
Grande et al. (1977), ( j) Teske & Müller-Buschbaum (1971), (k) Teske & Müller-
Buschbaum (1969), (l) Gutau & Müller-Buschbaum (1990).

Figure 4
Analysing the complexity of various silicon carbides as a function of
number of layers. (a) Complexity is plotted as a function of layers of
various silicon carbide polytypes. (b) The structure of SiC 4H as viewed
along the b axis, with labelled ABAC layering. Si atoms are in blue and C
in black. Depending on the number of layers n in a given silicon carbide, a
six- or threefold axis is present, which is reflected in the complexity
measure and shows the close relation between complexity and symmetry.



RP phases. Even the complexities of anion-deficient M2CuO3

with M = Ca2+ or Sr2+ do not differ much.

The RP series is therefore a beautiful example in which the

intuitive understanding of complexity is well matched by the

complexity values calculated from information theory.

4.4. Perovskite tilt systems

Taking a closer look at the iconic material class of perov-

skites, it is interesting to look for correlations between tilt

systems and complexity as represented by IG. For the classi-

fication of perovskite tilts after the Glazer (1972) notation we

refer the reader to some insightful book chapters and reviews

(Shimakawa, 2017; Woodward, 1997).

A selection of tilt phases for NaNbO3 as a phase-rich

example are given in Table 3. Intuitively, we would assign the

highest complexity to the phase with three tilts of different

magnitudes. Our intuition is challenged when considering the

a�a�a� tilt system. Although representing three activated tilts,

the tilts are of the same magnitude and direction (as required

through symmetry). In turn, one can argue that a�a�a� and

a0a0a0 are of similar complexity, given that the numbers of

different tilt angles are equal. Complexities obtained by

information theory confirm this perspective (Table 3).

Furthermore, it seems that the trend as expected from intui-

tion holds for other examples such as KMnF3 and CaTiO3.

Therefore, the perovskite phases highlight the subtle

differences between symmetry and complexity, a difference

that was not so clear from the example of silicon carbides.

However, this is a far from exhaustive study and it will be

interesting to see how complexities of perovskites develop

when considering examples with Jahn–Teller active B-site

cations or other structural distortions, although this is beyond

the scope of the present study.

5. Concluding remarks

In conclusion, we have introduced an update to the Krivo-

vichev measure of crystal structure complexity to crystal

structures with partial occupancies. For better applicability by

non-specialists and for theory development in the future, we

have incorporated the concept into crystIT, a Python-based

program that allows for calculating the complexity of crystal

structures on the basis of CIFs.

Looking at the discussed examples, we can observe a few

counterintuitive consequences of the utilization of crystal-

lographic orbits for complexity calculations. For instance, we

can find a pronounced space-group dependency as observed

for silicon carbides, and discontinuous behaviour of IG.

Evidently, further progress is necessary in this direction, either

to elucidate these phenomena or to provide further adjust-

ments to the calculations. The general tenor is therefore that

theory development is at the heart of ongoing research

activities. It is important to remember that the outcomes are

only as reliable and accurate as the source of information, in

this case the reliability of the crystallographic data as provided

through the CIF.

In attempts to identify the potential of the approach, a

breakthrough in the calculation of configurational entropy

based on crystallographic data clearly has the potential to

bring the concept of Shannon entropy closer to applied

materials science. Potential research directions might be a

more quantitative analysis of calorimetric data to extend our

understanding of phase-transition thermodynamics in in-

organic materials and coordination polymers alike. Likewise,

we have mentioned the calculation of complexities of clusters

based on information theory, but why stop at periodic matter?

The elucidation of quasicrystals’ complexities seems a difficult

but scientifically intriguing future task.

APPENDIX A
Utilized software and databases

The crystal structures for the calculations were obtained from

either the Crystallography Open Database (COD) (Gražulis et

al., 2009, 2012, 2015; Merkys et al., 2016) or the Cambridge

Structural Database (CSD) (Groom et al., 2016) in the form of

CIFs. Some CIFs had to be generated from the original

publications. The CIF generation process and the creation of

crystal structure images were performed in the VESTA soft-

ware suite (Momma & Izumi, 2011).

The provided Python (Van Rossum & Drake, 2009)

program requires the Atomic Simulation Environment (ASE)

library (Larsen et al., 2017) for CIF parsing, and Spglib (Togo

& Tanaka, 2018), PyXtal (Fredericks et al., 2019) and NumPy

(Walt et al., 2011) for symmetry calculations.

APPENDIX B
Quick-start guide to the Python program

The open-source program crystIT can be downloaded free of

charge from https://github.com/GKieslich/crystIT together

with an extensive readme file. crystIT is written in Python 3

and is therefore compatible across multiple platforms.

Package dependencies are described in Appendix A and in the

readme file.

As input, crystIT requires a valid path to either a CIF or a

directory containing CIFs (batch mode). Depending on the

input, it either outputs the information parameter directly to
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Table 3
Calculated complexities for some perovskites and their underlying tilt
systems.

Compound Space group Tilt IG (bit atom�1)

NaNbO3
a 221, Pm3m a0a0a0 1.37

NaNbO3
b 161, R3c a�a�a� 1.37

NaNbO3
c 127, P4/mbm a0a0c+ 1.92

KMnF3
d 140, I4/mbm a0a0c� 1.92

CaTiO3
e 62, Pnma a+b�b� 1.92

NaNbO3
f 63, Cmcm a0b�c+ 2.52

Crystallographic information was obtained from (a) Barth (1925), (b) Seidel & Hoffmann
(1976), (c) Darlington & Knight (1999), (d) Asbrink & Waskowska (1994), (e) Buttner &
Maslen (1992), ( f ) Darlington & Knight (1999).



bash (single file) or creates a character-separated value file

(.csv) in the directory (batch mode).

The settings can be accessed by typing ‘s’ and confirming

with Enter. By activating the recursive subdirectory scan (‘r’),

subfolders are scanned in batch mode. The maximum number

of threads for multiprocessing in batch mode is automatically

set to the maximum number of available threads, but can be

adjusted by integer input. The occupancy options (‘o’) allow

for on-the-fly occupancy editing in single-file processing. A

float input changes symprec which defines the tolerance in

Cartesian coordinates for Spglib to find symmetry: |x0 � x| <

symprec. Entropy calculation is activated with ‘s’ and the

decimal separator can be toggled between dot and comma by

typing ‘d’. Finally, the menu is exited with ‘e’.
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