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Scattering methods are widely used in many research areas to analyze and

resolve material structures. Given its importance, a large number of textbooks

are devoted to this topic. However, technical details in experiments and

disconnection between explanations from different perspectives often confuse

and frustrate beginner students and researchers. To create an effective learning

path, the core concepts of scattering and structure factor are reviewed in this

article in a self-contained way. Classical examples of scattering photography and

intensity scanning are calculated. Sample CPU and GPU codes are provided to

facilitate the understanding and application of these methods.

1. Introduction

Scattering methods, using a source of photons, electrons,

X-rays, neutrons etc., are powerful tools to examine micro-

scopic structural (Powles, 1973) and dynamical (Goldburg,

1999) properties of matter; they have been successfully

applied to study subatomic particles (Xiong et al., 2019),

crystals (Azaroff, 1968), liquids (Head-Gordon & Hura, 2002),

glasses (Sette et al., 1998), surfactants (Hayter & Penfold,

1983), biomolecules (Kendrew, 1961; Ashkar et al., 2018) and

polymers (Roe, 2000). The rule of thumb here is that the

wavelength � of the radiation should be comparable to the

length scale of the structure to be observed. To detect ordering

over a range much longer than �, methods like small-angle

scattering are needed (Chu & Hsiao, 2001). Another impor-

tant consideration is the contrast between scattering signals

from different elements due to underlying physical mechan-

isms. Therefore, neutron scattering is often preferred for soft-

matter systems, despite having lower accessibility than X-rays.

In addition, techniques like resonant soft-X-ray scattering can

be used to provide enhanced resolution (Fink et al., 2013; Liu

et al., 2016). Compared with real-space microscopy techniques,

reciprocal-space probes like scattering methods are good at

picking up periodic patterns and revealing three-dimensional

(3D) structures as a whole by penetrating deeply into the

sample (Mukherjee et al., 2017).

Given the richness of material structures, a variety of

experimental methods have been developed during the past

century, with the scattering being hard (high energy) or soft

(low energy), monochromatic or polychromatic, and elastic or

inelastic. Despite the diversity of experimental setups, they

can largely be grouped into two categories based on how

signals are collected and interpreted. The first category is

photography of ordered samples, where they are recorded as

spotted scattering signals on a two-dimensional (2D) film

(McIntyre, 2015). The second category is intensity scanning of

scattering signals from disordered or partially ordered
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samples, whose one-dimensional (1D) profile is plotted against

one variable (a scalar) that characterizes the existence of

periodicities in the system (Hura et al., 2009). In both types,

the quantitative measurement of the signal is the scattering

intensity IðqÞ, or its normalized version, the structure factor

SðqÞ, which is often expressed as a function of the scattering

vector q. There are then two central tasks of structural analysis

with scattering methods:

(i) The forward problem �ðrÞ ! IðqÞ: given the electron-

density distribution �ðrÞ or particle positions ðr1; r2; . . . ; rNÞ, to

predict the scattering pattern IðqÞ.

(ii) The inverse problem IðqÞ ! �ðrÞ: given the scattering

pattern IðqÞ, to resolve the electron-density distribution �ðrÞ
or particle positions ðr1; r2; . . . ; rNÞ.

In this article, we only focus on the forward problem, which

could still shed light on some basic structural information.

Sometimes, the forward method may also be used to solve �ðrÞ
iteratively, through a trial-and-error process. That is, one

keeps modifying a proposed structure �ðrÞ until the theoreti-

cally computed IðqÞmatches the experimentally observed one.

The full solution to the inverse problem is, however, chal-

lenged by the notorious ‘phase problem’ (Hauptman, 1991).

The concepts of scattering and structure factor are often

discussed across different disciplines including condensed-

matter physics, materials science, polymer physics, structural

biology etc. The same idea can take different forms in different

areas, causing confusion and misconceptions. Graduate or

advanced undergraduate students in need of applying these

concepts to their research problems can be frustrated by the

convoluted experimental details covered in traditional text-

books. It is thus the purpose of this article to unify the

concepts of scattering and structure factor, giving junior

researchers an effective pathway to quickly grasp the key

ideas in this field without taking a whole course or reading an

entire textbook.

To fulfill this task, we first elaborate the fundamentals about

scattering (Section 2), crystallography (Section 3) and liquid-

state theory (Section 4) based on the Fourier transform and

reciprocal lattice. Using concrete examples, we then discuss

the photography of ordered samples in Sections 5 and 6 and

intensity scanning of isotropic samples in Sections 7 and 8.

Relevant CPU and GPU source codes are provided online at

https://github.com/statisticalmechanics/scatter. Finally, a brief

introduction to the 2D structure factor is given in Section 9,

before the conclusion in Section 10.

2. Scattering

2.1. Scattering vector

In a scattering experiment, the incident beam of wavevector

k0, after hitting the sample, is deflected from its straight path

by a scattering angle 2� and becomes the diffracted beam of

wavevector k1 (Fig. 1). In the case of elastic1 and monochro-

matic scattering (of a fixed wavelength �), jk0j ¼ jk1j ¼ 2�=�.

The change of wavevector, called the scattering vector, is

q ¼ k1 � k0 ð1Þ

with a magnitude

q ¼ 2jk0j sin � ¼
4�

�
sin �: ð2Þ

Let s0 ¼ k0=jk0j ¼ k0�=ð2�Þ and s1 ¼ k1=jk1j ¼ k1�=ð2�Þ be

the unit vectors of the incident and diffracted beam, respec-

tively; then the scattering vector can also be written as

q ¼
2�

�
ðs1 � s0Þ: ð3Þ

2.2. Scattering intensity

When a detection screen is placed behind the sample in the

path of k1, the diffracted beam may be detected. The strength

of such signals is quantified by the scattering intensity IðqÞ of

the ray, which changes with k1 or, equivalently, with q. The

scattering pattern, or the distribution of IðqÞ on the screen, is

determined by the structural features of the sample, for

instance, the electron-density distribution �ðrÞ in the case of

X-ray scattering by atoms.

Both the incident and the diffracted rays can be viewed as

plane waves of the form  kðrÞ ¼ hr j ki / expðik � rÞ.

According to Fermi’s golden rule, the scattering intensity IðqÞ

is proportional to the square of the transition probability

amplitude from state  k0
ðrÞ to state  k1

ðrÞ, after interacting

with the overall scattering potential �ðrÞ. That is,

IðqÞ / hk0 j �ðrÞ j k1i
�� ��2¼ R

dr �k0
ðrÞ�ðrÞ k1

ðrÞ
��� ���2

/
R

dr expð�ik0 � rÞ�ðrÞ expðik1 � rÞ
�� ��2
¼

R
dr �ðrÞ expðiq � rÞ

�� ��2: ð4Þ

Neglecting the coefficient of proportionality, one can write

IðqÞ ¼ �̂�q�̂��q; ð5aÞ

where

�̂�q ¼
R

dr �ðrÞ expðiq � rÞ ð5bÞ

is the Fourier transform of the density distribution and �̂��q is

its complex conjugate (Appendix A).

Unless �ðrÞ has a symmetry center, �̂�q is generally a complex

number, i.e. �̂�q ¼ j�̂�qj expði�qÞ. If �̂�q is known exactly, �ðrÞ can
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Figure 1
Scattering vector q defined as the difference between the diffracted
wavevector k1 and the incident wavevector k0, both with magnitude 2�=�
during elastic scattering.

1 The diffraction experiment generally detects both elastic and inelastic
scattering, where the latter results from dynamic processes in the sample. To
measure just elastic scattering, an energy analyzer should be placed between
the sample and detector.



in principle be reconstructed through the inverse Fourier

transform [equation (48)] (Argos, 1977). However, in an

experiment, only the scattering intensity IðqÞ ¼ j�̂�qj
2
�

expði�qÞ expð�i�qÞ ¼ j�̂�qj
2 is directly measurable. This allows

us to compute the magnitude of �̂�q by j�̂�qj ¼ ½IðqÞ�
1=2.

Unfortunately, information about the phase angle �q is lost

during this process, which gives rise to the ‘phase problem’ in

crystallography. Special techniques (Hauptman, 1991; Har-

rison, 1993; Taylor, 2003) have been developed to determine

�q, which are beyond the scope of this article.

In a system of N atoms or particles at positions

ðr1; r2; . . . ; rNÞ inside a region of volume V, the density

distribution consists of the contributions from each particle i

with a scattering potential fiðr� riÞ (i ¼ 1; 2; . . . ;N), i.e.

�ðrÞ ¼
PN
i¼1

fiðr� riÞ ¼
PN
i¼1

fiðRiÞ; ðRi � r� riÞ: ð6Þ

In this case

�̂�q ¼
R
V

dr
PN
i¼1

fiðr� riÞ expðiq � rÞ

¼
PN
i¼1

R
V

dRi fiðRiÞ expðiq � RiÞ expðiq � riÞ

¼
PN
i¼1

f̂fiðqÞ expðiq � riÞ; ð7Þ

where

f̂fiðqÞ ¼
R
V

dr fiðrÞ expðiq � rÞ ð8Þ

is the atomic form factor, or scattering factor, of particle i.

If the scattering potential of each particle fiðr� riÞ is

symmetric about ri, which should be true for atoms and most

particles, f̂fiðqÞ is real and even, i.e. its complex conjugate

f̂f �i ðqÞ ¼ f̂fið�qÞ ¼ f̂fiðqÞ (Appendix A). Under this circum-

stance, the scattering intensity

IðqÞ ¼
PN
i¼1

f̂fiðqÞ expðiq � riÞ
PN
j¼1

f̂fjð�qÞ expð�iq � rjÞ

¼
PN
i¼1

f̂fiðqÞ expðiq � riÞ
PN
j¼1

f̂fjðqÞ expð�iq � rjÞ

¼
PN
i¼1

f̂fiðqÞ cosðq � riÞ

����
����

2

þ
PN
i¼1

f̂fiðqÞ sinðq � riÞ

����
����

2

ð9aÞ

or, equivalently,

IðqÞ ¼
PN
i¼1

PN
j¼1

f̂fiðqÞf̂fjðqÞ exp½iq � ðri � rjÞ�

¼
PN
i¼1

PN
j¼1

f̂fiðqÞf̂fjðqÞ expðiq � rijÞ

¼
PN
i¼1

PN
j¼1

f̂fiðqÞf̂fjðqÞ cosðq � rijÞ

¼
PN
i¼1

f̂f 2
i ðqÞ þ

PN
i¼1

PN
j 6¼i

f̂fiðqÞf̂fjðqÞ cosðq � rijÞ: ð9bÞ

Equations (9a) and (9b) are mathematically equivalent

because cosðq � rijÞ ¼ cosðq � ri � q � rjÞ ¼ cosðq � riÞ cosðq � rjÞ þ

sinðq � riÞ sinðq � rjÞ. However, in numerical computation of

IðqÞ at a given q, equation (9a) has a lower cost with a

computational complexity OðNÞ, while equation (9b) is of

complexity OðN2Þ. Nevertheless, when there is an appropriate

symmetry in the system, the expression rij in equation (9b)

allows it to be further simplified and thus to become more

computationally efficient, as will be discussed in later sections.

2.3. Atomic form factor

For realistic scattering potentials, the atomic form factor

f̂fiðqÞ changes with the direction and magnitude of the scat-

tering vector q, and thus often drops as the scattering angle �
increases (Fig. 2). If, however, the scattering potential is

spherically symmetric, i.e. fiðrÞ ¼ fiðrÞ, we can write

f̂fiðqÞ ¼ f̂fiðqÞ ¼ 2�

Z
dr r2fiðrÞ

Z�
0

d� sin � expðiqr cos �Þ

¼ 2�

Z
dr r2fiðrÞ

2 sinðqrÞ

qr

¼ 4�

Z
dr r2fiðrÞ

sinðqrÞ

qr
ðq 6¼ 0Þ: ð10Þ

It is useful to consider the three simple spherically symmetric

scattering potentials listed below (Fig. 2).

(i) fiðr� riÞ ¼ ai�ðr� riÞ, the scattering by each atom is

idealized as from a sizeless point at the atomic center. This

model can be mapped onto the physical scenario of nuclear

scattering or the abstract scenario of point-mass scattering.

The scattering strength ai of atom i generally has different

values for different elements, and has also been called the

atomic scattering factor, because here

f̂fiðqÞ ¼ ai: ð11Þ

The electron-density distribution is then �ðrÞ ¼PN
i¼1 ai�ðr� riÞ, which, in the case of ai ¼ 1, becomes the

particle density distribution �ðrÞ ¼
PN

i¼1 �ðr� riÞ.
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Figure 2
Atomic form factor f̂fiðqÞ of a sizeless point [green dotted line, equation
(11)], a uniform sphere [red solid line, equation (13)] and a Gaussian
scattering center [blue dashed line, equation (15)] as a function of q.



(ii) fiðr� riÞ is homogeneous and bounded within a sphere

of radius �=2,2

fiðr� riÞ ¼
ai=ð��

3=6Þ for jr� rij 	 �=2

0 otherwise

�
ð12Þ

and

f̂fiðqÞ ¼
4�ai=ð��

3=6Þ

q3
½sinðq�=2Þ � q�=2 cosðq�=2Þ�

¼
3ai

ðq�=2Þ3
½sinðq�=2Þ � q�=2 cosðq�=2Þ�: ð13Þ

(iii) fiðr� riÞ is Gaussian-like with standard deviation �=2,

fiðr� riÞ ¼ ai

1

2�ð�=2Þ2
� �1=2

( )3

exp �
jr� rij

2

2ð�=2Þ2

� �

¼
ai

�3ð�=2Þ3=2
exp �

2R2
i

�2

� 	
ðRi ¼ jr� rijÞ ð14Þ

and

f̂fiðqÞ ¼ ai exp �
�2q2

8

� 	
: ð15Þ

In all numerical results shown below, we will assume f̂fiðqÞ ¼ 1,

i.e. point scattering, for all particles.

3. Crystallography

We now review concepts and theories about scattering

methods used for crystal samples. The earlier theory of von

Laue (McQuarrie & Simon, 1997) that considers diffraction of

parallel beams by arrays of atoms is skipped here. Instead, we

apply the more intuitive Bragg’s law which envisages crystal-

lographic planes as reflective mirrors to understand the prin-

ciple, although there is no such reflection in the physical sense.

3.1. Bragg’s law

For an incident ray of wavelength � to generate a strong

constructive scattering signal by a family of crystallographic

planes ðhklÞ of interplanar spacing dhkl (Appendix B), the

scattering angle 2� needs to obey Bragg’s law (Bragg, 1968)

(Fig. 3):

n� ¼ 2dhkl sin �; n ¼ 1; 2; 3; . . . : ð16Þ

This is because the path difference of the two scattering rays

‘reflected’ by two neighboring lattice planes is

lðcos 	þ cos
Þ ¼ l ½cos	þ cosð�� 2� � 	Þ�

¼ l ½cos	� cosð2� þ 	Þ�

¼ l sinð� þ 	Þ sin �

¼ dhkl sin �: ð17Þ

The rescaled scattering vector s1 � s0 ¼ ð�=2�Þq (of length

2 sin �) is parallel to the normal vector, or reciprocal vector

d�hkl (of length 1=dhkl), of the lattice planes ðhklÞ. Thus, it is

sometimes convenient to express Bragg’s law in a vector form,

for instance, for the primary n ¼ 1 scattering, as

s1 � s0

�
¼ d�hkl: ð18Þ

Using equation (3), the necessary condition to receive a strong

signal for scattering vector q in crystals is thus

q ¼ 2�d�hkl: ð19Þ

3.2. The Ewald construction

Bragg’s law needs to be satisfied to have a strong scattering

signal in the direction of s1. However, this does not mean that,

given an arbitrary experimental setup, Bragg’s law is guaran-

teed to be satisfied somewhere. In particular, if a monochro-

matic incident beam (fixed �) is directed onto a single crystal

at an arbitrarily fixed position (fixed � and dhkl), it is possible

that none of the lattice planes will be able to produce a strong

scattering signal. If this happens, either � (polychromatic) or �
(rotate the sample or use polycrystals) has to be tuned to

satisfy equations (16), (18) and (19).

An alternative view to check that Bragg’s law is satisfied is

to use Ewald’s sphere in the reciprocal space (Hammond,

2001; Barbour, 2018). Here, each point at vector d�hkl repre-

sents a family of parallel planes ðhklÞ in the direct space. When

the orientation of the crystal sample is fixed, the relative

positions of the incident beam and reciprocal-lattice points are

also fixed. One can align the endpoint of the incident wave-

vector k0 (in practice k0=2�) with the origin O of the reci-

procal lattice and then draw a sphere of radius 1=�. The center

of the sphere is found by moving from point O by a vector

displacement �k0=2� (Fig. 4). It can be seen that the endpoint

of the scattering vector q, normalized by 2�, falls on the
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Figure 3
The scattering paths of two rays diffracted by two layers of ordered
particles (black dots) with interplanar distance dhkl and scattering angle
2�. s0 and s1 are unit vectors of the incident and diffracted rays,
respectively. When Bragg’s law is satisfied, the scattering vector is parallel
to the normal vector d�hkl of the lattice planes.

2 Throughout the paper, we use � as the unit of length and 1=� as the unit of
wavevector. We choose � to be the particle diameter, which can be mapped
onto the length scale of Å for atomic systems, nm for nano-systems and mm for
colloidal systems.



surface of this Ewald sphere. According to the vector form of

Bragg’s law [equation (19)], scattering from certain lattice

planes ðhklÞ is possible only when the corresponding reci-

procal-vector point d�hkl falls on the surface of the Ewald

sphere. If the wavelength and crystal orientation are not

appropriately chosen, this condition may not be met at all and

no scattering signal is generated by the sample.

3.3. Crystal structure factor Fhkl

Bragg’s law is actually the necessary (but not sufficient)

condition to have a strong scattering signal. Even if Bragg’s

law is obeyed by lattice planes ðhklÞ, it is still possible that the

scattering signal cancels due to special lattice symmetries. In

fact, when Bragg’s law is presented as in Fig. 3, a simple square

or oblique lattice structure is often used, which misses the

complexity in other 3D lattices. Generally, not every family of

lattice planes ðhklÞ can produce a constructive scattering.

Because the density distribution �ðrÞ is periodic in crystals,

one only needs to consider the particle distribution within one

unit cell. If each unit cell has a volume Vcell and m atoms, then

�̂�q ¼
N

m

Z
Vcell

dr �ðrÞ expðiq � rÞ; ð20Þ

where N=m is the number of unit cells in the N-particle

system. In crystallography, it is customary to define �̂�q per unit

cell as the structure factor,

Fq ¼
R

Vcell

dr �ðrÞ expðiq � rÞ: ð21Þ

For crystals, only qs satisfying Bragg’s law [equation (19)] can

possibly generate a large �̂�q or Fq. Therefore, we only need to

consider qs of the form q ¼ 2�d�hkl ¼ 2�ðha� þ kb� þ lc�Þ,

where d�hkl represents a family of lattice planes ðhklÞ of spacing

dhkl ¼ 1=jd�hklj (Appendix B). The associated structure factor

can thus be denoted as Fhkl:

Fhkl ¼
R

Vcell

dr �ðx; y; zÞ exp½2�iðhxþ kyþ lzÞ�: ð22Þ

Inversely, the density distribution within each unit cell is

�ðrÞ ¼
1

Vcell

X
hkl

Fhkl exp½�2�iðhxþ kyþ lzÞ�: ð23Þ

For point-like scattering centers, �ðrÞ ¼
Pm

i¼1 ai�ðr� riÞ and

equation (22) reduces to

Fhkl ¼
Pm
i¼1

ai exp½2�iðhxi þ kyi þ lziÞ�; ð24Þ

after substituting equation (11) and following the steps in

equation (7), where ðxi; yi; ziÞ are the coordinates of the m

atoms inside one unit cell and are expressed as fractions of

lattice vectors. The strength of Fhkl by planes ðhklÞ is the vector

sum of each term ai exp½2�iðhxi þ kyi þ lziÞ� in equation (24),

where the phase angle hxi þ kyi þ lzi defines the direction of

each vector. For typical crystal lattices of point-like atoms of

the same type (ai ¼ a), Fhkl can be easily computed.

(i) Simple cubic (SC)

m ¼ 1 and ðx1; y1; z1Þ ¼ ð0; 0; 0Þ:

FSC
hkl ¼ a exp½2�iðh0þ k0þ l0Þ� ¼ a ð25Þ

for any h; k; l.

(ii) Body-centered cubic (b.c.c.)

m ¼ 2, ðx1; y1; z1Þ = (0, 0, 0) and ðx2; y2; z2Þ = (1/2, 1/2, 1/2):

Fb:c:c:
hkl ¼ a exp½2�iðh0þ k0þ l0Þ�

þ a exp 2�i h 1
2þ k 1

2þ l 1
2


 �� �
¼ aþ a exp½�iðhþ kþ lÞ�: ð26Þ

(iii) Face-centered cubic (f.c.c.)

m ¼ 4, ðx1; y1; z1Þ ¼ ð0; 0; 0Þ, ðx2; y2; z2Þ ¼ ð1=2; 1=2; 0Þ,

ðx3; y3; z3Þ ¼ ð0; 1=2; 1=2Þ and ðx4; y4; z4Þ ¼ ð1=2; 0; 1=2Þ:

F f:c:c:
hkl ¼ a exp½2�iðh0þ k0þ l0Þ�

þ a exp 2�i h 1
2þ k 1

2þ l0

 �� �

þ a exp 2�i h0þ k 1
2þ l 1

2


 �� �
þ a exp 2�i h 1

2þ k0þ l 1
2


 �� �
¼ aþ a exp½�iðhþ kÞ� þ a exp½�iðkþ lÞ�

þ a exp½�iðhþ lÞ�: ð27Þ

The Fhkl of b.c.c. and f.c.c. lattices completely vanishes for

certain h; k; l. The resulting reflection Miller indices should

successively be (110), (200), (211), (220), (310), (222) . . . for

b.c.c. and (111), (200), (220), (311), (222), (400) . . . for f.c.c.

crystals.

3.4. Finite-size crystals and Bragg peak broadening

When Bragg’s law is satisfied by wavelength � at an incident

angle �, a small deviation �� from � only slightly changes the

path difference between two rays reflected by a pair of
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Figure 4
The Ewald construction: Ewald’s sphere of radius 1=� (solid circle)
depicts all possible scattering wavevectors q under the current setup.
Lattice planes with Miller indices ðhklÞ are represented by points on the
reciprocal lattice (black dots). For wavelength �, no reciprocal-lattice
point is on Ewald’s sphere implying that no scattering signal will be
generated at any scattering angle. If the wavelength is appropriately
tuned, some reciprocal-lattice points can fall on the new Ewald sphere
(dashed circle) to satisfy Bragg’s law, for instance, ð�1120Þ.



neighboring planes (of spacing dhkl), which still add

constructively. If we consider two reflection planes that are

2dhkl, 3dhkl , . . . apart, the change in path difference due to ��
accumulates and, at large enough spacing, becomes �=2 such

that the two rays completely cancel. For a beam reflected by a

crystallographic plane in a large crystal sample, it is always

possible to find another remote plane whose reflected beam

interferes destructively, even for very small ��. Therefore,

when other broadening effects are excluded, diffraction

signals in large samples at fixed �, if there are any, should in

principle be of infinitely small size (in terms of the range of �).

For small crystal samples, it is possible that the change in

path difference due to �� is much less than �=2 such that

Bragg’s law is still approximately satisfied at � þ �� and the

diffraction signal is broadened by an amount 
��. The

quantitative relationship between the broadening 2�� of the

signal and the linear dimension L of a finite-size crystal can be

found by considering all pairs of planes that are L=2 apart.

When � changes to � þ ��, the path difference for such a pair

of planes increases by 2ðL=2Þ½sinð� þ ��Þ � sin �� ¼ L cos ���
(Fig. 5). The diffraction signal broadens until destructive

interference occurs at �=2 ¼ L cos ���, which gives the

Scherrer equation:

2�� ¼
�

L cos �
¼

2 tan �

L=dhkl

: ð28Þ

Thus diffraction signals tend to be larger in smaller systems.

4. Liquid-state theory

According to liquid-state theory, a static structure factor SðqÞ

can be used to address short-range order (Thomas & Gingrich,

1941; Rahman et al., 1962) and the glass transition (Janssen,

2018) in amorphous/liquid samples (Fischer et al., 2006) and

more generally in nano-structured or other structurally

disordered systems (Billinge, 2019). In an N-particle system, it

is defined as

SðqÞ ¼
1PN

i¼1 f̂f 2
i ðqÞ

�̂�q�̂��q

� 
¼

1PN
i¼1 f̂f 2

i ðqÞ
IðqÞ; ð29Þ

where the ensemble average h� � �i is usually taken over

configurations at thermal equilibrium (Hansen & McDonald,

2013). Practically, this ensemble average results from a sum

over all the different coherence volumes in the sample, after

being Fourier transformed, giving a real-space representation

of the sample’s ensemble-averaged instantaneous local struc-

ture.

If scattering centers are point like, i.e. �ðrÞ ¼PN
i¼1 ai�ðr� riÞ, then �̂�q ¼

PN
i¼1 ai expðiq � riÞ and

SðqÞ ¼
1PN

i¼1 a2
i

XN

i¼1

ai cosðq � riÞ

�����
�����

2

þ
XN

i¼1

ai sinðq � riÞ

�����
�����

2* +
:

ð30Þ

For monodisperse systems (ai is the same for all particles),

Sð0Þ ¼ N.

In the case of ai ¼ 1, S(q) is related to the radial distribution

function gðrÞ or the pair correlation function hðrÞ ¼ gðrÞ � 1

by

SðqÞ ¼ 1þ �0

R
dr ½gðrÞ � 1� expðiq � riÞ þ �0

R
dr expðiq � riÞ

¼ 1þ �0

R
dr ½gðrÞ � 1� expðiq � riÞ þ �0ð2�Þ

3�DðqÞ

¼ 1þ �0

R
V

dr ½gðrÞ � 1� expðiq � riÞ þ �0V�q;0 ðfinite VÞ

¼ 1þ �0

R
V

dr hðrÞ expðiq � riÞ þ N�q;0

¼ 1þ �0ĥhq þ N�q;0; ð31Þ

where the global number density �0 ¼ N=V and the Fourier

transform ĥhq ¼
R

V dr hðrÞ expðiq � riÞ. Note that SðqÞ is singular

or discontinuous at q ¼ 0, i.e. limq!0 SðqÞ 6¼ Sð0Þ ¼ N. Corre-

spondingly, limq!0 ĥhq 6¼ ĥh0 ¼ �1=�0.

The radial distribution function can be obtained from the

structure factor by the inverse Fourier transform:

gðrÞ ¼ 1þ
1

ð2�Þ3

Z
q!0

dq
SðqÞ � 1

�0

expð�iq � riÞ; ð32Þ

where the value limq!0 SðqÞ should be used at q ¼ 0 in the

integration. When the system’s structure is isotropic over the

sample volume, i.e. gðrÞ ¼ gðrÞ, more convenient relationships

can be derived (Keen, 2001):

SðqÞ ¼ 1þ 4��0

Z1
0þ

dr ½gðrÞ � 1�r2 sinðqrÞ

qr
; ð33aÞ

gðrÞ ¼ 1þ
1

2�2

Z1
0þ

dq
SðqÞ � 1

�0

q2 sinðqrÞ

qr
; ð33bÞ
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Figure 5
Illustration of the Scherrer equation. In a finite-size crystal of thickness L,
the path difference between two rays reflected by a pair of planes that are
L=2 apart sets the limit of the signal broadening 2��.



where limx!0ðsin x=xÞ ¼ 1 should be used in the integration.

The limit value of SðqÞ as q approaches zero is related to the

isothermal compressibility � by (Barrat & Hansen, 2003)

lim
q!0

SðqÞ ¼ �0kBT�: ð34Þ

5. Experimental setups in photography

In this section, we discuss some technical details about

photography methods, which collect signals of IðqÞ ¼ IðX;YÞ

on a 2D film with coordinates ðX;YÞ. Three popular experi-

mental setups are often used as described below, which map q

onto ðX;YÞ differently.

5.1. Back-reflection and transmission methods

In back-reflection and transmission methods, the recording

film is a rectangular plane, which is placed either before (back-

reflection) or after (transmission) the sample as shown in

Fig. 6. In both methods, it can be seen

that the ratio qx=qy equals X=Y. If the

incident wavenumber is jk0j ¼ 2�=�,

then

ðqx; qyÞ ¼
2�

�

X

L
;

Y

L

� 	
; ð35Þ

where L2 ¼ R2 þD2 and R2 ¼ X2 þ Y2.

The difference lies in the z com-

ponent qz.

In the back-reflection method,

because 	 ¼ ð�=2Þ � � satisfies

cosð2	Þ ¼ D=L, it follows that

qz ¼ �2
2�

�
cos	 cos	

¼ �
2�

�
½1þ cosð2	Þ�

¼ �
2�

�
1þ

D

L

� 	
: ð36Þ

Therefore,

ðqx; qy; qzÞ ¼
2�

�

X

L
;

Y

L
;�

Dþ L

L

� 	
ðback-reflectionÞ: ð37Þ

In contrast, in the transmission method,

ðqx; qy; qzÞ ¼
2�

�

X

L
;

Y

L
;�

L�D

L

� 	
ðtransmissionÞ: ð38Þ

5.2. Cylindrical method

Compared with the above two setups,

the cylindrical method is more infor-

mative as it collects signals from all

azimuthal angles � (Fig. 7). In fact, a

cylindrical film, which better preserves the natural shape of

scattering spots, can be considered as the sum of an infinitely

wide back-reflection film and an infinitely wide transmission

film, on which scattering patterns farther away from the film

center are more distorted.

To map q onto the film, one can unfold the cylinder into a

plane with coordinates ðX;YÞ ¼ ðD sin�;YÞ with the azimu-

thal angle � 2 ð��; �Þ. The relationship is

ðqx; qy; qzÞ ¼
2�

�

D sin�

L
;

Y

L
;

D cos��D

L

� 	
: ð39Þ

6. Photography of single-crystalline samples

The illustration of Bragg’s law using Ewald’s sphere suggests

two ways to make reciprocal-lattice points fall on the sphere to

generate constructive scattering signals from specific crystal-

lographic planes. One is to tune the wavelength and the other

is to change the orientation of the sample. These correspond

to two experimental strategies in designing photography
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Figure 6
Illustration of (a) back-reflection and (b) transmission methods. The scattering vector q resulting
from crystallographic planes ðhklÞmaps onto 2D coordinates ðX;YÞ on the film, which is placed at a
distance D from the sample. The incident beam is along the z axis.

Figure 7
Illustration of the cylindrical method from (a) the side view and (b) the top view. A cylindrical film is
placed at a radius D around the sample.



methods for single crystals – the Laue method and the

(monochromatic) rotation method.

6.1. Varying wavelength at fixed angle: Laue method

In the Laue method, one fixes the orientation of the sample

(thus the angle � in Bragg’s law) and changes the wavelength

of the incident beam over a certain range � 2 ½�min; �max�,

which is thus called ‘white color’.

For each pixel ðX;YÞ on the film, the scattering intensity is

then the sum of contributions from all wavelengths, or

equivalently all parallel scattering vectors q, which can be

formally written as

�IIðX;YÞ ¼
P

q

IðqÞ ¼
P

q

" PN
i¼1

f̂fiðqÞ cosðq � riÞ

����
����

2

þ
XN

i¼1

f̂fiðqÞ sinðq � riÞ

�����
�����

2#
: ð40Þ

This type of general equation, which computes scattering

intensity from all atoms in the sample, reduces to a simple

summation over atoms in the unit cell for ideal crystals, as

explained in Section 3.3.

We demonstrate the photography results using perfect SC,

b.c.c. and f.c.c. samples (Fig. 8). The incident beam is along the

[001] direction and the nearest-neighbor distance � is set as

the unit of length. The code to compute �IIðX;YÞ numerically

implementing equation (40) is provided online. The value of D

can be chosen arbitrarily, with all other lengths calculated

accordingly, because it only leads to a scaling of the photo-

graph. Here, we set D ¼ 100� for numerical convenience. If

the total number of pixels on the film is NXY and the number

of wavelengths scanned is N�, then the computational

complexity using equation (40) is OðNXY N�NÞ.

6.2. Varying angle using fixed wavelength: rotation method

We use the conventional setup – cylindrical film – to explain

the rotation method for the same SC, b.c.c. and f.c.c. crystalline

samples as above (Fig. 9). The wavelength � of the incident

beam is fixed in this method, and the sample placed at the

central axis of the cylinder is rotated by a certain angle to

probe possible orientations and scattering angles 2� for given

crystallographic planes. A full circle of 2� rotation is only

necessary for noncentrosymmetric crystals containing

elements that exhibit anomalous dispersion; a rotation of 2� is

sufficient for centrosymmetric crystals.
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Figure 8
Back-reflection (left column) and transmission (right column) photo-
graphy of SC (a), (b) (N ¼ 3375), b.c.c. (c), (d) (N ¼ 4394) and f.c.c. (e),
( f ) (N ¼ 5324) crystals. The range of wavelength � is 0.35–1.0� for SC
back-reflection, 0.199–0.35� for SC transmission, 0.4–1.2� for b.c.c. back-
reflection, 0.23–0.4� for b.c.c. transmission, 0.5–1.42� for f.c.c. back-
reflection and 0.23–0.49� for f.c.c. transmission. The ðX;YÞ coordinate
range ½�150; 150� is now set by the grid resolution of the computer code,
which can be mapped onto the real length unit on a physical film.

Figure 9
Rotation photography of SC (a) (N ¼ 3375 and � ¼ 0:235�), b.c.c. (b)
(N ¼ 4394 and � ¼ 0:231�) and f.c.c. (c) (N ¼ 5324 and � ¼ 0:257�)
crystals.



The scattering intensity at coordinates ðX;YÞ is then

�IIðX;YÞ ¼
P
�

( PN
i¼1

f̂fiðqÞ cos½q � rið�Þ�

����
����

2

þ
PN
i¼1

f̂fiðqÞ sin½q � rið�Þ�

����
����

2
)
; ð41Þ

where � represents the orientation of the sample due to

rotation. For a given sample, we apply a rotation matrix about

its y axis to transform particle coordinates into new values.

The accumulated signal �IIðX;YÞ on the cylinder is then

unfolded onto a rectangle. If a total number N� of rotation

angles within ð0; 2�Þ are scanned, the computational

complexity to implement equation (41) to produce results on

NXY pixels is then OðNXY N�NÞ.

6.3. Broadening due to the finite-size effect

So far we have assumed that either varying wavelength or

varying sample orientation is needed to satisfy Bragg’s law and

produce nonvanishing scattering signals on the photograph.

However, this is only true for infinitely large systems. In our

small samples with N 
 103 particles, signal broadening allows

us to observe certain scattering patterns, even when the

wavelength � is fixed at one appropriate value.

For example, in the previously mentioned SC crystals, we

can see four scattering spots in the back-reflection method at

fixed wavelength � ¼ 0:55�, which correspond to the (113)

planes and equivalents (Fig. 10). When the system size is

varied from N ¼ 73 to 303, the size of each spot decreases. It

can be confirmed that the relationship between box size

L ¼ N1=3 and spot size 2�� roughly satisfies the Scherrer

equation 2�� / 1=L. An empirical scaling factor 21=2 is needed

on L to estimate the actual dimension of the sample perpen-

dicular to the (113) planes and to agree with the theoretical

slope �= cos �.

6.4. DNA double helix

One of the most successful and famous applications of

scattering methods is the determination of the DNA structure,

whose X-ray photography shows a characteristic ‘X’-shape

pattern with horizontal stripes (Franklin, 1953). The form of

the pattern can be understood analytically by diffraction from

the 2D projected sinusoidal waves of the single or double helix

(Kittel, 1968; Thompson et al., 2018). Here we produce the

transmission photography of a single model DNA fiber with

only backbone particles. Each helix has N = 70 particles with

10 particles per turn (pitch). The parameters of the right-

handed B-DNA, 34� for pitch and 20� for helix diameter, are

used (Fig. 11). The unit of length � can be mapped onto the

real length unit Å.

All four photographs, with the fiber being single- or double-

stranded, 2D projected, or 3D stereoscopic, have an ‘X’-shape

pattern at the center and are made of horizontal broken

stripes (Fig. 11). The two branches of the ‘X’ pattern can be

viewed as scattering signals from the two series of parallel

particles on the sinusoidal wave [Fig. 11(a)]. Because each

pitch of the helix has ten particles, the pattern has a vertical

period of ten stripes (Kittel, 1968). The brightness and dark-

ness along each horizontal stripe depend sensitively on the

relative position between different particles (Lucas & Lambin,

2005). For example, the level 4 stripe disappears when two

double strands with a phase difference of 3/8 pitch are present.

The bright level 8 signal of 3D samples at X ¼ 0 is missing for

2D structures.

7. Scattering vector q in intensity scanning

In this section, we discuss the choice of scattering vector q in

the case of disordered or partially ordered samples that are

teaching and education

652 Li and Zhang � Unifying the concepts of scattering and structure factor J. Appl. Cryst. (2021). 54, 644–660

Figure 10
System size effect on scattering size in back-reflection of SC samples with
fixed wavelength � ¼ 0:55�. The scattering angle 2� for these four spots
can be computed from tanð�� 2�Þ ¼ 85ð2Þ1=2=100. After L is scaled by a
factor of 21=2, the data (red squares) agree with the theoretical slope
(dashed line) from the Scherrer equation �= cos �.

Figure 11
Transmission photography of single-strand (a), (c) and double-strand (b),
(d) 2D sinusoidal waves (a), (b) and 3D DNA helices (c), (d) using
� ¼ 1:54�. Each helix is made of a backbone of N ¼ 70 particles with a
pitch of p ¼ 34� and a diameter of 20�. There are 10 particles per pitch.
The two helices in the double-strand structure are offset by 3/8 pitch. The
particle size in the insets is set as 5� to enhance visibility.



spatially isotropic or approximately isotropic. When samples

are isotropic, the scattering intensity IðqÞ or its normalized

version, the structure factor SðqÞ, only depends on the

magnitude q of the scattering vector, and thus does not

generate isolated spotty signals as in photography of ordered

samples. The photography IðX;YÞ, often of less interest in this

context, should ideally exhibit concentric circular patterns.

The intensity scanning IðqÞ or SðqÞ as a function of q is the

primary method used for isotropic samples.

7.1. Vector q along a single direction to represent magnitude
q in isotropic systems

In an experiment, one can vary q by observing signals at

continuously changing scattering angle 2� using a fixed inci-

dent wavelength �. Because experimental samples are gener-

ally large enough, a well averaged scattering signal can be

detected along one particular direction at 2�, as in the powder

method with a diffractometer.

For example, consider a polycrystal with M randomly

oriented crystalline grains (domains), each of N particles. The

scattering intensity at q computed from equation (9a),

assuming f̂fiðqÞ ¼ 1, is

IðqÞ ¼
PM
n¼1

PN
i¼1

cosðq � rn;iÞ

����
����

2

þ
PM
n¼1

PN
i¼1

sinðq � rn;iÞ

����
����

2

; ð42Þ

where rn;i is the position vector of particle i in grain n. If M is

large and the crystalline grains are uniformly oriented in all

directions, IðqÞ at the particular vector q can be accurate

enough to represent IðqÞ at the magnitude q, without aver-

aging over all directions of q. A similar argument applies to

bulk liquids or glasses, in which IðqÞ is also well self-averaged.

7.2. Random rotation of a small anisotropic sample

The above method of using a scattering vector q in one

direction to represent the magnitude q does not work well for

simulation samples, which are usually small and anisotropic

(single crystal instead of polycrystal). To simulate experi-

mental results, we can fix the direction of the incident ray but

randomly rotate the small sample to many orientations. This is

done by applying a 3D rotation matrix to the original particle

coordinates ri, whose rotation axis is uniformally distributed

on a sphere and rotation angle is uniformally chosen from

½0; 2��. Then the signal IðqÞ in equation (42) can be approxi-

mated by accumulating intensities from all those orientations

�:

IðqÞ ¼
P
�

PN
i¼1

cos½q � rið�Þ�

����
����

2

þ
PN
i¼1

sin½q � rið�Þ�

����
����

2
( )

: ð43Þ

Here, rið�Þ represents the new coordinates of particle i after

rotation to orientation �.

Note that the sum
P

� is applied to the intensity rather than

within the square like j
P

�

PN
i¼1 . . . j2. The latter choice would

imply a virtual system of many randomly orientated over-

lapping grains, each of size N. The positions of these virtual

grains generated by rotation do not reflect the absolute posi-

tions of grains in the real polycrystal. According to the

equivalency of equations (9a) and (9b), equation (43) is an

approximation to equation (42) by only considering relative

positions of particles within each grain rið�Þ � rjð�Þ. There-

fore, the difference between the coordinates of particles i and j

at two different orientations, rið�Þ � rjð�
0Þ, does not affect the

result of equation (43), but will lead to different and wrong

results if the sum is taken as j
P

�

PN
i¼1 . . . j2.

For small and nearly isotropic liquids or glasses, one can

replace random rotations of the sample by averaging over

many thermally equilibrated configurations. For anisotropic

systems, however, rotations are needed to sample different

directions.

7.3. Scattering vector q on a lattice

An alternative and more convenient way to simulate

experiments is to fix the sample coordinates and choose q of a

given q from all directions. It is often suggested to select q

from a 3D orthorhombic lattice, q ¼ �qðnx; ny; nzÞ, with

integers nx; ny; nz and increment �q ¼ 2�=L, where L is the

linear dimension of the cubic simulation box (Allen &

Tildesley, 1987). The motivation here is that L sets the

maximum periodicity of the simulation sample that is still

physically meaningful, and thus the resolution of q. The

integers nx; ny; nz may be chosen to run from negative to

positive values to sample spherically symmetric qs, or to start

from zero to sample only qs on 1/8 of the sphere. At the

expense of symmetry and averaging, the latter choice can reach

a higher-magnitude q with the same number of lattice points.

There are multiple qs on this lattice that correspond to the

same magnitude q, from which we can compute an average

SðqÞ. The number of qs for a given magnitude q tends to, but

does not necessarily, increase with q. For example, in a 2D

system with qs on a square lattice, there are 1, 2, 1, 2, 2, 1, 2, . . .
q points on the lattice at magnitude q=�q ¼ 0; 1; 21=2; 2;
51=2; 81=2; 9; . . ., respectively (Fig. 12). When reporting the

result of SðqÞ, one can assign q values into bins of equal size or

just use the original q values visited by the lattice points. In

both cases, SðqÞ should be the mean value averaged over all

the qs at that q.

If the sample is crystalline and L is an integer multiple of

the crystallographic lattice constant a, then the q lattice

contains the reciprocal-lattice points of the crystal (subject to

a 2� factor difference) (Allen & Tildesley, 1987). If L ¼ 5a in

the above 2D example, then q points �qð0; 0Þ, �qð5; 0Þ,

�qð0; 5Þ, �qð5; 5Þ correspond to reciprocal-lattice points

ð0; 0Þ, ð1=a; 0Þ, ð0; 1=aÞ, ð1=a; 1=aÞ, respectively (Fig. 12). These

lattice points are where Bragg’s law [equation (19)] is obeyed.

Therefore, according to the discussion in Section 3.3, if all

atomic form factors are unity, IðqÞ ¼ jFhklj
2
¼ N2 and

SðqÞ ¼ N at each of these reciprocal-lattice points. The

intensity scanning result SðqÞ needs to be an average over all q

points at that q, some of which are not reciprocal-lattice points

and thus have SðqÞ ¼ 0. For example, at q ¼ 5�q of the 2D

system, two points have SðqÞ ¼ N and two have SðqÞ ¼ 0. The

average Sðq ¼ 5�qÞ is thus ðN þ N þ 0þ 0Þ=4 ¼ N=2

(Fig. 12).
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Using lattice points to approximate qs from all directions is

problematic when L is small and thus the increment �q is

large, such that only a few qs are available at each q. The issue

is more severe at small q or towards corners of the cubic lattice

at high q. The calculated signal SðqÞ can then be quite noisy

because q is not averaged enough over all directions.

7.4. Scattering vector q on a sphere and Debye’s scattering
equation

In order to obtain a smooth curve of SðqÞ that better

matches experimental results, we need to use enough spheri-

cally distributed qs. To guarantee a uniform distribution of

points on a sphere, we apply the Fibonacci grid approach to

randomly choose Nq scattering vectors q from a sphere of

radius q (Saff & Kuijlaars, 1997). Increasing Nq improves the

effect of averaging. The complexity to compute IðqÞ or SðqÞ at

each q is then OðNqNÞ.

In the limit of Nq !1, using equation (9b), we can inte-

grate over all q directions and then normalize by the full solid

angle of 4� to compute the average IðqÞ:

IðqÞ ¼
1

4�

Z
jqj¼q

dq
XN

i¼1

XN

j¼1

f̂fiðqÞf̂fjðqÞ expðiq � rijÞ

¼
1

4�

Z2�
0

d�

Z�
0

sin � d�
XN

i¼1

XN

j¼1

f̂fiðqÞf̂fjðqÞ expðiqrij cos �Þ

¼
XN

i¼1

XN

j¼1

f̂fiðqÞf̂fjðqÞ
sinðqrijÞ

qrij

: ð44Þ

This is known as Debye’s scattering equation (Thomas, 2010;

Gelisio & Scardi, 2016), which can also be viewed as the

discrete version of the Fourier transform of the radial distri-

bution function gðrÞ in equation (33a). The computational

complexity of Debye’s method is OðN2Þ and it becomes more

efficient than numerically sampling Nq q vectors on a sphere

when N<Nq.

8. Photography and intensity scanning of disordered or
partially ordered samples

Although intensity scanning IðqÞ or SðqÞ as a function of q

generally gives more useful structural information about

isotropic samples, it is sometimes interesting to show the

corresponding photography IðX;YÞ. In fact, intensity scan-

ning can be obtained from photography by moving along a

specific radial direction on the ðX;YÞ film, as in the early days

of the powder method (Cohen, 1935).

To generate scattering photography of isotropic samples, we

use the rotation or thermal averaging method of Section 7.2.

Intensity scanning profiles are calculated using the three

methods mentioned in Sections 7.3 and 7.4.

8.1. Liquids and glasses

If a scattering photograph is taken for disordered samples

like liquids or glasses using a fixed wavelength, a characteristic

ring signal is expected at peak value q� 
 2�=� which corre-

sponds to the molecular size �. This ring is regular and clear,

when the sample, like most experimental bulk samples, is large

enough such that a good average is taken within the system in

the calculation of IðqÞ. However, in a small simulation system

(N ¼ 103–104), photography of one static disordered sample

gives spotty and noisy signals with certain traces of ring

features [Fig. 13(a)]. To enhance the sharpness of the ring, one

can either increase the size N of the sample or take the

ensemble average of IðqÞ over many configurations [Fig. 13(c)].

For homogeneous liquids and glasses, the static structure

factor SðqÞ ¼ SðqÞ varies only with the magnitude q of the

scattering vector and exhibits a major peak at q� 
 2�=�.

Using qs on a sphere numerically or Debye’s equation can

generate well averaged smooth SðqÞ curves for liquids or

glasses [Figs. 13(b) and 13(d)]. If only one disordered config-

uration is analyzed, the SðqÞ curve is much noisier using qs on

a cubic lattice [Fig. 13(b)].

8.2. Polycrystalline samples – powder method

The powder method is often used to analyze polycrystals, in

which a crystalline sample is ground into powder to produce

many small randomly oriented crystalline grains. Then, at any

scattering angle 2� where a strong signal is expected, at least

one of the grains has the correct orientation by chance to

satisfy Bragg’s law. The measured intensity scanning SðqÞ can

be used to calculate interplanar spacings in the crystal and,

with some limitations, even to determine the crystal structure.

It is difficult to produce a well randomized polycrystalline

sample in simulation, given the limit of system size. Never-

theless, we can start from a small single-crystal sample and use

random rotation or qs from different directions to simulate
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Figure 12
Scattering vector q ¼ �qðnx; nyÞ on a square lattice used for a 2D system
of box size L. q points at the same magnitude q are connected by
concentric quarter circles up to q ¼ 8�q. If the system is a crystal of
lattice constant a ¼ L=5, then four points shown in red correspond to
reciprocal-lattice points.



scattering signals of a polycrystal. In particular, we use the

same SC, b.c.c. and f.c.c. crystals used above to generate

photographs and intensity scanning results of corresponding

polycrystals (Fig. 14).

The sharp concentric rings in the photograph IðX;YÞ and

the narrow peaks in SðqÞ correspond to scattering from

different crystallographic planes ðhklÞ of the three crystals

(SC, b.c.c. and f.c.c.). SðqÞ peaks computed from spherically

distributed qs are lower and broader than those from cubic

lattice qs. The peak height using cubic lattice qs often scales

with system size N. For example, the SC crystal has L ¼ 15�
and N ¼ L3 ¼ 3375 particles. Given �q ¼ 2�=15�, the SðqÞ

peak from (100) planes is expected to occur at six q points,

�qð15; 0; 0Þ, �qð0; 15; 0Þ, �qð0; 0; 15Þ, �qð�15; 0; 0Þ,

�qð0;�15; 0Þ and �qð0; 0;�15Þ, each having a value

SðqÞ ¼ 3375. However, there are other q points with magni-

tude q ¼ 15�q, which correspond to integer solutions to

n2
x þ n2

y þ n2
z ¼ 152. In total, at q ¼ 15, there are six (15,0,0)-

like (considering its permutation and �), 24 (12,9,0)-like, 24

(10,10,5)-like, 48 (11,10,2)-like and 48 (14,5,2)-like q points.

Out of these 150 points, only six have SðqÞ ¼ N while the

others have SðqÞ ¼ 0. So the peak height Sðq ¼ 15�qÞ ¼

3375� 6=150 ¼ 135.

8.3. Mesophases: small-angle method

Mesophases are states of matter intermediate between

liquids and solids found in block copolymers (Sakurai et al.,

1991), liquid crystals (Mitchell et al., 1983), structural DNAs

(Tian et al., 2020) etc., which present mesoscopic ordering of

length scales larger than molecular size �. To detect these

long-wavelength structures, small-angle X-ray scattering (Chu

& Hsiao, 2001) or small-angle neutron scattering (Richards &

Thomason, 1983) methods are needed because scattering

signals are expected at small q (before the first major

diffraction peak 
2�=�) and thus small � as seen from

equation (2). A logarithmic scale axis is often set for SðqÞ in

the structure-factor plot because at q! 0 the signal scales

with system size N (Schneidman-Duhovny et al., 2010).
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Figure 13
Simulated transmission photography using fixed wavelength � ¼ 0:4� (a), (c) and structure factor SðqÞ (b), (d) of a static glass sample (a), (b) and a
thermally averaged liquid sample (c), (d). Red solid rings in the photographs correspond to the first and second peaks in SðqÞ. The cross pattern at the
center of each photograph is due to Fraunhofer diffraction from the small simulation box, effectively a cubic obstacle. Three methods are used to
compute SðqÞ: with qs on a cubic lattice (green circles), with qs on spheres (blue dotted line) and Debye’s scattering equation (red solid line). Insets show
the radial distribution function gðrÞ. Both samples are N ¼ 1000 hard spheres of diameter �. The glass sample has one configuration at packing fraction
0.64. The liquid sample has 1000 thermally equilibrated configurations at packing fraction �=6 ¼ 0:5236.



Experimental mesophases are often synthesized as poly-

crystals or many small crystalline domains randomly

embedded in an amorphous matrix, for which intensity scan-

ning SðqÞ at small q is used to reveal the ordering. We illustrate

the concepts of the mesophase structure factor using a

lamellar, a cylindrical and a b.c.c. spherical configuration of

domains, cut from a disordered glass sample of hard spheres of

diameter �. These structures are thus amorphous within each

domain, but the domains form a 1D, 2D or 3D superlattice for

the lamellar, cylindrical or spherical configuration, respec-

tively.

In the lamellar phase, each period is of length d ¼ 5�,

consisting of a layer with thickness 3:5� and a gap with

thickness 1:5�. We find three peaks of SðqÞ at one, two and

three times 2�=d ’ 1:257��1, corresponding to the first,

second and third order of Bragg diffraction of the superlattice
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Figure 14
Simulated powder method. Transmission photography using fixed wavelength � ¼ 0:4� (a), (c), (d) and structure factor SðqÞ (b), (d), ( f ) of
polycrystalline SC (a), (b), b.c.c. (c), (d) and f.c.c. (e), ( f ) samples. Miller indices ðhklÞ are labeled next to each signal peak. The photograph is produced
by randomly rotating a single-crystalline sample in three dimensions and taking the average of IðqÞ over 5000 orientations. The small concentric circular
pattern at the center of each photograph is due to Fraunhofer diffraction from the small simulation box, effectively a circular obstacle, after random
rotatation. Three methods are used to compute SðqÞ: with qs on a cubic lattice (green vertical lines), with qs on spheres (blue dotted line) and Debye’s
scattering equation (red solid line).



[Fig. 15(a)]. The peak height drops as q increases, and when

the layer thickness equals the gap thickness, peaks at even

multiples of 2�=d disappear.

The cylindrical phase with a disc radius 1:8� resides on a 2D

triangular superlattice with lattice constant 5�. By assigning

unit cells in two different ways with interplanar spacing

d1 ¼ f½5ð3Þ
1=2
�=2g� and d2 ¼ 2:5�, we can identify two

peaks at q1 ¼ 2�=d1 ’ 1:451��1 and q2 ¼ 2�=d2 ’ 2:513��1

[Fig. 15(b)]. The second-order peak around 2q1 ’ 2:9��1 is

also visible (not marked).

The spherical phase has spheres of radius 2� that pack on a

b.c.c. superlattice with a lattice constant 7�. If each sphere

domain had only one particle, the structure factor would be

the same as for a normal b.c.c. crystal apart from a change of

unit for q. We can obtain SðqÞ of this one-particle spherical

phase by rescaling the q axis of SðqÞ of the b.c.c. crystal, which

has a lattice constant a ¼ ð2=31=2Þ�, by a factor of

f½7ð3Þ1=2
�=2g ’ 6:062. This moves the (110) peak from 7:7��1

to 1:27��1 [Fig. 15(c)]. This helps us to identify that only the

peak from the (110) planes of the b.c.c. superlattice is sharply

distinguishable from the background signals.

9. 2D structure factor

For 2D samples or a 2D projection of 3D samples, it is

sometimes useful to express SðqÞ as a 2D function of ðqx; qyÞ

(Tutsch et al., 2014) or scattering angles ð�x; �yÞ (Lee et al.,

2005). The 2D structure factor Sðqx; qyÞ is related to the

photography IðX;YÞ by converting coordinates ðX;YÞ on the

film into components ðqx; qyÞ of the scattering vector using

equation (35). For 3D structures, the component qz can be

expressed as a function of qx and qy, for example, in the case of

the transmission method [equation (38)],

qz ¼ �
2�

�
ð1�D=LÞ

¼ �
2�

�
1� 1�

�2

ð2�Þ2
q2

x �
�2

ð2�Þ2
q2

y

� �1=2
( )

¼ �
2�

�
þ

2�

�

� 	2

�q2
x � q2

y

" #1=2

: ð45Þ

Note that knowing ðqx; qyÞ does not uniquely determine qz.

The constant 2�=� still needs to be specified. For small-angle

scattering with qx; qy ! 0, an approximation to set qz ¼ 0 is

valid if there is no long-range periodicity along the z direction.

We compute Sðqx; qyÞ for the cylindrical mesophase in

Fig. 15(b). The cylinder axis is aligned with the incident ray in

the z direction. We first use qz calculated from equation (45)

with � ¼ 0:4�. Besides the isotropic circular signal corre-

sponding to particle size �, a characteristic hexagonal pattern

with sixfold symmetry is observed at small q, which results

from the cylinders packed on a 2D triangular lattice. We can

identify two sets of spots on the vertices of hexagons – one

corresponds to the unit cell with spacing d1 and the other

corresponds to the unit cell with spacing d2 [Fig. 16(a)]. The

second-order peak related to d1 and first-order peak related to
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Figure 15
Simulated small-angle structure factor SðqÞ for (a) lamellar, (b)
cylindrical and (c) b.c.c. spherical mesophases. Three methods are used
to compute SðqÞ: with qs on a cubic lattice (green vertical lines), with qs
on spheres (blue dotted line) and Debye’s scattering equation (red solid
line). The Debye result for SðqÞ of a homogeneous glass, after being
vertically rescaled to align at q! 0, is shown for comparison (black
dashed line). Black downward-pointing arrows mark signature peaks for
each structure. The broad peak at 7:5��1 corresponds to particle size �.
Insets show top/side views of the configurations under consideration. The
blue solid line in (c) is the Debye result for SðqÞ of a b.c.c. sphere
mesophase with one particle per domain, obtained by rescaling the curve
of a b.c.c. crystal.



d2 form a hexagon together, while the first-order peak related

to d1 is mixed with the Fraunhofer diffraction pattern at

smaller q.

If we set qz ¼ 0, the Sðqx; qyÞ pattern is approximately the

same at small q, with a certain degree of enhancement

[Fig. 16(b)]. Some higher-order peaks become visible at

larger q.

10. Conclusion

In this article, we give a comprehensive and coherent review of

the core concepts of scattering methods used to determine the

structures of ordered and disordered samples. Typical exam-

ples of scattering photography and intensity scanning are

calculated, which can be used as benchmarks. Sample CPU

codes are provided on GitHub at https://github.com/

statisticalmechanics/scatter to illustrate the mathematics and

algorithms. Accelerating GPU codes that can reduce hours of

computation to seconds are also provided for efficient simu-

lation of scattering signals.

Note that, for simplicity, the intensity calculation discussed

in this paper has omitted serveral important wavelength and/

or angle-dependent factors due to, for example, absorption,

extinction, multiple scattering, polarization and the Lorentz

factor, as well as the issue of normalization of the measured

intensity to an absolute scale. We have also omitted the effect

of temperature, which generally adds a Gaussian co-factor to

each atomic scattering factor.

APPENDIX A
Fourier transform: continuous and discrete

The Fourier transform F̂Fk of a function FðrÞ defined continu-

ously in 3D real space of infinite volume is

F̂Fk ¼
R

dr FðrÞ expðik � rÞ; ð46Þ

where k is a wavevector used to extract the spatial periodicity

of FðrÞ (Lighthill, 1958). For instance, if FðrÞ has a periodic

pattern of wavelength � along the x axis, i.e.

Fðx; y; zÞ ¼ Fðxþ �; y; zÞ, then the value of F̂Fk is large for a k

of magnitude jkj ¼ 2�=� pointing in the x direction, i.e.

k ¼ ð2�=�; 0; 0Þ. Physically, if expðik � rÞ is viewed as a plane

wave traveling in the k direction, then F̂Fk would exhibit a peak

value when FðrÞ has wavelike properties coherent with

expðik � rÞ such that they add constructively in the integral. In

this sense, the Fourier transform [equation (46)] quantifies the

existence and the extent of periodicity corresponding to k in

FðrÞ.

In general, even if FðrÞ is a real function, F̂Fk can be complex.

However, if FðrÞ is real [F�ðrÞ ¼ FðrÞ] and even [Fð�rÞ ¼ FðrÞ,

i.e. with a symmetry center], its Fourier transform F̂Fk is also

real and even, because the conjugate of F̂Fk is

F̂F�k ¼
R

dr F�ðrÞ expð�ik � rÞ ¼
R

dr FðrÞ expð�ik � rÞ ¼ F̂F�k

¼
R1
�1

dr Fð�rÞ expð�ik � rÞ ¼
r0¼�r
�
R�1
1

dr0 Fðr0Þ expðik � r0Þ

¼
R1
�1

dr0 Fðr0Þ expðik � r0Þ ¼ F̂Fk: ð47Þ

Here the integration limits for the vector variable r, formally

denoted as �1, are to be understood as for each of its

components.

The inverse Fourier transform of F̂Fk is an integral in the

wavevector space which gives the original real-space function:

FðrÞ ¼
1

ð2�Þ3

Z
dk F̂Fk expð�ik � rÞ: ð48Þ

This expands FðrÞ in terms of an infinite number of periodic

basis functions expð�ik � rÞ characterized by different ks. The

coefficient or contribution of each k is just the Fourier trans-

form F̂Fk. In principle, the collection of all F̂Fks contains the
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Figure 16
2D structure factor Sðqx; qyÞ of the cylindrical mesophase using � ¼ 0:4�
with (a) qz ¼ �ð2�=�Þ þ ½ð2�=�Þ

2
� q2

x � q2
y�

1=2 and (b) qz ¼ 0. The red
solid ring marks the broad peak corresponding to particle diameter � at

2�=�. The red arrow points to the second-order peak from the unit cell
with spacing d1. The green arrow points to the first-order peak from the
unit cell with spacing d2.



entire information about the original function FðrÞ such that

knowing F̂Fks allows us to reconstruct FðrÞ.

In physical systems, FðrÞ is often defined within a finite

volume V and the Fourier transform should be integrated over

the region V:

F̂Fk ¼
R
V

dr FðrÞ expðik � rÞ: ð49Þ

If such a finite system is of a cubic shape with a linear

dimension L, i.e. V ¼ L3, then any periodicity or wavelength

�>L is unphysical. This imposes a lower bound, 2�=L, on the

smallest wavevector to be considered. The inverse Fourier

transform [equation (48)] thus should not vary k continuously

as in an integral, but only take discrete values of k with

increments ð�kx;�ky;�kzÞ ¼ ð2�=L; 2�=L; 2�=LÞ. The

integral then becomes (Chaikin et al., 1995)

FðrÞ ¼
1

ð2�Þ3
X

k

F̂Fk expð�ik � rÞ
2�

L

� 	3

¼
1

V

X
k

F̂Fk expð�ik � rÞ: ð50Þ

Mathematically, for the Fourier transform [equation (46)] to

exist, the function FðrÞ needs to be absolutely integrable. If

FðrÞ equals some nonzero constants, or without loss of

generality, FðrÞ ¼ 1, in order to reconcile the singularity, the

result of the Fourier transform is formally written as

ð2�Þ3�DðkÞ ¼
R

dr expðik � rÞ, or equivalently,

�DðkÞ ¼
1

ð2�Þ3

Z
dr expðik � rÞ; ð51Þ

where �DðxÞ is the (3D) singular Dirac delta function

[�Dð0Þ ! 1]. Usually, the Dirac delta function with the

property that
R

dx �DðxÞf ðxÞ ¼ f ð0Þ is introduced as the

limiting case of a normalized Gaussian function with its

standard deviation approaching zero. According to the above

notation, the inverse Fourier transform of the Dirac delta

function readily reduces to ½1=ð2�Þ3�
R

dk ð2�Þ3�DðkÞ

expð�ik � rÞ ¼ expð�i0 � rÞ = 1. For a system of a finite volume

V, it is also customary to writeR
V

dr expðik � rÞ ¼ V�k;0; ð52Þ

where �i;j ¼ 1; i ¼ j and 0; i 6¼ j is the Kronecker delta func-

tion.

APPENDIX B
Direct and reciprocal lattices

The position vector r of particles or atoms residing on a crystal

lattice, the direct lattice, can be expressed as a linear combi-

nation,

r ¼ xaþ ybþ zc; ð53Þ

of the (direct) lattice vectors a; b; c, which are basis vectors of

the unit cell with volume Vcell ¼ a � ðb� cÞ. Generally, a; b; c

may not be orthogonal to each other and thus x; y; z are not

necessarily the projections of r in a Cartesian coordinate

system. If particles coincide with lattice points, then x; y; z are

integers; if particles are contained inside the unit cell, their

coordinates x; y; z can be fractions (Sands, 1993).

Particles on regular crystal lattices are situated on different

families of parallel crystallographic planes when viewed from

different angles. Such parallel planes are denoted by three

integers ðhklÞ, the Miller indices, whose reciprocals are

proportional to the intercepts of the planes with the three axes

of the direct lattice. The spacing or distance, dhkl , between

neighboring lattice planes in the family ðhklÞ is a function of

the Miller indices and lattice parameters [Fig. 17(a)]. In the

special case of an orthorhombic lattice,

1

d2
hkl

¼
h2

a2
þ

k2

b2
þ

l2

c2
: ð54Þ

The reciprocal lattice is defined mathematically in a space

spanned by the reciprocal-lattice vectors a�; b�; c�, which are

related to the direct lattice vectors by

a� ¼ ðb� cÞ=Vcell; ð55Þ

b� ¼ ðc� aÞ=Vcell; ð56Þ

c� ¼ ða� bÞ=Vcell: ð57Þ

Since a� is orthogonal to ðb; cÞ, b� is orthogonal to ða; cÞ and c�

is orthogonal to ða; bÞ,

a� � a ¼ 1; a� � b ¼ 0; a� � c ¼ 0 etc: ð58Þ

Note that, in general, a�; b�; c� are not orthogonal to each

other. Positions of reciprocal-lattice points can be represented

by vectors of the form

d�hkl ¼ ha� þ kb� þ lc�; ð59Þ

where h; k; l are integers [Fig. 17(b)].

In crystallography, as the notation here implies, the physical

meaning of the reciprocal lattice is related to lattice planes in

the direct space as follows (Chen, 1986):

(i) Each point with a vector d�hkl on the reciprocal lattice

represents a family of lattice planes with Miller indices ðhklÞ.
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Figure 17
(a) Direct and (b) reciprocal lattices. The (120) planes (dashed lines) with
interplanar distance d120 in direct space correspond to the point denoted
by the vector d�120 in reciprocal space. d�120 is normal to the (120) planes
and jd�120j ¼ 1=d120.



(ii) The direction of d�hkl is perpendicular to (or normal to)

the lattice planes ðhklÞ.

(iii) The magnitude of d�hkl is equal to the reciprocal of the

interplanar spacing dhkl, i.e. jd�hklj ¼ 1=dhkl .
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