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Small unilamellar vesicles (20–100 nm diameter) are model systems for strongly

curved lipid membranes, in particular for cell organelles. Routinely, small-angle

X-ray scattering (SAXS) is employed to study their size and electron-density

profile (EDP). Current SAXS analysis of small unilamellar vesicles (SUVs)

often employs a factorization into the structure factor (vesicle shape) and the

form factor (lipid bilayer electron-density profile) and invokes additional

idealizations: (i) an effective polydispersity distribution of vesicle radii, (ii) a

spherical vesicle shape and (iii) an approximate account of membrane

asymmetry, a feature particularly relevant for strongly curved membranes.

These idealizations do not account for thermal shape fluctuations and also break

down for strong salt- or protein-induced deformations, as well as vesicle

adhesion and fusion, which complicate the analysis of the lipid bilayer structure.

Presented here are simulations of SAXS curves of SUVs with experimentally

relevant size, shape and EDPs of the curved bilayer, inferred from coarse-

grained simulations and elasticity considerations, to quantify the effects of size

polydispersity, thermal fluctuations of the SUV shape and membrane

asymmetry. It is observed that the factorization approximation of the scattering

intensity holds even for small vesicle radii (�30 nm). However, the simulations

show that, for very small vesicles, a curvature-induced asymmetry arises in the

EDP, with sizeable effects on the SAXS curve. It is also demonstrated that

thermal fluctuations in shape and the size polydispersity have distinguishable

signatures in the SAXS intensity. Polydispersity gives rise to low-q features,

whereas thermal fluctuations predominantly affect the scattering at larger q,

related to membrane bending rigidity. Finally, it is shown that simulation of

fluctuating vesicle ensembles can be used for analysis of experimental SAXS

curves.

1. Introduction

The shape of fluctuating membranes has received abiding

attention in the context of measuring bending rigidity

(Gompper & Kroll, 1997) and explaining frequent, but

surprising, membrane shapes such as the discoid shape of red

blood cells (Canham, 1970; Helfrich, 1973; Seifert et al., 1991;

Discher et al., 1994; Safran, 1994; Lim et al., 2002; Li et al.,

2005). One of the most widely used experimental techniques

to study the structure and shape of lipid bilayers and vesicles is

small-angle X-ray scattering (SAXS) (Zubay, 1999; Pabst et

al., 2000; Kiselev et al., 2002; Brzustowicz & Brunger, 2005;

Pencer et al., 2006; Kučerka et al., 2008; Székely et al., 2010;

Heberle et al., 2012). It allows information to be obtained

starting from the molecular level, such as the location of a

particular chemical entity (e.g. carbon double bonds), up to

the overall vesicle shape. However, a quantitative analysis of
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experimental scattering data that includes the effects of (i) size

polydispersity, (ii) vesicle shape fluctuations and (iii) the

curvature-dependent electron-density profile (EDP) has

remained challenging.

Theoretical methods, such as molecular dynamics (MD)

simulations (Marrink et al., 2009) and continuum elastic

vesicle models (Gompper & Kroll, 1996), can help to interpret

and understand experimental data by analysing contributions

from different physical factors. For small unilamellar vesicles

(SUVs) with radii in the range of 10–50 nm, such methods as

coarse-grained MD simulations and the elastic Helfrich (1973,

1986) model can be used efficiently. SUVs are also valuable

model systems for studying membrane adhesion and fusion

(Komorowski et al., 2018). It is therefore worthwhile to

combine simulation techniques and SAXS in order to better

understand small unilamellar vesicle shapes and their

membrane EDPs. In this work, we use a hierarchical simula-

tion framework that employs different models and simulation

techniques on different scales (Müller et al., 2003; Müller et al.,

2006): On the scale of the bilayer thickness, we obtain a

curvature-dependent radial EDP of a lipid membrane from

MD simulations using the coarse-grained MARTINI force

field (Marrink et al., 2007). We then use this profile to dress

various vesicle shapes generated using the elastic Helfrich

model (Seifert, 1997). The resulting three-dimensional elec-

tron-density map is used to calculate the scattering intensity

via a three-dimensional (3D) fast Fourier transform (FFT) and

subsequent powder averaging, taking into account many

realizations for an ensemble averaging over thermal shape

fluctuations and size polydispersity. We compare the simula-

tion results of our numerical model with existing analytical

SAXS models (Brzustowicz & Brunger, 2005), and demon-

strate its capability to be used for least-squares fitting of

experimental SAXS curves obtained from small unilamellar

lipid vesicles in the fluid phase. To this end, we present two

examples: (i) SAXS data for a (1:1) mixture of dioleoyl-

phosphatidylcholine and dioleoylphosphatidylethanolamine,

formed after extrusion through 30 nm membranes in ultra-

pure water (Milli-Q), and (ii) a (1:1) mixture of dioleoyl-

phosphatidylcholine and dioleoylphosphatidylserine.

The simulation and FFT approach allows us to analyse the

interplay between size polydispersity, vesicle shape fluctua-

tions and curvature-dependent EDP. Since in the simulation

we can control these different phenomena independently, we

compare the relative effects of these phenomena on the

distinct wavevector regions of the SAXS intensity, and thereby

decouple their effect. The goal of our paper is to propose a

strategy to analyse scattering data with respect to these three

effects. Thereby, we address the limitations of current SUV

SAXS analysis paradigms, namely idealization of one or more

of the following effects: (i) polydispersity distribution of

vesicle radii, (ii) thermal vesicle shape fluctuations and (iii)

curvature dependence of the EDP. At the same time we can

identify the range of parameters under which common ideal-

izations are justified. In particular, we consider the validity of

the factorization approximation of the SAXS intensity, i.e. the

common assumption in analytical SAXS models that the

scattering function can be described as a product of the bilayer

form factor and the structure factor of the vesicle shape

(Kiselev et al., 2002, 2006). We hope that this contribution will

facilitate the analysis of scattering data, which is particularly

relevant given the currently increasing complexity in small-

angle scattering experiments (Semeraro et al., 2021). Beyond

the specific effects considered here, we also want to develop

the approach of simulating vesicle ensembles and subsequent

3D FFT in view of the analysis of more complex vesicles and

vesicle shape transitions, as required for example in studies of

synaptic vesicles. While here we primarily consider SAXS, the

approach can equally be used for small-angle neutron scat-

tering studies of vesicles, after minor modification regarding

the scattering lengths.

2. Methods

In the following we detail our hierarchical modelling

approach, illustrated in Fig. 1. The system has two character-

istic length scales – the larger one, R0 >� 10 nm, is associated

with the vesicle radius and the smaller scale, d0 ’ 4 nm, with

the thickness of the membrane. We partition our model

according to these two scales. The vesicle shape and its fluc-

tuations are described by the Helfrich Hamiltonian (Helfrich,

1986; Milner & Safran, 1987) which characterizes a vesicle by

its average size, R0 , whose polydispersity obeys a distribution

P(R0) and bending rigidity �. The membrane structure and the

electron density, �(d), in turn, characterize the small scale and

are investigated by MD simulations of the coarse-grained

MARTINI model (Marrink et al., 2007). These simulations

provide detailed density profiles across the bilayer, from which

we extract the electron-density contrast that dictates the

SAXS intensity. The two scales are coupled via the curvature

dependence of the EDP.

First, we describe the study of the curvature-dependent

membrane structure by MD simulations, comparing a planar

membrane with a very small vesicle of radius <
�10 nm.

Subsequently, we explain how we efficiently sample the large-

scale shape fluctuations by simulating the Helfrich Hamilto-

nian, using an expansion of the radius in spherical harmonics
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Figure 1
Hierarchical modelling of vesicles. (Left) The MARTINI coarse-grained
model and (right) the continuum Helfrich model. Both vesicles have
radius R0 = 8 nm, i.e. the distance from the centre of the vesicle to the
middle of the membrane.



of the polar and azimuthal angles. Finally, dressing the vesicle

shape with a curvature-dependent EDP, we combine these two

descriptions to calculate SAXS scattering curves.

2.1. MARTINI model simulation and EDPs

2.1.1. Simulation protocol. Coarse-grained MD simulations

of a highly curved vesicle and planar lipid bilayer were

performed using the GROMACS simulation package

(Abraham et al., 2015) in conjunction with the MARTINI

force field (Marrink et al., 2007). A small 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) vesicle was formed by

spontaneous aggregation, following the protocol of Risselada

et al. (2008, 2014). The vesicle is composed of 1447 lipids in the

outer leaflet and 770 lipids in the inner leaflet, embedded in a

solvent that contains a total of 97 217 coarse-grained solvent

particles. The vesicle radius is about 8 nm, which is twice as

large as the membrane thickness, d0 = 4 nm. A planar bilayer

patch was simulated at full hydration and contained 2048

POPC lipids. All systems were equilibrated in the NPT

ensemble and simulated for 1 ms in the NVT ensemble at T =

300 K to calculate EDPs. The simulations provide detailed

bead-type profiles across the planar or highly curved bilayer,

as presented in Fig. 2.

2.1.2. Electron-density profiles. From these bead-type

profiles we extracted the EDPs of the planar membrane and

the highly curved vesicle. The numbers of electrons per

coarse-grained bead are listed in Table 1 [see also Wanga et al.

(2016)]. We used a simplified approach in which the centre of

mass of the electron cloud coincides with the centre of mass of

the coarse-grained bead.

Fig. 3 summarizes the results from the coarse-grained

MARTINI simulations. Fig. 3(a) presents the EDP of the

POPC bilayer patch and the small vesicle of radius R0 = 8 nm,

where we have subtracted the electron density of the water.

We fitted these EDPs using two Gaussian functions and a

fourth-order polynomial:

�ðdÞ ¼ �l exp �
ðd� �lÞ

2

2�2
l

� �
þ c
ðd� aÞ

2
ðd� bÞ

2

a2b2

þ �r exp �
ðd� �rÞ

2

2�2
r

� �
; ð1Þ

where d is the displacement from the bilayer’s midplane, and

�l and �r denote the positions of the left (inner) and right

(outer) peaks, respectively. These maxima in the electron

density correspond to the head-group region of the bilayer

membrane. �l and �r are the peak widths, and �l and �r

characterize the peak heights. The polynomial fits the elec-

tron-density distribution in the bilayer’s hydrophobic interior.

a and b are two roots of the fourth polynomial, and c is its

value at the midplane, d = 0.

The parameters extracted by a nonlinear least-squares fit

are compiled in Table 2. The fit was made with the Python

package SciPy using the method optimize.curve_fit.

The fit depends on the initial guess of the parameters and we

selected parameters for the fourth polynomial such that the

two real roots a and b are close to the vanishing tails of the

electron density. The profiles of the planar membrane and

highly curved vesicle differ mainly in two aspects: the heights

and the positions of the two peaks. In the case of the planar

membrane the EDP has two symmetric maxima, whereas for

the highly curved vesicle these peaks are shifted closer to each

other and differ in height. The higher peak corresponds to the

inner monolayer of the small vesicle, where the lipid head

groups are tightly packed because of the high curvature,

whereas the outer monolayer is characterized by a lower head-

group density due to the smaller curvature (Fig. 2). For the

lipid tails the effect is opposite: when referred to the midplane

of the bilayer, the area per molecule is lower in the inner
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Table 1
Number of electrons per coarse-grained bead of the POPC lipid.

Bead NC3 PO4 GL1 GL2 C1A C2A C3A
No. of electrons 49 56 29 30 30 30 30

Bead C4A C1B C2B D3B C4B C5B W
No. of electrons 31 27 27 27 27 27 40

Figure 2
Plots of the number density of lipid heads (NC3 and PO4), tails (C1A–
C4A and C1B–C5B) and water (W) versus displacement from the
bilayer’s midplane for a planar membrane (solid lines) and highly curved
vesicle (dotted lines). The schematic of a curved membrane at the top
illustrates how lipid packing responds to curvature: lipid heads (smaller
circles) in the inner leaflet are tightly packed, whereas lipid heads in the
outer leaflet have a larger hydration shell (larger circles).

Table 2
Fitting parameters of equation (1) for the EDP for a planar bilayer and a
highly curved vesicle (R0 = 8 nm).

�l

(nm�3)
�l

(nm)
�l

(nm)
a
(nm)

b
(nm)

c
(nm�3)

�r

(nm�3)
�r

(nm)
�r

(nm)

Bilayer 108.4 �2.2 0.27 �3.2 3.2 �85.9 108.4 2.2 0.27
Vesicle 107.4 �2.0 0.35 �3.2 3.0 �86.0 168.1 2.0 0.32



monolayer of the vesicle than in the outer, and thus the

volume density is also slightly lower in the inner tail region

than in the hydrophobic portion of the outer monolayer.

Additionally, the high curvature of the vesicle imparts a

tension onto the membrane. This results in a thinning of the

bilayer that is observable in the inwards shift of the position of

the maxima of the electron density.

By virtue of symmetry, a model for the curvature depen-

dence of the EDP of a vesicle can be written in the form of a

curvature expansion:

�vðd;R0Þ ¼ �mðdÞ þ
d0

R0

��aðdÞ þ
d0

R0

� �2

��sðdÞ þ O
d0

R0

� �3
" #

;

ð2Þ

where d denotes the displacement from the centre of the

vesicle’s midplane, and d0 and R0 are the bilayer thickness and

vesicle radius, respectively. Note that this expansion of the

EDP up to second order in curvature is compatible with the

small-curvature expansion that underlies the Helfrich Hamil-

tonian, i.e. both the large-scale description of the vesicle shape

and its fluctuations and the response of the small-scale bilayer

structure to curvature include effects up to second order. �m is

the density profile of the planar bilayer, whereas the curvature

dependence is described by ��a(d) and ��s(d) which are odd

(anti-symmetric) and even (symmetric) functions with respect

to their argument, d, respectively. The odd part describes the

differences between the inner and outer monolayers in

response to the membrane curvature, 1/R0. The even function,

��s(d), affects both monolayers in the same way, e.g. the

curvature-induced thinning of the membrane. Since these

effects do not depend on the sign of the curvature, they scale

like 1=R2
0 to leading order. If the symmetric contribution,

��s(d), chiefly stems from the curvature-induced thinning of

the bilayer membrane, we can approximately relate its func-

tional form to the profile of a planar bilayer by assuming that
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Figure 3
(a) Electron-density contrast of a planar bilayer patch (orange dashed line) and an 8 nm vesicle (blue solid line) of POPC lipids obtained by MD
simulations, and fitted curves using equation (1) (dashed–dotted lines). The difference between vesicle and planar membrane electron densities is shown
by the green dotted line. (b) Anti-symmetric, d0/R0 ��a(d) (red dashed line), and symmetric, (d0/R0)2��s(d) (violet solid line), responses of the electron
density to curvature (green dotted line). (c) Electron-density model of a vesicle of arbitrary radius R0 > 8 nm, as given by equation (2). (d) Electron-
density contrast of vesicles with R0 = 8 nm and R0 = 30 nm obtained with the curvature-dependent model, equation (2) (blue and red dashed lines,
respectively), and the curvature-independent three-Gaussian model, equation (4) (blue and red solid lines, respectively).



the profile of a bilayer of thickness d0 obeys the affine scaling

relation �mðdÞ = ~��ð ~ddÞ with the dimensionless ~dd = d=d0. Thin-

ning the bilayer by �d0 , we obtain for the change of profile

��mðdÞ ’ ~dd
d ~��

d ~dd

ð��d0Þ

d0

¼
! d0

R0

� �2

��sðdÞ; ð3Þ

i.e. by symmetry, the thinning of the membrane scales like

��d0 ’ 1=R2
0 and the spatial dependence of the symmetric

contribution is ��sðdÞ ’ dðd�m=ddÞ. Fig. 4 includes a

comparison between ��s(d), obtained by symmetrizing the

difference �v(d, R0) � �m(d) for the vesicle with R0 = 8 nm,

and dðd�m=ddÞ, where the amplitude has been adjusted

because �d0(R0) is unknown. The good agreement indicates

that (i) ��s is, indeed, dominated by the curvature-induced

thinning of the bilayer membrane and (ii) the affine scaling

relation is appropriate for the range of thinning induced by the

curvature.

Using this model we generated EDPs for vesicles with

different radii and these are shown in Fig. 3(c). Note that for

vesicle radii R0
<
� 10 nm we observe significant deviations

from the EDP of the planar bilayer.

A popular approximation for the EDP of vesicles is the sum

of three Gaussian peaks (Brzustowicz & Brunger, 2005):

�ðdÞ ¼
X3

k¼1

�k exp �
ðd� �kÞ

2

2�2
k

� �
; ð4Þ

where the three maxima represent the head-group regions of

the inner and outer monolayers, and the hydrophobic

membrane interior, respectively. As in equation (1), the

parameters �k, �k and �k characterize the height, position and

widths of the k th peak, respectively. The electron density of

this three-Gaussian model with symmetric inner and outer

maxima is compared in Fig. 3(d) with the curvature-dependent

model [equation (2)] for a small vesicle, R0 = 30 nm, and a

highly curved vesicle, R0 = 8 nm. The parameters of the

symmetric model [equation (4)] have been adjusted to fit the

maximum of the electron density of the inner monolayer and

the parameters of the fit are listed in Table 3. This comparison

illustrates that our curvature-dependent model and the

symmetric three-Gaussian model provide a similar repre-

sentation of the electron density for large radii, R0 >� 30 nm.

Adjusting the parameters of the symmetric three-Gaussian

model to our curvature-dependent model, the electron-

density maxima coincide (by construction), but the electron-

density contrast is slightly underestimated in the tail region

and at the interface between the head groups and the solvent.

For smaller radii, R0
<
� 10 nm, however, the two models for

the electron density differ significantly because the asymmetry

of the profile becomes important.

2.2. Generation of vesicle shapes and SAXS scattering
intensity

2.2.1. Size polydispersity and shape fluctuations. In order

to obtain the electron density of a vesicle in 3D space, we

convolute the position of the bilayer’s midplane with the

curvature-dependent electron-density contrast discussed in

the previous section. Apart from translations, the position of

the bilayer’s midplane is dictated by the size of the vesicle and

the thermal fluctuations of its shape. In order to consider size

polydespersity we assume the vesicle sizes R0 are Gaussian

distributed, according to

PðR0Þ ¼
1

2��2
R

� �1=2
exp
�ðR0 � RÞ

2

2ð�RRÞ
2

� �
; ð5Þ

where R characterizes the mean vesicle radius of the ensemble

and �RR denotes the (dimensional) standard deviation. The

latter quantity characterizes the radius polydispersity. The

Gaussian distribution is a common approximation for an

equilibrated size distribution. Our computational scheme,

however, can be straightforwardly generalized to different

distributions.

Given the vesicle radius R0, thermal fluctuations will result

in deviations from a spherical shape. The free-energy costs of

deviations from a spherical shape are proportional to the

bending rigidity, �, and quantified by the Helfrich Hamilto-

nian. In the following we assume that the thermally excited

deviations from the spherical shape remain small and we

parameterize the position of the bilayer’s midplane by the

distance R(�, 	) from the vesicle’s centre of mass. In this

spherical coordinate system, we expand R(�, 	) in terms of

spherical harmonics,
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Figure 4
Electron-density contrast for the symmetric function, ��s, and the
function d(d�m/dd), plotted versus the rescaled parameter ~dd ¼ d=d0, with
d0 = 4 nm for the vesicle and 4.4 nm for the flat membrane. The
discretization of the EDP used in the code is shown as points.

Table 3
Parameters of the symmetric three-Gaussian model [equation (4)], shown
in Fig. 3(d).

�1 = �3, � = ��1 = �3, �1 = �3 and �2 = 0.

R0 (nm) �1 (nm�3) � (nm) �1 (nm) �2 (nm�3) �2 (nm)

10 107.0 2.10 0.33 �88.0 1.40
20 109.0 2.16 0.29 �89.1 1.34
30 111.3 2.17 0.28 �89.2 1.38



Rð�; 	Þ ¼ R0 1þ
Plmax

l¼2

Pl

m¼�l

ul;mYl;mð�; 	Þ

� �
; ð6Þ

with Yl;mð�; 	Þ ¼ Pm
l ðcos �Þ exp ðim	Þ, where Pm

l ðcos �Þ are

associated Legendre polynomials. Thus the shape of a vesicle,

i.e. the position of the bilayer’s midplane up to translation, is

characterized by R0 and the set of ul, m . In thermal equilibrium,

the Helfrich Hamiltonian asserts that the fluctuation ampli-

tudes, ul, m , are statistically independent and Gaussian

distributed with zero mean and variance

ul;m

�� ��2D E
¼

kBT

�ðl þ 2Þ ðl � 1Þ ðl þ 1Þ l
; ð7Þ

where � is the bending rigidity of the membrane. The case

where l = 1 merely corresponds to a translation of the centre of

mass and is therefore omitted. We consider modes up to

lmax = 6. In order to resolve shape fluctuations on the vesicle

with a wavelength that is comparable to the membrane

thickness d0 – the smallest wavelength where the Helfrich

Hamiltonian is applicable – the order of spherical harmonics

lmax should be chosen such that the ratio 2�R0=lmaxd0 is of

order unity.

The assumption of small deviations from a spherical shape

in conjunction with the parameterization via spherical

harmonics allows us to generate independent equilibrated

vesicle shapes by (i) choosing a radius R0 according to equa-

tion (5) and (ii) drawing the coefficients ul, m from Gaussian

distributions with widths given by equation (7). The config-

urations thus generated are uncorrelated, i.e. unlike molecular

simulations of particle-based models or simulations of dyna-

mically triangulated surfaces we obtain a new membrane

shape at each generation step.

2.2.2. Calculation of SAXS scattering intensity. In order to

compute the SAXS scattering intensity from an ensemble of

vesicles with different sizes and shapes, we combine the

generation of configuration snapshots of the location of the

membrane’s midplane with the curvature-dependent EDPs.

The electron density in 3D space is obtained by

�ðrÞ ¼ �ðr; �; 	Þ ¼ �vðd;R0Þ with d ¼ r� Rð�; 	Þ; ð8Þ

where �v(d, R0) is the curvature-dependent EDP according to

equation (2) and R(�, 	) denotes the local distance of the

bilayer’s midplane from the vesicle’s centre of mass [equation

(6)]. This procedure neglects (i) the difference between the

local curvature of the bilayer’s midplane and the inverse size,

1/R0, of the vesicle, and (ii) the difference between the local

normal of the bilayer’s midplane and the radial vector to the

vesicle’s centre of mass. Both approximations are consistent

with the assumed small deviation of the fluctuating vesicle

from its lowest energy state, a spherical vesicle.

In order to calculate the scattering intensity, we collocalize

the electron density, �(r), on a regular cubic grid with

N � N � N sites. Typically, we use N = 400 or 600 in each

Cartesian direction, and the spatial extent of the collocation

grid is L = 8R. Thus the collocation grid can resolve spatial

distances �=d0 = 8R=ðNd0Þ. For small vesicles, with R = 8, 10

and 20 nm, we use N = 400, resulting in �/d0 = 0.1 for R =

20 nm. The same resolution is obtained for the largest vesicle,

R = 30 nm, for N = 600. There are two characteristic length

scales, R and d0 , and we choose the dimensionless wavevector

qR to present our results. The scattering intensity is numeri-

cally obtained by FFT of the electron density �(r) on the

regular cubic grid according to

IðjqjÞ ¼ FðqÞ
�� ��2D E

¼
R
V

d3r �ðrÞ exp ðiq � rÞ

����
����

2
* +

: ð9Þ

The average h� � �i runs over all orientations of scattering

vectors q – the ‘powder average’ – as well as independent

snapshots of vesicle shapes. We use Nv = 1000 independent

snapshots of the vesicle shape to compute the scattering

intensity. The simulations were run on a parallel cluster with

Ivy-Bridge Intel E5-2670 v2 CPUs, 2.5 GHz 2 � 10 cores and

64 GB memory, requiring 2.5 s per vesicle per core. To

compare the deviation between two scattering intensities, I(q)

and I0(q), we use the mean-squared variance:


2
¼

1

NQ

X
0� qi < qmax

IðqiÞ

I0ðqiÞ
� 1

� �2

; ð10Þ

where NQ denotes the number of q values in the considered

interval.

3. Results and discussion

3.1. Structure factor and form factor

To understand qualitatively the features of the scattering

intensity I(q), we factorize I(q) into a structure factor, which

describes the shape of the vesicle and its fluctuations, and a

form factor of the membrane, which contains information

about the EDP of the bilayer membrane (Kiselev et al., 2002).

Such a factorization approximation is justified if the two

length scales, vesicle radius R0 and bilayer thickness d0 , are

well separated, i.e. d0=R0 � 1. Using the assignment of

equation (8), we obtain for the scattering amplitude of a

vesicle with shape R(�, 	)

FðqÞ ¼
R
V

d3r �ðrÞ exp ðiq � rÞ

¼
R

d	 dr d cos � r2�v½r� Rð�; 	Þ	 exp ðiq � rÞ: ð11Þ

The scattering intensity is obtained by averaging over the

orientations of q and the vesicle shapes [equation (9)]. For

completeness, we recall the steps that result in the factoriza-

tion approximation (Kiselev et al., 2002).

(i) In the absence of size polydispersity and thermal fluc-

tuations, the vesicle shape is simply a sphere of radius R(�, 	) =

R0, and we obtain

ðqR0ÞFðqÞ

4�R2
0

¼

Z
dd 1þ

d

R0

� �
�vðdÞ sin½qðR0 þ dÞ	

¼ sinðqR0Þ

Z
dd 1þ

d

R0

� �
�vðdÞ cosðqdÞ

þ cosðqR0Þ

Z
dd 1þ

d

R0

� �
�vðdÞ sinðqdÞ: ð12Þ
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(ii) According to equation (2), the EDP �v(d) is a sum of even

and odd contributions. In the following, we keep all terms up

to second order in the vesicle’s curvature, d0/R0:

1þ
d

R0

� �
�vðdÞ ’ �m þ

d0

R0

d

d0

�m þ��a

� �

þ
d0

R0

� �2
d

d0

��a þ��s

� �
þO

d0

R0

� �3
" #

:

ð13Þ

Inserting this expansion into equation (12), we obtain for

the scattering amplitude of a thin spherical vesicle

FðqÞ ¼ 4�R2
0

sinðqR0Þ

qR0

AðqÞ þ 4�R2
0

cosðqR0Þ

qR0

BðqÞ; ð14Þ

AðqÞ ¼

Zd0=2

�d0=2

dd �mðdÞ cosðqdÞ

� 1þ
d d0

R2
0

� �
��a

�m

þ
d0

R0

� �2
��s

�m

" #
þO

d0

R0

� �3
" #

;

ð15Þ

BðqÞ ¼
d0

R0

� � Zd0=2

�d0=2

dd �mðdÞ sinðqdÞ

�
d

d0

þ
��a

�m

� �
þO

d0

R0

� �3
" #

: ð16Þ

Using this expression we obtain for the scattering intensity

I(q) up to first order in curvature

IðqÞ ¼ ITSðqÞA
2
0ðqÞ

	
1þ 2

d0

R0

� �
cotðqR0Þ

A0ðqÞ

� B1ðqÞ þ B2ðqÞ

 ��

þO
d0

R0

� �2
" #

; ð17Þ

ITSðqÞ ¼ 4�R2
0

sinðqR0Þ

qR0

� �2

; A0ðqÞ ¼
Rd0=2

�d0=2

dd �mðdÞ cosðqdÞ;

ð18Þ

B1ðqÞ ¼

Zd0=2

�d0=2

dd
d

d0

�mðdÞ sinðqdÞ; ð19Þ

B2ðqÞ ¼
Rd0=2

�d0=2

dd ��aðdÞ sinðqdÞ: ð20Þ

The leading term is the popular factorization approximation,

where ITS is the structure factor of an infinitely thin spherical

shell and A2
0ðqÞ is the powder average of the planar bilayer

form factor. Equation (18) indicates under which conditions

the factorization approximation is accurate.

The structure factor of a spherical shell and the powder-

averaged form factor of a planar bilayer are depicted in Fig. 5

for R0 = 30 nm and d0 = 4 nm. Even for this vesicle size, one

can clearly observe the separation of the two length scales R0

and d0. Most notably, the radius of the vesicle can simply be

obtained from the wavevector, qv = �/R0, at which the struc-

ture factor vanishes. The form factor of the planar bilayer in

turn, ½A0ðqÞ=d0	
2, is only a function of qd0 and basically

remains wavevector independent for q <� qm = 2�/d0. Fig. 5

also depicts the result for a spherical vesicle with curvature-

dependent EDP. The curvature dependencies, ��a and ��s,

and the first-order correction term I1ðqÞ=ITSðqÞ =

2 cotðqR0Þ ðd0=R0ÞA0ðqÞB 1ðqÞ appear to be negligibly small,

even for d0=R0 ¼ 0:13.

3.2. Models of electron-density profiles

In this part we will analyse the effect of different EDPs on

the scattering intensity. The scattering amplitude of an ideally

spherical vesicle with radius R0, whose EDP is given by three

Gaussian peaks [equation (4)], takes the form (Brzustowicz &

Brunger, 2005)

FðqÞ ¼
X3

k¼1

2�k�
2
k �k exp �

ðq�kÞ
2

2

�k

�k

� �2
" #

�
sinðq�kÞ

q�k

þ
�k

�k

� �2

cosðq�kÞ

" #
; ð21Þ

where �k = R0 + �k denotes the distance of the head-group and

tail regions from the centre of mass of the vesicle. We consider

an asymmetric EDP, where the head-group peaks differ in

their amplitudes, �1 6¼ �3. They are assumed (i) to be

symmetrically displaced by a distance � = ��1 = �3 from the

bilayer’s midplane, �2 = 0, and (ii) to have the same width,

� = �1 = �3. Moreover, we assume that (iii) the widths of

the Gaussian peaks and the bilayer thickness are small

compared with the vesicle’s radius, �k=�k � 1 and �k=R0 � 1,
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Figure 5
Scattering intensity of an infinitely thin spherical shell of R0 = 30 nm
(green dotted line), a planar membrane bilayer, R0 =1, of thickness d0 =
4 nm (orange dashed–dotted line), the product of both (red dashed line)
and simulation results for a spherical vesicle of finite width, d0=R0 ’ 0:13,
with the curvature-dependent EDP (solid blue line).



respectively. Because of condition (iii) we expand equation

(21) up to second order in �k/R0 and �k/R0 and obtain

FðqÞ ’
X3

k¼1

2�kR2
0�k

	
cosðqR0Þ

�k

R0

þ
�2

k þ �
2
k

R2
0

� �

þ
sinðqR0Þ

qR0

1þ
�k

R0

�
ðqR0Þ

2

2

�2
k þ �

2
k

R2
0

� �� ��
: ð22Þ

For giant vesicles (or, equivalently, extremely thin bilayer

membranes), �k/R0 ! 0 and �k/R ! 0 and equation (22)

predicts IðqÞ � sin2
ðqR0Þ, i.e. the first minimum of the scat-

tering intensity occurs at qR0 = �, in agreement with the

factorization approximation. Fig. 6(a) shows the scattering

intensity for vesicles of different radii R0 and a bilayer thick-

ness of d0 = 4 nm for an EDP given by the symmetric three-

Gaussian model, i.e. �1 = �3. The parameters are compiled in

Table 3. We indeed observe that the first minimum is close to

qv = �/R0 for R0 = 30 nm. For smaller values of R0 comparable

to the bilayer thickness, d0 ’ 2�, this minimum is shifted to

larger wavevectors, i.e. estimating the vesicle radius from the

first minimum of the scattering intensity will underestimate

R0 . This shift of the minimum position, qvR0 � �, scales as

�/R0 . Fig. 6(b) presents plots for ideally spherical vesicles with

radius R0 using our curvature-dependent EDP [equation (2)]

that has been parameterized from the MARTINI model

simulations. The main difference from the symmetric three-

Gaussian model is the asymmetry of the inner and the outer

electron-density maxima of the head groups, as displayed in

Fig. 3(d). Most notably, there is no discernible shift in the

location of the first minimum as a function of qR0 , i.e. the first

minimum remains an accurate estimate of the vesicle’s radius

even for small vesicles. Apparently, corrections to the factor-

ization approximation and curvature-induced asymmetry of

the EDP cancel out. Using equation (22) which describes the

scattering intensity of the asymmetric three-Gaussian model

up to second order in curvature, we can determine which

asymmetry, �1 6¼ �3, results in such a cancellation. Such a

cancellation occurs if the coefficient in front of the cosine term

of equation (22) vanishes, i.e.

X3

k¼1

�k�k

�k

R0

þ
�2

k þ �
2
k

R2
0

� �

¼
��

R0

�3 � �1 þ
�

R0

ð�1 þ �3Þ ð�
2 þ �2Þ þ �2�

3
2=�

��

� �
¼ 0; ð23Þ

�3 ¼ �1 �
�

R0

ð�1 þ �3Þ ð�
2 þ �2Þ þ �2�

3
2=�

��
; ð24Þ

i.e. the necessary asymmetry of the EDP is proportional to the

curvature of the vesicle. Clearly, the electron density �3 of the

head groups in the outer monolayer located at r = R0 + � is

smaller than �1 of the inner monolayer at r = R0� �, in agree-

ment with the curvature-dependent electron-density model

parameterized by results of the MARTINI model simulations.

3.3. Distinction of thermal fluctuations and size polydispersity

Fig. 7(a) presents the scattering intensities obtained for

ideally spherical vesicles with fixed radius, R0 = 30 nm, ideally

spherical vesicles with polydisperse radii using the distribution

[equation (5)] with �R = 0.1, vesicles with thermal shape

fluctuations characterized by � = 10kBT and lmax = 6, and

vesicles that have both a polydisperse radius R0 and thermal

shape fluctuations. We observe that both size polydispersity

and shape fluctuations smooth out the features of I(q), in

particular the first minimum at qv. In experiments, the ideal-

ization of an ensemble of monodisperse ideally spherical

vesicles breaks down – due to the limitations of experimental

vesicle preparation, the vesicle sizes are polydisperse, and the

thermal fluctuations that give rise to shape fluctuations are a

hallmark of soft matter (Székely et al., 2010; Seifert, 1997).

Fig. 7(b) presents the relative effects of size polydispersity and

vesicle shape fluctuations on the simulated SAXS curves. To

highlight the differences, we show the ratio IðqRÞ=IbothðqRÞ of

the scattering intensity with either only thermal fluctuations or

only size polydispersity to a reference curve including both
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Figure 6
Scattering intensity I as a function of the dimensionless wavevector qR0

obtained (a) from the symmetric three-Gaussian EDP with �1 = �3 [cf.
equation (4) and Table 3] and (b) with the curvature-dependent EDP,
equation (2), parameterized from the MARTINI model simulation (cf.
Fig. 3).



phenomena. This representation corresponds to the case

where, if it were possible in an experiment, one or other of

these phenomena could be ‘switched off’. In the absence of

polydispersity, i.e. for thermally fluctuating vesicle shapes with

constant R0 , the ratio exhibits rapidly decaying oscillations

that are only sizable in the wavevector range �<� qR<� 40, i.e.

switching off polydispersity in the simulation chiefly affects

the small-q regime, in accordance with the expectation that

vesicle size is the largest characteristic length scale. In the

absence of thermal shape fluctuations, i.e. for ideally spherical

vesicles of varying size, we observe that the rapid oscillations

are modulated by a sawtooth pattern that extends to much

larger q vectors, comparable to the minima of the bilayer’s

form factor, qR ’ 64 ’ 2�R=d0. Again, this corroborates the

expectation that thermal fluctuations also affect the smaller

length scales.

As illustrated above, size polydispersity and thermal shape

fluctuations give rise to small-q and large-q signatures in the

scattering intensity. In order to gauge the ability to extract the

dimensionless parameters �R and �/kBT that characterize the

size distribution and the strength of thermal fluctuations,

respectively, from the scattering intensity, we generated scat-

tering data with known values of �
R ¼ 0:1, �
/kBT = 10 and R =

30 nm, and compared the result with scattering intensities at

other parameter doublets (�R, �/kBT). This illustrates how

sensitively the scattering intensity depends on the two para-

meters and identifies correlations in their estimates. As before,

the scattering intensity is computed from Nv = 1000 inde-

pendent vesicle configurations. Fig. 8 shows a contour plot of
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Figure 7
(a) Simulated SAXS scattering intensity I(q) of an ideally thin spherical
vesicle of radius R0 = 30 nm (solid blue line), an ensemble of polydisperse
vesicles �R = 0.1 (orange dashed line), an ensemble of thermally
fluctuating vesicle shapes � = 10kBT and lmax = 6 (green dashed–dotted
line), and an ensemble with both size polydispersity and thermal
fluctuations (red dotted line). (b) Ratio of the simulated scattering
intensity of polydisperse but purely spherical vesicles ISP(q) (orange, �R =
0.1) and of vesicles showing only thermal fluctuations ITF(q) (green, � =
10kBT) to the intensity of an ensemble with both contributions, Iboth(q).

Figure 8
Isocontour plots of 
2 of simulated intensities for different poly-
dispersities �R and bending rigidities �/(kBT), calculated using equation
(10) with (a) 0 � qR< 12:2 and (b) 0 � qR< 110.



the 
2 deviation [see equation (10)]. In panel (a) the

comparison of the scattering intensities is extended over the

low-q wavevector regime 0 � qR< 12:2, whereas panel (b)

displays the comparison for an extended interval of wave-

vectors, qR < 110. In both cases, there appear to be no

significant correlations between the estimates of �R and �/kBT,

i.e. in the vicinity of the true values �
R and �
/kBT, the minor

and major axes of the elliptical contour lines of constant 
2 are

aligned with the �R and �/kBT axes in Fig. 8. Extending the

wavevector regime to large q significantly increases the

accuracy of the estimate of the bending rigidity but does not

significantly affect the estimate for the relative variance �R of

the vesicle size distribution. This observation corroborates the

discussion of Fig. 7.

3.4. Application to experimental data

Now we use the approach presented above for least-squares

fitting of experimental vesicle SAXS data. First, we demon-

strate that simulating an ensemble of vesicles and computing

the structure factor by 3D FFT followed by radial averaging

can be implemented practically. Second, we test whether the

effects of thermal fluctuations and/or static vesicle shape

deformations are relevant, in the sense that the achievable

experimental data quality suffices to distinguish these effects.

Third, we compare the fitting parameters for the bilayer EDP

obtained from the new approach with a conventional analy-

tical model.

To this end, we compare our method with the vesicle SAXS

model of Brzustowicz & Brunger (2005), which is commonly

used for SAXS analysis. This model uses a sum of N Gaussians

with amplitude �i and width �i to describe �m . It assumes

spherical symmetry for the vesicle shape and, in addition to

the treatment of Kiselev et al. (2002) described in Section 3.1,

also accounts for polydispersity of the vesicle sizes by a

Gaussian distribution with standard deviation �R . The latter is

integrated analytically, with the integration limits being set to

�1 – an approximation which breaks down at high relative

polydispersity �R ’ R0 . Furthermore, the approximation

�2
Rq cosðqR0Þ � R sinðqR0Þ is employed to obtain the final

analytical function for least-squares fitting,

IsphereðqÞ /
1

q2

XN

i¼1

XN

j¼1

�i�j�i�j exp �
q2ð�2

i þ �
2
j Þ

2

� �

� AijðqÞ � BijðqÞ þ CijðqÞ

 �

; ð25Þ

where the wavevector-dependent coefficients Aij(q), Bij(q)

and Cij(q) are given by

AijðqÞ ¼ R0 þ zið Þ R0 þ zj

� �
þ �2

R


 �
cos½qðzi � zjÞ	; ð26Þ

BijðqÞ ¼ exp �2q2�2
R

� �
R0 þ zið Þ R0 þ zj

� �
þ �2

R � 4q2�4
R


 �
� cos q 2R0 þ zi þ zj

� �
 �
ð27Þ

and

CijðqÞ ¼ 2q2�2
R exp �2q2�2

R

� �
2R0 þ zi þ zj

� �
� sin q 2R0 þ zi þ zj

� �
 �
: ð28Þ

For least-squares fitting of experimental data, the present

approach based on simulating fluctuating or deformed vesicles

and subsequent Fourier transformation (3D FFT), is used as

follows. As in the work of Brzustowicz & Brunger (2005), we

use the separated-form-factor (SFF) approximation and

model the EDP �m in terms of three Gaussians. For all fits we

also impose mirror symmetry of the EDP, neglecting curva-

ture-induced effects, since R0 � d0 . Making use of the SFF

approximation, we can hence factor out F(q) in the fitting

function and simulate vesicles with a box profile of constant

width dsim � d0. The simulated ‘�-vesicle’ hence captures only

the vesicle shape, not its EDP, significantly reducing the

simulation runs. For each �, we simulate N = 1000 vesicles for

constant (unit) radius to compute and tabulate the vesicle

structure factor S(Q) in natural units Q = qR0 . These tabu-

lated data are scaled in the fitting function with the fitting

parameter R0 , using interpolation for the sampling points in

both q and �. In the same manner, if applicable, we model a

static vesicle shape deformation, hul, mi 6¼ 0 for l = 2, m = 0, to

represent a nonspherical, oblate or prolate average vesicle

shape.

Two different lipid vesicle data sets are used for these tests:

(a) a (1:1) mixture of dioleoylphosphatidylcholine (DOPC)

and dioleoylphosphatidylethanolamine (DOPE), formed after

extrusion through 30 nm membranes in ultra-pure water

(Milli-Q), and (b) a (1:1) mixture of DOPC and dioleoyl-

phosphatidylserine (DOPS), which was also formed in ultra-

pure water but then immersed in 4 mM glucose solution to

induce osmotic pressure and vesicle deformation. Note that it

is well known from phase diagrams of vesicle shapes that a

surplus of vesicle surface over volume results in a transition

from a spherical to a prolate shape (Seifert et al., 1991; Seifert,

1997). SAXS data were collected on the bending magnet

beamline BM29 (BioSAXS) at the European Synchrotron

Radiation Facility (ESRF) in Grenoble, France, at photon

energy E = 12.5 keV using a multilayer monochromator with

�E/E ’ 0.01, and a pixel detector (Pilatus 1M, Dectris) at a

sample-to-detector distance of 2.867 m to cover a q range of

approximately 0.036–4.95 nm�1. The sample suspension was

automatically loaded into a vacuum-mounted quartz capillary

of 1.8 mm in diameter for exposure to the beam. For details of

the sample preparation, experiment and data correction we

refer readers to the article by Komorowski et al. (2018), where

the first of the two curves was published (with a standard

fitting workflow).

Fig. 9 shows the least-squares fitting of experimental SAXS

curves, by the present approach (red) as well as by the

Brzustowicz & Brunger model (orange), for the extruded

vesicles of (a) the equimolar DOPC:DOPE mixture and (b)

the equimolar DOPC:DOPS mixture in 4 mM glucose solu-

tion. In both cases the simulation/FFT fit captures in particular

the region around the first form-factor minimum better,

resulting in a smaller norm of the residual (reduced 
2). This

effect is particularly pronounced for the DOPC:DOPE data.

Here � = 7kBT provides the best fit.

For the DOPC:DOPS system, the static deformation u2,0

was varied to account for the expected shape transition due to
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osmotic pressure. Indeed, the results indicate a

transition to a prolate shape (u2,0 > 0) after the

vesicle volume decreases as a result of water

permeation induced by the osmotic gradient,

in line with the theoretical phase diagram

(Seifert et al., 1991; Seifert, 1997). Note also

that the EDPs obtained from the fits using the

current model are more plausible (red versus

orange profiles in the inset), i.e. they exhibit in

particular a higher head-group density and a

smaller width, more similar in shape to those

obtained from multilamellar planar mem-

branes. All fitting parameters are presented in

Table 4.

Thus, while we clearly see that poly-

dispersity masks vesicle shape effects to a large

extent, a residual benefit of our model is found

in terms of 
2 (at the cost of one extra fitting parameter), and

some residual sensitivity for the effects of interest remains. For

preparation methods yielding smaller �R , such as purification

or size fractionation with high-performance liquid chromato-

graphy columns, and for softer bilayers, the effects would be

correspondingly stronger.

4. Conclusions

In this paper we have analysed, by means of computer simu-

lations, the curvature dependence of the electron-density

profile of small unilamellar vesicles, as well as the effects of

thermal fluctuations and size polydispersity on small-angle

scattering curves. Curvature changes the equilibrium bilayer

structure, as captured by coarse-grained molecular dynamics

simulations, and results in a thinning of the inner leaflet and a

decrease in the head-group density of the outer leaflet. Hence

the EDP becomes asymmetric, even for a membrane with the

same lipid composition in the inner and outer leaflets. This

curvature effect becomes relevant for radii R0 < 30 nm, which

can be encountered in experimental preparations of extruded

or sonicated lipid vesicles, as well as in biological compart-

ments such as synaptic vesicles. Importantly, the curvature-

induced asymmetry is high enough that it may be observed

experimentally in future for very small vesicles. Highly

resolved experimental bilayer profiles could thus, in principle,

also provide information on the interplay of asymmetric lipid

partitioning and curvature. To this end, we have also investi-

gated how the small-angle scattering distribution changes for

small R0
<
� 10 nm when the common factorization approx-

imation breaks down. In this regime, the scattering function

can no longer be modelled as the product of a powder-aver-

aged bilayer form factor and the transform of the vesicle

shape, for example a thin hollow sphere. We find that for a

symmetric bilayer the first minimum of the scattering function

is positively shifted with respect to the value qv = �/R0 , which

underestimates the vesicle radius for small vesicles. Interest-

ingly, this shift is eliminated for curvature-induced bilayer

asymmetry. Hence, the curvature-dependent electron-density

model fixes the position of the first minimum of the scattering
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Figure 9
(a) SAXS data for 30 nm extruded DOPC:DOPE (1:1) vesicles in ultra-
pure water (black circles), with least-squares fits (solid lines) to the
analytical model according to Brzustowicz & Brunger (2005) (orange)
and to simulated and tabulated scattering curves computed for fluctuating
vesicles according to the present method (red). The inset shows the
respective EDPs, in both cases modelled by three Gaussians (head group,
tail region, head group). (b) SAXS data for DOPC:DOPS (1:1) vesicles
suspended in 4 mM glucose solution (black circles) to induce a vesicle
shape deformation by osmotic pressure. Again, the fit to the Brzustowicz
& Brunger model (orange) is compared with the present approach (red),
and the corresponding EDPs are shown in the inset. The fitting
parameters are summarized in Table 4.

Table 4
Fitting parameters obtained by least-squares fitting of the SAXS data for 30 nm extruded
DOPC:DOPE (1:1) vesicles and for 100 nm extruded DOPC:DOPS (1:1) vesicles + 4 mM
glucose (Fig. 9).

The structural bilayer parameters are �h = �h1 = �h2 and �h = �h1 = �h2 for a symmetric bilayer
profile. The amplitude of the Gaussian representing the chain region is set to �c = �1, i.e. the
electron-density difference from water is fitted (shown in Fig. 9, insets) and normalized to the
electron-density difference between water and the bilayer centre plane. u2,0 is the static
deformation.

Sample Model
�h

(a.u.)
�h

(nm)
�c

(nm)
dhh

(nm)
R0

(nm)
�R

(nm) � u2,0 
2
red

DOPC:DOPE (1:1) Fluctuating vesicle 1.28 0.23 0.53 3.67 23.54 4.83 7kBT 1.17
Spherical vesicle 1.35 0.26 0.63 3.77 17.62 6 2.46

DOPC:DOPS (1:1)
+ 4 mM glucose

Fluctuating vesicle 1.34 0.29 0.63 3.62 47.1 6.2 0.9 6.24
Spherical vesicle 1.33 0.44 0.94 3.6 36.7 8 7.96



intensity at qv = �/R0 , despite the fact that the factorization

approximation is invalid. In summary, the curvature correc-

tions become important for very small vesicles, resulting, for

example, in a 20% density difference between inner and outer

leaflets for R0
<
� 10 nm. In contrast, for vesicles with R0 >�

30 nm the curvature has very little effect and, at the same time,

the factorization approximation becomes valid.

In addition to curvature, we have studied the effects of size

polydispersity and thermal fluctuations, which both result in a

smearing out of the scattering curve minima. However, the

exact functional forms differ. In fact, polydispersity and

thermal fluctuations modify the scattering curve in different q

regimes: thermal fluctuations predominantly affect the scat-

tering intensity around the membrane form-factor minima,

corresponding to the membrane structure, while the vesicle

size polydispersity mainly contributes in the small-q range,

reflecting the vesicle size. Hence, our results show that thermal

fluctuations are not completely masked by polydispersity,

which is almost always unavoidable in experiments. At the

same time, this study also explains when the classical vesicle

models that assume perfect spherical symmetry work rela-

tively well. However, if further progress is made in purification

or size fractionation, more details of the shape fluctuations will

become visible and should be accounted for. This also holds

for small changes in the average vesicle shape, which are

sensitive indicators for changes in vesicle volume and

membrane area.

More generally, we have presented an approach which helps

to free experimental investigations of vesicles from idealizing

assumptions, by directly modelling and simulating vesicle

structures for the relevant parameters, and calculating the

scattering function based on 3D FFT on a suitable numerical

grid. Since this approach is computationally efficient, it is also

suitable for the analysis of experimental SAXS data. In future,

it could easily be augmented to accommodate either more

complicated configurations, including adhering vesicles, or

vesicles with lipids and large membrane proteins. In particular,

it could be used to study the structure of synaptic vesicles,

including the effects of protein clusters and/or shape transi-

tions. All of the above-mentioned systems can be modelled on

a numerical grid, while the 3D FFT and radial averaging

provide the link to the experimental data.

Acknowledgements

We thank Kilian Frank for contributions to the initial work of

this project, including code development and many stimu-

lating discussions. Computing time was provided by the NIC

Jülich, HLRN Göttingen/Berlin and the GWDG Göttingen.

Open access funding enabled and organized by Projekt

DEAL.

Funding information

Financial support by CRC 1286 ‘Quantitative Synaptology’,

funded by Deutsche Forschungsgemeinschaft, and CRC 803/

TP B03 is gratefully acknowledged.

References

Abraham, M. J., Murtolad, T., Schulz, R., Páll, S., Smith, J. C., Hess, B.
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