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Coordinate-free expressions for the form factors of arbitrary polygons and

polyhedra are derived using the divergence theorem and Stokes’s theorem.

Apparent singularities, all removable, are discussed in detail. Cancellation near

the singularities causes a loss of precision that can be avoided by using series

expansions. An important application domain is small-angle scattering by

nanocrystals.

1. Introduction

1.1. Overview

The term ‘form factor’ has different meanings in science and

in engineering. Here, we are concerned with the form factor of

a geometric figure as defined in the physical sciences, namely

the Fourier transform of the figure’s indicator function, also

called the ‘shape transform’ of the figure.

This form factor has important applications in the emission,

detection and scattering of radiation. Two-dimensional shape

transforms are used in the theory of reflector antennas (Lee &

Mittra, 1983). The three-dimensional form factors of the

sphere and the cylinder go back to Lord Rayleigh (1881).

Shapes of three-dimensional nanoparticles are investigated by

neutron and X-ray small-angle scattering (Hammouda, 2010).

Particles grown on a substrate (Henry, 2005) develop many

different shapes, especially polyhedral ones, as observed by

grazing-incidence neutron and X-ray small-angle scattering

(GISAS, GISANS, GISAXS) (Renaud et al., 2009). Large

collections of particle shape transforms have therefore been

derived for and implemented in GISAS software (Lazzari,

2006; Pospelov et al., 2020); another GISAS software package

uses surface triangulation for computing approximative form

factors (Chourou et al., 2013). For attempts at direct recon-

struction of polyhedral shapes from scattering patterns see the

article by Engel & Laasch (2020) and literature cited therein.

In this paper, we derive a numerically stable algorithm for

computing the form factor of any polygon or polyhedron, as

implemented in the GISAS software BornAgain (Pospelov et

al., 2020). Originally, this algorithm was documented in a terse

mathematical note (Wuttke, 2017). In the present paper,

derivations and results have been simplified, the material has

been completely reorganized for better readability, and addi-

tional literature is taken into account.

1.2. Different ways to compute form factors

The form factor of a three-dimensional solid body � � R3 is

Fðq;�Þ :¼
RR

�

R
d3r expðiqrÞ: ð1Þ
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In most applications, the wavevectors q are real. In GISAS,

however, the incident and scattered radiation may undergo

substantial absorption, which can be modeled by an imaginary

part of q. Therefore, we admit complex wavevectors q 2 C3.

For any polyhedron, (1) can be evaluated analytically by

successive integration in the three coordinates. This is

straightforward for a cuboid with edges along the coordinate

axes. In most other cases, the algebra is cumbersome, and the

resulting expressions are complicated and unattractive in that

they do not reflect symmetries of the underlying shape.

Striking examples are the form factors of the Platonic solids

worked out in a tour de force by Li et al. (2011).

It is therefore preferable to derive a coordinate-free solu-

tion of (1) that expresses the form factor of a generic poly-

hedron in terms of its topology and vertex coordinates. This

has been undertaken in different ways by Senesi & Lee (2015),

Croset (2017) and Wuttke (2017). Senesi & Lee (2015)

decomposed the polyhedron into pyramids and wrote the

polyhedral form factor as the sum of the pyramidal form factor

evaluated at different rotated q. Croset (2017) decomposed

the polyhedron into simplexes, as explored previously by Lien

& Kajiya (1984) and most recently by Li & Xie (2020), for the

integration of multinomials. Following Wuttke (2017), we here

present a different derivation that is based on use of the

divergence theorem and Stokes’s theorem to reduce the

volume integral to integrals over polygonal faces, and further

reduce these surface integrals to line integrals over straight

edges. This approach has been previously used for the inte-

gration of polynomials (Cattani & Paoluzzi, 1990; Bernadini,

1991) and for the computation of inertia moments (Mirtich,

1996).

Applications to nanoparticle assemblies typically require

some averaging over particle sizes or/and orientations. How to

compute these averages efficiently and with sufficient accuracy

is an interesting and important question, which however is

beyond the scope of the present work.

1.3. Singularities and asymptotes

All analytical expressions for polyhedral form factors,

derived by whatever method, contain denominators that

vanish at q = 0. Croset (2017) suggested, and we will confirm,

that the degree of this singularity is closely related to the

asymptotic envelope of F(q, �) for large q, which goes as q�1,

q�2 or q�3 depending on whether q is perpendicular to a face

or an edge or points in an off-symmetric direction.

However, there is nothing fundamental about the singula-

rities at q = 0: From the definition (1) in conjunction with

Leibniz’s integral rule of differentiation we see that F(q, �) is

infinitely many times differentiable for all q 2 C3; therefore F

is a holomorphic function of each of the Cartesian components

of q; therefore any apparent singularity is removable. Croset

(2018) rederived the asymptotic envelopes by classifying the

endpoint singularities of the section normal to q as function of

height. In Section 3.6, we obtain them directly from our form

factors.

The main purpose of this paper is to overcome numeric

instabilities for small q and qk. The latter is the wavevector

component in the plane of a polygonal face. We will explain

how rounding errors can grossly distort form factors when q or

qk is of the order of �/a, where � is the machine precision and a

is a typical edge length.

At this point the reader may wonder whether wavevectors

with extremely small, but nonzero, q or qk have any practical

importance. If wavevectors were drawn at random from an

entire Brillouin zone, then the chance of ever hitting

numerically problematic values would indeed be negligible.

Often, however, q is chosen along a face normal. Roundoff

errors then easily yield a tiny nonzero qk, which causes huge,

and symmetry breaking, errors in the form factor. Actually,

this entire study started from the unexpected discovery of such

artifacts in conventionally computed form factors.

2. Polygon form factor

2.1. Notation

A flat polygon �, embedded in three-dimensional space,

shall be specified by its J vertices Vj (j = 1, . . . , J). Vertex

indices shall be understood modulo J so that V0 � VJ. With

this convention, the vertex sequence forms the closed loop @�.

Edge j of the polygon is a straight line from Vj�1 to Vj. In most

of this work it is more advantageously specified through its

position

Rj :¼ ðVj þ Vj�1Þ=2 ð2Þ

and mid-to-end vector

Ej :¼ ðVj � Vj�1Þ=2: ð3Þ

The normal vector n̂n of the plane spanned by Vj shall be

oriented such that @� has the winding number +1 (fulfills the

right-hand rule with respect to n̂n). The oriented plane char-

acterized by n̂n induces a decomposition of any vector v 2 C3

into a component perpendicular to the plane,

v? :¼ ðvn̂nÞn̂n; ð4Þ

and an in-plane component,

vk :¼ v� v?: ð5Þ

This decomposition will be applied to position vectors r and to

wavevectors q. The oriented plane is fully specified by its

normal vector n̂n and its distance from the origin, r?.

Complex conjugation is denoted by a superscript asterisk.

The absolute value of a complex vector is written

q :¼ jqj ¼ ðqq�Þ1=2.

Note that the in-plane unit vector

bqkqk :¼ qk=qk ð6Þ

differs from the in-plane component q̂qk of the unit vector q̂q. In

this work, we shall only use bqkqk and q̂q, not q̂qk.

The triple product is denoted

½a; b; c� :¼ a � ðb� cÞ; ð7Þ
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with the standard operators dot (�) for the scalar product and

cross (�) for the vector product. Between adjacent vector

symbols, as in the parentheses in (4), we omit the dot.

The cardinal sine function sincðzÞ :¼ sinðzÞ=z has the

analytic continuation sincð0Þ ¼ 1. The numeric implementa-

tion for |z| ! 0 is unproblematic: as sinðzÞ has full floating-

point accuracy, so has sinðzÞ=z.

2.2. Form factor

We define the form factor of a flat figure �, embedded in

three-dimensional space, as

f ðq;�Þ :¼
R
�

R
d2r expðiqrÞ: ð8Þ

Proposition. The form factor (8) of a flat J-gon � is

f ðq;�Þ ¼
2

iqk

XJ

j¼1

n̂n; bqkqk
�;Ej

� �
sincðqEjÞ expðiqRjÞ � c
� �

ð9Þ

for qk 6¼ 0, with notations from Section 2.1, and with an

arbitrary constant c that can be chosen for computational

convenience. The value at q = 0 is the area of �,

f ð0;�Þ � Arð�Þ ¼ 1
2

PJ

j¼1

n̂n;Vj�1;Vj

� �
: ð10Þ

Values at q 6¼ 0, qk = 0 can be obtained from

f ðq;�Þ ¼ expðiq?r?Þ f ðqk;�Þ: ð11Þ

Proof. For any vector field G, we have Stokes’s theorem:

R
�

R
dr2 n̂n � ðr �GÞ ¼

H
@�

dr �G: ð12Þ

To prove (9), we choose GðrÞ :¼ n̂n� q�½expðiqrÞ � c�. The left-

hand side of (12) is

R
�

R
dr2 n̂n � ðr �GÞ ¼ n̂n � ½iq� ðn̂n� q�Þ�

R
�

R
dr2 expðiqrÞ

¼ ijn̂n� qj
2

f ðq;�Þ

¼ iq2
k f ðq;�Þ: ð13aÞ

The right-hand side of (12) is

H
@�

dr �G ¼
PJ

j¼1

RVj

Vj�1

dr �G: ð13bÞ

Each edge can be written as a parametric curve

rjð�Þ :¼ Rj þ ÊEj� so that

H
@�

dr �G¼
PJ

j¼1

ÊEj �
RþE

�E

d�G½rjð�Þ�

¼
PJ

j¼1

ÊEj; n̂n; q�
� � RþE

�E

d� exp½iqrjð�Þ� � c
� �

¼
PJ

j¼1

n̂n; q�k; ÊEj

� �
2E sincðqEjÞ expðiqRjÞ � c
� �

¼ 2qk
PJ

j¼1

n̂n; bqkqk
�;Ej

� �
sincðqEjÞ expðiqRjÞ � c
� �

: ð14Þ

With qk 6¼ 0, we obtain (9). Equation (11) follows directly from

(8) and the fact that � is a flat figure with constant r?. To prove

(10), we use Stokes’s theorem (12) with G ¼ n̂n� r=2. &

2.3. Remarks and example

A closed expression for the form factor of the polygon has

long since been known (Lee & Mittra, 1983, equation 6). A

more symmetric expression was obtained by Croset (2017)

(equation 4, where iþ 1 and i� 1 should be swapped). In our

notation, it reads

f ðq;�Þ ¼ n̂n �
XJ

j¼1

Ej�1 � Ej

ðqEj�1ÞðqEjÞ
expðiqVj�1Þ: ð15Þ

The equivalence with our equation (9) is proven in Appendix

A. Equation (15) is esthetically more pleasing than (9), but

(15) is problematic for computer implementation and ill suited

for the theoretical study of singularities, because for each j

there are two q planes for which the denominator vanishes.

Equation (10) is well known as the ‘surveyor’s formula’. The

standard proof uses triangular tessellation (Braden, 1986). See

Appendix B for a derivation of (10) from the qk ! 0 limit

of (9).

Fig. 1 shows for an equilateral triangle how strongly the

form factor, plotted as | f(q)| versus q, varies with the wave-

vector direction q̂q.

2.4. Removable singularity

The closed expression (9) for the polygonal form factor

f(q, �) has a singular factor q�1
k . As discussed in Section 1.3,

the definition of f guarantees its analyticity. So we know that

the apparent singularity at qk ! 0 is removable. We also know

the value at qk = 0, given by (10) and (11). Nonetheless, the

presence of a divergent factor may cause numeric instabilities
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Figure 1
Modulus of the form factor of an equilateral triangle as function of
wavenumber q for three different wavevector directions q̂q . The triangle
lies in the xy plane and has a symmetry axis along x. The center of gravity
is at the origin. The edge length is L = 1.



for small values of qk. To investigate this more closely, let us

write (9) as

f ðq;�Þ ¼ 2
PJ

j¼1

n̂n; bqkqk
�;Ej

� �
�jðq; cÞ ð16Þ

with the function

�jðq; cÞ :¼
sincðqEjÞ expðiqRjÞ � c

iqk
: ð17Þ

The constant c can be chosen differently for different q. At

large qk, c ¼ 0 prevents roundoff errors in the numerator of

(17). For small qk, c ¼ 1 is the better choice. To see this, we

expand �j as

�jðq; cÞ ¼
1� c

iqk
þ q̂qRj þOðqÞ: ð18Þ

The leading, j-independent term in the expansion, with the

apparent singularity (iqk)
�1, contributes nothing to the sum in

(16), whatever the value of c, because
P

j Ej ¼ 0. This,

however, holds only in exact arithmetics; in a floating-point

implementation, roundoff errors can make the sum nonzero.

For qk ! 0, any such error outgrows all other terms in the

expansion (Fig. 2). Therefore, in the small-qk regime, the only

sensible choice is c = 1, which lets the leading term vanish.

Unfortunately though, the subtraction of c ¼ 1 can cause

roundoff errors in the numerator of (17). As a straightforward

remedy, we compute �j for small qk from its series expansion

�jðq; 1Þ ¼ ðiqkÞ
�1
X1
n¼1

ðiqÞ
n
X2l
n

l¼0

q̂qRj

� �n�2l

ðn� 2lÞ!

q̂qEj

� �2l

ð2l þ 1Þ!
: ð19Þ

As a consistency check, we note that the limit �jðq! 0Þ, at

constant in-plane direction q̂q, is the n ¼ 1 term q̂qRj. Plugging

this value into (16), we recover the surveyor’s formula (10).

The algebra is quite lengthy and therefore relegated to

Appendix B.

Fig. 3 compares the series expansion with the closed

expression (9). The series expansion works well even beyond

the first minima in f(|q|). In practice, the series expansion is

only needed for qL� 1, and therefore only a few expansion

orders are needed to keep errors close to machine precision.

2.5. Polygon with inversion center

Computations can be simplified, and the numeric instability

at qk ! 0 avoided, if a polygon has a perpendicular twofold

symmetry axis (Schoenflies group S2) or, equivalently, an

inversion center at q. The form factor has the symmetry f(q? +

qk, �) = f(q? � qk, 2q� �). As the number of vertices is even,

we can write J = 2J 0 and use RjþJ 0 � q ¼ �ðRj � qÞ and

EjþJ0 ¼ �Ej. For qk 6¼ 0, the form factor is

f ðq;�Þ ¼ expðiq qÞ
4

qk

XJ0

j¼1

n̂n; bqkqk
�;Ej

� �
sincðqEjÞ sin½qðRj � qÞ�:

ð20Þ

In contrast to (9), the summand in (20) has no constant

contribution but is linear in q. There is no cancellation for

qk ! 0 and no need to use a series expansion for the accurate

computation of f.

3. Polyhedron form factors

3.1. Notation and parameterization

An orientable polyhedron � shall be specified by its K

polygonal faces �k (k = 1, . . . , K). For each face �k, the

normal n̂nk :¼ n̂nð�kÞ shall point to the outside of �; this then

determines the order of the vertices in the sequence

Vk1; . . . ;VkJk
.

In a computer implementation, the topology and geometry

of a polyhedron can be specified through two arrays: Array C

holds one coordinate triple V� for each of the polyhedron’s

vertices. Array T holds one array �k for each of the poly-

hedron’s faces �k; �k holds the global indices �kj of the vertices

that belong to face �k, such that V�kj
¼ Vkj. In short, array C

holds the coordinates and array T holds the topology of the

polyhedron. For the latter, Schlegel diagrams (Fig. 4) provide

a helpful visualization. In physical simulations, C is typically

generated by a parametric function, whereas T is static. An
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Figure 2
Same form factor modulus as in Fig. 1, for q̂q ¼ ð0:6; 0:8; 0Þ, now in a
double logarithmic plot, computed in double-precision arithmetic
according to the closed expression (9) with c = 0. For some small q, the
results are totally wrong owing to imperfect cancellation in the leading-
order term that ought to vanish.

Figure 3
Modulus of the form factor of the equilateral triangle of Fig. 1, as function
of wavenumber q for wavevector direction q̂q ¼ ð0; 1; 0Þ. The black chain
is computed using the analytical expression (9). The colored curves are
computed using the series expansion (19) up to the indicated order n.



assertion in the computer code should ensure that all faces are

planar for any geometry parameters.

Additionally, it is advantageous to foresee boolean para-

meters to indicate the presence or absence of inversion

centers. One needs one such parameter for the entire poly-

hedron and one for each of its polygonal faces.

3.2. Form factor
Proposition. If q 6¼ 0, then the form factor (1) of a K-hedron

� is

Fðq;�Þ ¼
1

iq

XK

k¼1

q̂q
�
n̂nk f ðq;�kÞ � Cf ð0;�kÞ
� �

ð21Þ

with an arbitrary constant C that can be chosen for compu-

tational convenience. Otherwise, for q = 0, the form factor is

just the volume of �,

Fð0;�Þ � Volð�Þ ¼ 1
3

P
k

Arð�kÞ r?k: ð22Þ

Proof. For a polyhedron, the divergence theorem takes the

form

RR
�

R
d3r rH ¼

R
@�

R
d2r n̂n H ¼

P
k

RR
�k

d2r n̂nkH: ð23Þ

With the choice H :¼ q�½expðiqrÞ � C�, this yields

iq2Fðq;�Þ ¼
PK
k¼1

q�n̂nk

RR
�k

d2r expðiqrÞ � C½ �: ð24Þ

With the notation (8), this proves (21). With the choice

H :¼ r=3, we obtain the volume formula (22). &

Similar to c in Section 2, the constant C can and should be

chosen differently for different q domains. At large q, the best

choice is C = 0. The small-q case is discussed in Section 3.3.

The volume formula (22) has previously been derived by

tetrahedral tessellation (Comessatti, 1930, Cap. II, x3, III 171).

To see the equivalence of (12) with equation 15 of Croset

(2017), we let C = 0, take f(q, �) from (15) and use the fact that

Ej�1 � Ej is colinear with n̂n.

3.3. Removable singularity

The closed expression (21) for the polyhedral form factor

F(q, �) contains two removable singularities: the explicit

factor q�1, and the factor q�1
k contained in the polygonal form

factors f(q, �k). For the case that only qk, but not q, is close to

0, we rely on the numerically stable computation of f derived

in Section 2.4. Here we address the case q! 0.

In analogy to Section 2.4, it is sufficient to invoke analyticity

to convince ourselves that the singularity of F is removable.

The value of F in the limit q! 0 is just the volume of �. The

expansion of (21) starts with

Fðq;�Þ ¼
XK

k¼1

q̂q
�
n̂nk

1� C

iq
Arð�kÞ þ Oðq

0Þ

� 	
: ð25Þ

The leading, apparently singular term is identically zero

because
P

k n̂nkArð�kÞ ¼ 0. This, however, holds only in exact

arithmetics; in a floating-point implementation, roundoff

errors can make the sum nonzero. For q! 0, any such error

outgrows all other terms (Fig. 5). Therefore, in the small-q

regime, the only sensible choice is C = 1, which lets the leading

term vanish.

Unfortunately though, this can lead to roundoff errors in

the difference f(q)� f(0) in (21). As a remedy, we compute the

form factor from a series expansion as follows: Combine (21)

and (16) to write the form factor as

Fðq;�Þ ¼ 2
PK
k¼1

q̂q
�
n̂nk

PJk

j¼1

n̂n; bqkqk
�;Ekj

� �
�kjðqÞ ð26Þ

with the function
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Figure 5
Modulus of the form factor of a truncated tetrahedron (trigonal
pyramidal frustum). The base is an equilateral triangle in the xy plane,
oriented so that an edge points in the y direction, with edge length L = 1;
the dihedral angle is 72�; the height H = L/2. The plot shows ReF versus q
for the off-symmetric direction q̂q ¼ ð1; 2; 3Þ=141=2. Blue spots are
computed using the analytical expressions (9) and (21). For qL < 10�6,
roundoff errors dominate. The orange line is computed according to (26)
with summation (28) up to n = 19.

Figure 4
Schlegel diagram of a facetted cube. This representation of polyhedral
topology can help to assign vertex indices in a systematic way, which then
facilitates the coding of C and T . The topology array T has elements (0, 1,
2, 3, 4, 5, 6, 7), (0, 8, 1) etc. The coordinate array C, parameterized on
lengths a and b, has elements (a, b, a), (b, a, a), (�b, a, a) etc.



��ðqÞ :¼
��ðq; 1Þ � ��ð0; 1Þ

iq
: ð27Þ

The constant ��(0, 1) neutralizes the first term in the expan-

sion (19) of ��(q, 1) so that

��ðqÞ ¼
X1
n¼2

ðiqÞn�2
X2l
n

l¼0

q̂qR�ð Þ
n�2l

ðn� 2lÞ!

q̂qE�ð Þ
2l

ð2l þ 1Þ!
: ð28Þ

Fig. 5 shows that there is good overlap between the domains of

the closed expression and the series expansion.

3.4. Polyhedron with inversion center

If a polyhedron has an inversion center at q (Schoenflies

group Ci), then the form factor has the symmetry F(q, �) =

F(�q, 2q � �). As the number of faces is even, we can write

K = 2K0. We require that faces numbered k and k + K0 be

opposite to each other. We use n̂nkþK0 ¼ �n̂nk to write the form

factor as

Fðq;�Þ ¼ expðiq qÞ
1

iq

XK0

k¼1

q̂qn̂nk
~ff ðq;�k � �Þ; ð29Þ

where

~ff ðq;�Þ :¼ f ðq;�Þ � f ðq;��Þ ð30Þ

is the form factor of a pair of opposite faces. The symmetry

f(q, ��) = f(�q, �) allows some economy in computing F

from the generic closed expression.

In the small-q case, the expansion (26) is symmetrized as

Fðq;�Þ ¼ 2
PK0
k¼1

q̂q
�
n̂nk

PJk

j¼1

n̂n; bqkqk
�;Ekj

� �
�kjðqÞ þ �kjð�qÞ
� �

; ð31Þ

and in consequence in (28) the terms with odd n cancel.

3.5. Prism

For a prism � = {r | rk 2 �k, |r?| < h/2} a much simpler

solution is available. We return to the definition (1). Applying

Fubini’s theorem to factorize the triple integral from the onset

into an integral (8) over the base �k of the prism and an

integral along the normal direction n̂n, we obtain the form

factor

Fðq;�Þ ¼ h sincðq?n̂n h=2Þ f ðqk;�kÞ ð32Þ

for all q. Thanks to the sinc function in (32), there is no

singularity in q? and therefore no series expansion is needed

for q? ! 0.

3.6. Asymptotic envelopes

We now come back to the asymptotic power-law envelopes

for large q discussed in Section 1.3. A cube � with side lengths

L, centered at the origin and oriented along the coordinate

axes, has the form factor

Fðq;�Þ ¼ L3 sincðqxL=2Þ sincðqyL=2Þ sincðqzL=2Þ: ð33Þ

For large q it has the asymptotic envelope |F | 
 8/|qxqyqz|,

which goes as q�3 for fixed direction q̂q, provided none of the

three components q̂qx, q̂qy, q̂qz is zero. If q̂q is perpendicular to one

of the edges of the cube, then one of the three sinc functions

has the fixed argument 0 and value 1. And if q̂q is perpendicular

to one of the faces of the cube, then (33) has two constant

factors sincð0Þ ¼ 1. As Croset (2017) has worked out, these

observations can be generalized to any polygon. Within our

present formalism, this can be confirmed as follows.

For q 6¼ 0, the form factor (21) of any K-hedron � is limited

by

Fðq;�Þ


 

 
 ð1=qÞK max

k
jf ðq;�kÞj: ð34Þ

For qk 6¼ 0, the form factor (9) of any J-gon � is limited by

f ðq;�Þ


 

 
 ð2=qkÞ J max

j
jsincðqkEjÞj: ð35Þ

For qEj 6¼ 0, the sinc function in (35) is limited by

sincðqEjÞ


 

 
 1

qEj

: ð36Þ

So if all the above conditions are fulfilled, then the polyhedron

form factor F has an asymptotic envelope
q�3. If there is any

edge perpendicular to q, then (36) is not applicable, and

max jsincðqEjÞj takes the q-independent value 1, so that the

envelope of F goes with q�2. If there is any face perpendicular

to q, then (35) is not applicable, and max j f j in (34) takes the

q-independent value Arð�Þ; so the envelope of F goes with q�1.

4. Concluding remarks

4.1. Implementation

Code for computing the form factor of any polygon or

polyhedron, based on all the above, has been implemented as

part of the open-source GISAS simulation package Born-

Again (Pospelov et al., 2020). All floating-point numbers,

internal and external, have double precision. A summary of

the algorithm is given in Appendix C.

The code underwent extensive tests for internal consistency

and for compatibility with conventional form factor formulae.

Checks of BornAgain against the reference code IsGISAXS

(Renaud et al., 2009; Lazzari, 2006) have been documented by

Pospelov et al. (2020). In the following, we describe form

factor consistency checks that have been permanently added

to the BornAgain unit tests.

4.2. Tests

The internal consistency tests address symmetry, speciali-

zation and continuity. Symmetry tests are performed for

particle shapes that are invariant under some rotation or

reflection R. For a suite of wavevectors q, it is checked that the

relative deviation of form factors F(q) and F(Rq) stays below a

given bound.

The specialization tests address pairs of figures �1, �2 with

different topologies that coincide for certain geometry para-

meters. For instance, if �1 is a box with side lengths a, b, c, and

�2 a truncated cube with side length a and truncation length t,

then the choices a = b = c and t = 0 reduce �1 and �2 to the
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same cube. For a suite of wavevectors q, it is checked that the

relative deviation of form factors F(q, �1) and F(q, �2) stays

below a given bound.

The continuity tests search for possible discontinuities due

to a change in the computational method. They need special

instrumentation of the code, activated through a CMake

option and a precompiler macro. Under this option, additional

variables tell us whether the analytical expression or the series

expansion has been used in the latest form factor computation,

and, if applicable, at which expansion order the summation

was terminated. For a given direction q̂q, bisection is used to

determine wavevectors where one of these variables changes.

Then, the form factor F is computed for wavevectors slightly

before and slightly after the transition, and it is checked that

the relative step in F remains below a given bound.

All these tests are performed for a suite of particle shapes,

for different wavevector directions q̂q with different degrees of

symmetry, for a logarithmically wide range of magnitudes q

and for a range of complex phases.

4.3. Crossover metaparameters

For large q, the polyhedral form factor is computed from

(21) with C = 0. For small q, we use (26) with the expansion

(28). Therefore, we need a heuristic metaparameter ~qq that

determines which algorithm to use. For large q, it still can

happen that qk is small. Therefore, a second metaparameter ~qqk
is needed to determine whether face form factors are

computed from the closed expression (9) or from (16) with the

expansion (19). As ~qq and ~qqk are dimensionless, the choice of

algorithm is based on qr and qkr, where r is the radius of the

circumscribing sphere of figure �. Under a multitude of tests,

we obtained the best results with ~qq ¼ ~qqk ’ 10�2.

4.4. Accuracy

Currently, the bounds for maximum relative form factor

discrepancies are 10�11 in symmetry tests, 6 � 10�12 in

specialization tests and 6 � 10�9 in continuity tests. Discre-

pancies reaching the order of magnitude of these bounds are

only observed for a few out of hundreds of thousands of test

cases. Most often, errors are smaller than 10�15, i.e. a small

multiple of the machine precision. Some of the larger discre-

pancies are compiler or processor dependent.

The cases of relatively large discrepancy that we have

investigated so far all involve special wavevectors that make

the integral (1) more symmetric than the underlying figure �.

Appendix D presents one such case: a pyramid that acquires

the inversion symmetry of a bipyramid if q lies in the base

plane.

It remains to be seen whether such cases warrant closer

attention and improved code. So far, we have not encountered

a single q, � combination where symmetry, specialization or

continuity tests revealed numeric errors larger than single-

precision machine error.

APPENDIX A
Polygon form factor in the literature

As a complement to Section 2.3, we demonstrate the equiva-

lence of our form factor (9) with the result (15) of Lee &

Mittra (1983) and Croset (2017). We start from (9), choose c =

0 and expand the unit in-plane vector bqkqk:

f ðq;�Þ ¼
2

iq2
k

XJ

j¼1

½n̂n; q�k;Ej� sincðqEjÞ expðiqRjÞ: ð37Þ

Expanding the sinc function, and using (2) and (3) to simplify

Rj � Ej, we obtain

q2
k f ðq;�Þ ¼

XJ

j¼1

½n̂n; q�k;Ej�

qEj

expðiqVj�1Þ

�
XJ

j¼1

½n̂n; q�k;Ej�

qEj

expðiqVÞj

¼
XJ

j¼1

½n̂n; q�k;Ej�

qEj

�
½n̂n; q�k;Ej�1�

qEj�1

� �
expðiqVj�1Þ

¼ n̂n� q�k
� �

�
XJ

j¼1

Ej

qEj

�
Ej�1

qEj�1

� �
expðiqVj�1Þ: ð38Þ

Using n̂nE ¼ 0, and hence qE = qkE,

q2
k f ðq;�Þ ¼ n̂n� q�k

� �
�
XJ

j¼1

EjðqkEj�1Þ � Ej�1ðqkEjÞ

ðqEj�1ÞðqEjÞ
expðiqVj�1Þ

¼ n̂n� q�k
� �

�
XJ

j¼1

ðEj�1 � EjÞ � qk

ðqEj�1ÞðqEjÞ
expðiqVj�1Þ

¼ qk � n̂n� q�k
� �� �

�
XJ

j¼1

Ej�1 � Ej

ðqEj�1ÞðqEjÞ
expðiqVj�1Þ:

ð39Þ

Using n̂nqk ¼ 0, we obtain (15).

APPENDIX B
Polygon area as lowest expansion coefficient

As a complement to Section 2.4, we demonstrate the equiva-

lence of two different expressions for the area of a polygon:

the qk!0 limit of the generic form factor (9), and the

surveyor’s formula (10). For any constant direction q̂q with

qk 6¼0, we have from (16) and (19)

f ð0;�Þ ¼
2

qk
n̂n� bqkqk

�
� �

�
XJ

j¼1

EjðqRjÞ: ð40Þ

Splitting q = q? + qk, drawing the constant q?r? in front of the

sum and using
P

Ej ¼ 0 we obtain

f ð0;�Þ ¼ 2 n̂n� bqkqk
�

� �
�
PJ

j¼1

EjðbqkqkRjÞ: ð41Þ

Inserting the definitions of Ej and Rj,
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�0ðbqkqk;�Þ ¼
n̂n� bqkqk

�

2
�
XJ

j¼1

Vj � Vj�1

� � bqkqk � ðVj þ Vj�1Þ
� �

: ð42Þ

Multiplying out and shuffling indices ðj�1Þ ! j for some

terms under the sum gives

�0ðbqkqk;�Þ ¼
n̂n� bqkqk

�

2
�
XJ

j¼1

VjðbqkqkVj�1Þ � Vj�1ðbqkqkVjÞ
� �

¼
n̂n� bqkqk

�

2
�
XJ

j¼1

Vj�1 � Vj

� �
� bqkqk

¼
bqkqk � ðn̂n� bqkqk

�Þ

2
�
XJ

j¼1

Vj�1 � Vj

� �
: ð43Þ

Using n̂nqk ¼ 0, we recover (10).

APPENDIX C
Algorithm summary

In this appendix, we summarize the algorithm for the

computation of the form factor F(q; �) as derived in this

work. For clarity and brevity, we only consider a polyhedron �
without any inversion symmetry. For polyhedra with inversion

symmetry, and for other details omitted here, see the actual

implementation in the open-source code BornAgain.

Read the wavevector q, the topology T , the vertex coor-

dinates C and the symmetry flags (Section 3.1, ignored here).

Discard faces with zero or negligible area. For each face,

merge adjacent vertices with zero or negligible distance.

Assert that all remaining faces are planar. Compute the

circumscribing radius r of � (Section 4.3). For each face �k,

compute the circumscribing rk.

If qr < 10�2 (Section 4.3), then compute F according to (26)

and (28), with changed summation order so that the outermost

summation runs over the expansion power n. Terminate if the

relative contribution of two subsequent expansion terms is less

than � = 2 � 10�16.

Otherwise (qr � ~qq), compute F according to (21) with C = 0.

This is a weighted sum of polygonal face form factors f(q, �k).

They are computed as follows:

If qkrk < 10�2, then compute f according to (16) and (19)

with changed summation order so that the outermost

summation runs over the expansion power n. Terminate if the

relative contribution of two subsequent expansion terms is less

than � = 2 � 10�16.

Otherwise (qkrk � 10�2), compute f according to (9) with

c = 0.

APPENDIX D
Additional symmetry at special wavevectors

As a complement to Section 4.4, we give one example of how

special wavevectors cause extra symmetries in the integral (1)

that lead to cancellation and roundoff errors. Consider a

pyramid � with a base �0 that has at least a twofold rotation

axis, as considered in Section 2.5. Let n̂n be the normal of �0,

pointing towards the outside of �. With (4) and (5) it induces

the decomposition r = rk + r?.

Now consider a wavevector q in the plane of �0 so that q? =

0. To see how this causes an extra symmetry in the integral (1),

consider the bipyramid �2 that is the union of � and the

mirror image of � under reflection about the �0 plane,

�2 ¼ fr j rk þ r? 2 � _ rk � r? 2 �g: ð44Þ

Obviously, for the special in-plane q under consideration,

Fðq;�Þ ¼ 1
2 Fðq;�2Þ: ð45Þ

Thereby, the form factor integral (1) for F(q, �) has the extra

symmetries of the bipyramid �2. The combination of the S2

symmetry assumed for �0 and the mirror symmetry that

constitutes the bipyramid implies an inversion symmetry

around the center of �0. As discussed in Section 3.4 this leads

to cancellation of some terms. Unless these terms are removed

from the implemented formulae, severe roundoff errors must

be expected.
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