
cif applications

J. Appl. Cryst. (2021). 54, 661–672 https://doi.org/10.1107/S1600576720016532 661

Received 29 July 2020

Accepted 21 December 2020

Edited by A. Barty, DESY, Hamburg, Germany

Keywords: Crystallography Open Database;

Crystallographic Information Framework; CIF

validation; CIF dictionary; DDLm.

Supporting information: this article has

supporting information at journals.iucr.org/j

Validation of the Crystallography Open Database
using the Crystallographic Information Framework

Antanas Vaitkus,a* Andrius Merkysa and Saulius Gražulisa,b

aDepartment of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio

al. 7, LT-10257, Vilnius, Lithuania, and bFaculty of Mathematics and Informatics, Vilnius University, Naugarduko g. 24,

LT-03225, Vilnius, Lithuania. *Correspondence e-mail: antanas.vaitkus90@gmail.com

Data curation practices of the Crystallography Open Database (COD) are

described with additional focus being placed on the formal validation using the

Crystallographic Information Framework (CIF). The cif_validate program,

capable of validating CIF files against both the DDL1 and the DDLm

dictionaries, is presented and used to process the entirety of the COD.

Validation results collected from over 450 000 CIF files are demonstrated to be a

useful resource in the data maintenance process as well as the development of

the underlying ontologies. A set of programs intended to aid in the dictionary

migration from DDL1 to DDLm is also presented.

1. Introduction

Large-scale analysis of data can often provide insight into

phenomena that are not obvious from individual experiments.

For this reason, all scientific data should ideally be made open

and readily accessible by programmatic means (Wilkinson et

al., 2016). Open databases put this idea into practice by

organizing and presenting data sets of various origins in a

uniform way (Berman et al., 2003; Vrandečić & Krötzsch,

2014). However, merely collecting the data should be viewed

as insufficient both for databases and for individual

researchers. Sound scientific conclusions must always be

preceded by a rigorous validation of the data.

Data validity can be divided into three levels. The first level

covers the syntactic correctness. Data files that do not strictly

adhere to the specified syntax are very likely to be rejected or

misinterpreted by the processing software. The second level

deals with semantic validity, that is, the conformance to a set of

formal requirements for each data field and its relations to

other data fields. The third level involves passing more

specialized tests that are usually based on heuristics specific to

the field of investigation or even require the expertise of an

experienced human operator.

It is common practice to express syntactic and semantic

constraints using separate specifications. Probably the best

known example of such an approach is the Extensible Markup

Language (XML) and the XML Schema Definition Language

(XSD) (Gao et al., 2012; Peterson et al., 2012). XML defines

the syntax of the data files while XSD provides a formal way of

describing the data. Concepts such as the overall hierarchy of

the document, relations between its elements and data types

are covered by XSD. A similar separation of concerns is

manifested by the JavaScript Object Notation (JSON) file

format and the accompanying JSON schema (JSON, 2019). In

the field of crystallography, however, the Crystallographic

Information Framework (CIF) (Hall & McMahon, 2006;

Brown & McMahon, 2002) is preferred despite the widespread

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576720016532&domain=pdf&date_stamp=2021-02-14


popularity of the aforementioned data formats. Released

several years prior to XML 1.0, it implements separation of

syntax and semantics in the form of the CIF file format and

CIF dictionaries (McMahon, 2012).

The term crystallographic information file refers to a file

format family that consists of CIF 1.1 (Hall et al., 1991) and

CIF 2.0 (Bernstein et al., 2016). Although these formats are

mutually incompatible, they do share a lot of common

features: both are human readable, store data in an order-

independent fashion and use data items as the basic building

blocks. A data item itself consists of a data name and asso-

ciated data values; in the simplest case it can be viewed as a

key–value pair. Alternatively, several data items can be

grouped together to form multiple packets of related data

values. CIF denotes such packets with the loop_ keyword;

therefore these groupings are commonly referred to as

‘looped lists’. The recently released CIF 2.0 introduced several

modern features such as complex data structures and Unicode

support; these changes were also addressed by the latest

generation of CIF dictionaries.

CIF dictionaries employ the Dictionary Definition

Language (DDL) to describe the semantics of the data and

can be classified into three generations based on the DDL

version to which they conform [DDL1 (Hall & Cook, 1995;

Hall, 2006), DDL2 (Westbrook & Hall, 2006) or DDLm

(Spadaccini & Hall, 2012)]. Some aspects of the semantics in

CIF dictionaries are expressed formally in a computer-

readable way; others are semi-formal in the sense that the

descriptions themselves are machine parsable but the content

is intended to be interpreted by a human. Although this

arrangement limits the scope of examination that can be

carried out in a domain-independent automated fashion, a

generalized validator can still detect many irregularities that

would otherwise go unnoticed. As a result, formal validation

using CIF should be viewed as an essential step of crystal-

lographic data quality assurance.

One of the common criticisms expressed towards the open

data community is that the main focus is put on making the

data open rather than ensuring the quality and reusability

(Williams & Ekins, 2011; Longo & Drazen, 2016; Levy &

Johns, 2016; Chen et al., 2018). As the maintainers of an open

scientific data repository, the Crystallography Open Database

(COD) (Gražulis et al., 2009, 2012), we feel obliged to address

these concerns in a constructive manner; providing a detailed

description of software and methods employed in our ongoing

task of data curation seems to be a suitable approach. Not only

does it tackle the issue in the most direct way but it also

presents several open-source tools that might prove useful in

data validation tasks outside of the COD. In addition, vali-

dation messages collected from over 450 000 COD entries are

shown to be a valuable resource for both the programmers of

CIF-related software and the maintainers of CIF dictionaries.

2. Software and methods

2.1. Syntactic analysis

Crystallographic information in the COD is stored using the

CIF 1.1 file format. To ensure the syntactic correctness of

these files our team has developed the COD::CIF::Parser

error-correcting CIF parser which was shown to be one of the

fastest and most complete in the field (Merkys et al., 2016).

The parser is actively maintained and has been recently

extended to support the CIF 2.0 format. Bindings for C, Perl

and Python programming languages are readily available in

the most recent releases of Debian (Merkys, 2021a) and

Ubuntu (Merkys, 2021b) operating systems; Python bindings

are also installable using the Python Package Index (PyPI)

(Merkys, 2021c).

2.2. Formal semantic validation

Formal semantic validation of CIF files against CIF

dictionaries is generally carried out using a domain-agnostic

computer program known as a validator. The validator used in

the COD was developed in-house as a stand-alone cif_validate

program. It was designed to run as a Unix filter and as such can

cif applications

662 Antanas Vaitkus et al. � Validation of the COD using CIF J. Appl. Cryst. (2021). 54, 661–672

Table 1
DDL1 and DDLm constraints that are validated by the cif_validate program.

The dash symbol (–) marks constraints that are not supported by the given DDL version. A more detailed description of each constraint is provided in Sections
2.2.1 and 2.2.2.

Relevant data items

DDL constraints DDL1 DDLm

Data type _type _type.contents

Standard uncertainty _type_conditions _type.purpose

Enumeration set _enumeration _enumeration_set.state

Permitted range _enumeration_range _enumeration.range

Looped list eligibility _list _definition.class

Looped list keys/category keys _list_reference _category.key_id, _category_key.name
Looped list integrity/category integrity _list_reference _name.category_id

Looped list category homogeneity _category _name.category_id

Referential integrity _list_link_parent, _list_link_child _name.linked_item_id

Deprecation _related_function _definition_replaced.by

Looped list value uniqueness _list_uniqueness –
Mandatory looped list items _list_mandatory –
Container type – _type.container

Data item aliasing – _alias.definition_id



take its input from both the standard input stream (stdin) and

a list of CIF files. Validation results are output to the standard

output stream (stdout) and follow the same formal syntax as

the warning messages issued by the COD::CIF::Parser

(Merkys et al., 2016). This in turn facilitates the automatic

parsing and classification of the validation results using

external means. Several examples on how the program can be

used are provided in the supporting information.

The cif_validate program employs the COD::CIF::Parser for

all of its CIF parsing needs. As a result, it is capable of

handling both CIF 1.1 and CIF 2.0 files in combination with

the DDL1 and DDLm dictionaries. DDL2 dictionaries are

currently not supported; however, this shortcoming is accep-

table since the majority of IUCr-curated dictionaries are

written in DDL1. The negative impact is lessened even more

by the fact that all of the IUCr dictionaries are being actively

upgraded to conform to DDLm.

During the validation process it is assumed that all files in

the COD were originally created with DDL1 dictionaries in

mind. Even though only about 6000 entries contain the

AUDIT_CONFORM loop that explicitly specifies their confor-

mity, the assumption can be deemed a reasonable one simply

due to the novelty of DDLm and CIF 2.0. However, since

DDLm dictionaries are generally ontologically richer than

their DDL1 counterparts, employing them in the validation

can reveal even more complex data inconsistencies. As a

result, entries in the COD are validated against both the

DDL1 and the DDLm dictionaries. DDL constraints that the

cif_validate program is capable of validating are listed in

Table 1.

2.2.1. DDL1 dictionaries. DDL1 dictionaries arose from the

initial effort to describe properties and relations pertaining to

chemical crystallography. In 2014 the DDL1 language reached

its end of life and was formally deprecated by the IUCr in

favour of DDL2 and DDLm (IUCr, 2020b). However, due to

their widespread adoption in the field of small-molecule

crystallography, DDL1 dictionaries were not removed

outright and instead entered a gradual phase-out period. The

ongoing maintenance of these legacy dictionaries is carried

out in a dedicated IUCr GitHub repository (COMCIFS,

2020c).

Several of the legacy dictionaries in this repository have

already received minor changes. As a result, they are

employed in the validation of the COD instead of the ones

provided on the IUCr website. Although no additional

features were added, it is still worthwhile to provide a more

detailed interpretation of the existing DDL1 constraints. This

serves both as the documentation of the validator and as a

reference to be used in comparison with the DDLm-based

validation. The cif_validate program validates the following

DDL1 constraints:

(i) Data type. Data values must conform to the declared

data type. The type choice is limited to an all-encompassing

character string or a numeric value.

(ii) Standard uncertainty eligibility. Data values must not be

accompanied by standard uncertainty values unless explicitly

stated otherwise. This constraint only applies to standard

uncertainty values recorded using the concise notation (NIST,

2020).

(iii) Enumeration set. Data values may be constrained to a

predefined value set.

(iv) Permitted range. Data values may be limited to a

specific value range. Both numeric and character ranges

are supported; however, in practice only the former are

encountered.

(v) Looped list eligibility. Data items must be placed in an

appropriate looped list context. DDL1 data items are assigned

one of three states in regards to their presence in a looped list:

yes, no or both. The yes state indicates that the item must

only appear in a looped list while the no state indicates that

the item must not appear inside a looped list. The both state

signifies that the item can appear in any looped list context.

(vi) Looped list keys. Data items that serve as looped list

references must all be present in the loop and provide a

unique code to each loop packet. As a result, these references

are subject to a similar set of constraints to non-null unique

composite primary keys in the relational data model.

(vii) Looped list integrity. Data items that share the same

looped list reference must appear in the same looped list.

(viii) Looped list category homogeneity. Looped lists must

consist only of data items from the same category.

(ix) Referential integrity. Referenced data items must be

present and contain all the values of the referencing data

items. The relation between a referenced item (parent item)

and a referencing item (child item) is most similar to a relation

between a candidate key and a foreign key used in the rela-

tional database model. The parent–child relation in DDL1 can

be specified either in the definition of the parent item, in the

definition of the child item or in both. Also note that there is

no explicit requirement for the values of the parent data item

to be unique.

(x) Deprecation. Deprecated data items should not be used.

Data items may be marked as replaced by other data items.

The presence of these items in data files is not outright invalid,

but highly discouraged. As a result, replacement data items

should be used instead of the replaced ones when possible.

The simultaneous presence of both the replaced and the

replacement data items should also be avoided since it might

lead to contradictory data. Data item deprecation check is

disabled by default and can be enabled using the --report-

deprecated option.

(xi) Mandatory looped list items. Looped lists may be

required to contain certain data items.

(xii) Looped list value uniqueness. A set of data items may

be required to have a combined unique value.

2.2.2. DDLm dictionaries. DDLm is the youngest

dictionary definition language and is still undergoing active

development. It has embraced and improved on features such

as strong data typing, complex nested data structures, rela-

tional modelling capabilities and the support of embedded

methods written in Relational Expression Language for

Dictionary Methods (dREL) (Spadaccini et al., 2012). In light

of these enhancements the IUCr has started an ongoing effort

to migrate all of the official CIF dictionaries to the DDLm

cif applications

J. Appl. Cryst. (2021). 54, 661–672 Antanas Vaitkus et al. � Validation of the COD using CIF 663



language. However, even though the migration was comple-

mented by the release of the DDLm-compatible CIF 2.0 data

format (Bernstein et al., 2016), the application scope of the

redesigned dictionaries is in no way limited to the CIF format

and can potentially be used by software requiring different

data exchange formats such as XML, JSON or even relational

database schemas.

The flavour of DDLm employed by the IUCr differs slightly

from that described in the original publication (Spadaccini &

Hall, 2012) because of the changes that were carried out to

adapt it to the field of crystallography. Since the primary

purpose of cif_validate is to validate the crystallographic

information files the program was developed in regard to the

latest stable release of the DDLm reference dictionary

(Bollinger et al., 2020) available in the official IUCr GitHub

repository (COMCIFS, 2020b).

The cif_validate program currently validates the following

DDLm dictionary constraints:

(i) Data type. Data values must conform to the declared

data type. DDLm supports nearly 20 data types including

several numeric types (i.e. Integer, Real), complex string

types with an underlying internal syntax (i.e. Uri, DateTime,

Version) and types specific to the field of crystallography

(i.e. Symop). Since the data types are not described using

formal grammars, the validation rules were derived from the

human-readable descriptions provided in the DDLm refer-

ence dictionary. In cases where this approach was not suffi-

cient the CIF 2.0 grammar and the work-in-progress dREL

specification (Hall et al., 2008) were consulted.

(ii) Container type. Data values must be stored using an

appropriate data structure. DDLm allows specification of

whether a data item can be stored using a single value or if a

more complex data structure (i.e. List, Matrix, Table)

needs to be employed.

(iii) Standard uncertainty presence. Measurand data values

must be accompanied by the standard uncertainty (s.u.) values.

This can be achieved by using either the concise parenthesis

notation or a separate data item.

Three types of violations are reported by the validator in

regards to this constraint: (a) missing s.u. values; (b) prohib-

ited s.u. values: presence of s.u. values related to non-

measurand data values; (c) mismatching s.u. values: s.u. values

are provided using both the parenthesis and the separate data

item notation, but the corresponding values differ.

The presence of s.u. values is a recent introduction into the

set of constraints mandated by the DDL dictionaries and thus

renders multiple DDL1-compliant files invalid. To avoid this

the --ignore-missing-su option was introduced, which

enables the exclusion of this constraint from the validation.

(iv) Enumeration set. Data values may be constrained to a

predefined value set. The DDLm enumeration set constraint is

analogous to the DDL1 one save for the effect that the

declared data type has on the logic required to determine if a

value belongs to the given set. For example, the same

DateTime value can be represented by multiple text strings

with the differences ranging from as trivial as the letter capi-

talization to as complex as the time zone offset.

(v) Permitted range. Data values may be limited to a specific

value range. The DDLm value range constraint is most similar

to the DDL1 one, although slightly less formally defined in

regards to the allowed data types and the range syntax itself.

As a result, it was decided to implement the range constraint

based on its current usage in the IUCr dictionaries, that is, as

pertinent to numbers with the lower bound and the upper

bound being mutually optional.

(vi) Looped list eligibility. Data items must be placed in an

appropriate looped list context. In DDLm, eligibility to appear

in a looped list is not defined as a property of an individual

data item but rather depends on a property of the parent

category called a class (_definition.class). The Loop

class indicates that data items from the category may appear in

a looped list while the Set class indicates that data items from

the category must not appear in a looped list.

(vii) Category integrity. Data items from the same looped

category must all reside in the same looped list. However,

there is an exception to this rule. DDLm allows definition of

tables with sparsely populated columns as two separate looped

categories, with one category acting as the parent of the other

(i.e. the ATOM_SITE and ATOM_SITE_ANISO categories in

the CIF_CORE dictionary). In cases like these data items

from the child category are allowed to reside in the data loop

of the parent category.

(viii) Category key properties. Data items that comprise the

category key must all be present in the looped list and provide

a unique code to each loop packet. The following types of key

constraint violations are reported: (a) incomplete key: one or

more data items comprising the key are not given and neither

a default value nor a dREL method is provided to generate a

substitute value; (b) duplicate key values: at least two

normalized key values are identical.

Since the validator currently does not execute dREL

methods, any missing key data item with a value evaluation

method is silently ignored.

(ix) Referential integrity. Referenced data items must be

present and contain all the values of the referencing data

items. DDLm data item references are subject to the same

constraints as the DDL1 ones while also being implemented in

a simpler manner. DDLm allows specification of these rela-

tions only in the definition of the referencing data item as

opposed to the multitude of options provided by the parent–

child relation of the DDL1.

(x) Deprecation. Deprecated data items should not be used.

DDLm allows the deprecation of data items by marking them

as being replaced by other data items. This replacement

mechanism is designed to be used in a more formal way than

the DDL1 one. That is, DDL1 employs a similar mechanism

both for renaming and for deprecating data items whereas the

DDLm mechanism is strictly reserved for definitions that have

been deemed deficient in some way. Data item deprecation

check is disabled by default and can be enabled using the

--report-deprecated option.

(xi) Data item aliasing. Data values associated with

synonymous data names must match. DDLm provides a

mechanism to easily assign several data names to a single data

cif applications

664 Antanas Vaitkus et al. � Validation of the COD using CIF J. Appl. Cryst. (2021). 54, 661–672



item definition with no one name having precedence over the

others. This approach to data item aliasing proves extremely

useful in dictionary management tasks; however, it also

inadvertently introduces a risk of data anomalies. For instance,

a data file can be easily rendered ambiguous by simply

introducing an aliased data item with a value that differs from

the value of its counterpart. On the other hand, the simulta-

neous presence of aliased data items can sometimes result

from a deliberate decision, for example, as a measure to retain

compatibility with legacy software. With this in mind, aliased

data items are only reported if the normalized data values do

not match. Validation of looped aliased values is currently not

supported.

(xii) Application scope. Dictionary data items must appear

in the appropriate application scope. DDLm requires all

dictionary files to adhere to the data item application scope

constraints specified in the DDLm reference dictionary. The

constraint establishes which data items are mandatory,

recommended or prohibited in the specified dictionary context

(Dictionary, Category, Item). As a result, inspection of

the application scope is only carried out when validating a

dictionary file against the DDLm reference dictionary.

2.2.3. Validation of concatenated enumeration sets.
Evolution is a natural step in the ontology life cycle (Ashraf et

al., 2015) and the CIF_CORE dictionary is no exception. With

the maintenance period of 27 years and more than 100 revi-

sions, various approaches to data management have been

explored and later on retired. However, in the world of

ontologies ‘deprecated’ does not mean ‘unused’, and certain

features need to be supported long after they have been

deemed inadequate.

Concatenated enumeration sets is one such legacy feature.

Normally, a DDL enumeration set is treated as a list of all

permissible values for a given data item; however, in the case

of the _atom_site_refinement_flags data item this

notion was expanded upon by allowing value concatenation. It

was declared in the human-readable part of the definition that

the valid values are not limited to the listed ones (S, G, R, D, T,

U, P, .) but also include various combinations of these values

(i.e. PR, PDU, DUP). Because of this deviation from the stan-

dard dictionary practices as of CIF_CORE version 2.3 (28

September 2003), the _atom_site_refinement_flags

data item is considered deprecated and was replaced by a set

of well structured data items (IUCr, 2003). Despite that, an

inspection of more than 450 000 CIF files from the COD has

revealed that the data item is still widely in use (Fig. 1).

In order to correctly handle concatenated enumeration

values a special mode was implemented in the validator. By

default, this mode is enabled for the _atom_site_

refinement_flags data item; however, the list of the affected

data items can be modified using the --treat-as-set

option.

2.2.4. dREL-based validation. DDLm dictionaries can

optionally contain snippets of code written in dREL. These

dREL scripts enhance the dictionaries by providing algo-

rithmic means of calculating or validating data values based on

other data items. In addition, the scripts can be employed to

conditionally modify the data definitions by assigning attri-

butes based on the contents of the validated file.

To make use of all of the dREL features a dedicated

interpreter has to be built first. This task is greatly simplified

by the existence of an annotated dREL grammar (COMCIFS,

2020a) and several working implementations such as

JsCifBrowser and PyCIFRW (Hester, 2006). Despite that, the

current version of the cif_validate program does not yet

support dREL methods. This drawback is somewhat mitigated

by the fact that most of the dREL validation methods

provided in the CIF_CORE dictionary have already been

implemented in the COD validation workflow as domain-

specific tests.

2.3. Additional domain-specific tests

Formal semantic validation does not cover the entire variety

of domain-specific constraints and as such ad hoc tests have to

be developed. These tests encode the ‘common sense’ a

researcher would use to assert that a CIF file is correct. A

notable example of such a validation tool in the field of small-

molecule crystallography is PLATON (Spek, 2003), which is

capable of evaluating molecular geometry and chemistry

implied by a crystal structure description. In the COD the

cif_cod_check program from the cod-tools package is used to

perform crystallographic data checks based on the IUCr data

validation guidelines (IUCr, 2020a).

2.4. Data validation procedures

Validation programs are routinely used in the COD

data management tasks both as stand-alone tools and as

cif applications

J. Appl. Cryst. (2021). 54, 661–672 Antanas Vaitkus et al. � Validation of the COD using CIF 665

Figure 1
The prevalence of the _atom_site_refinement_flags and its
replacement data items in the COD (revision 249495) grouped by
publication year.



components of larger automated sys-

tems. From the moment a CIF file is

presented for deposition any changes to

the file contents are followed by a set of

automated quality tests. The test sets

differ depending on the context;

however, they invariably include the

syntactic analysis.

The entire COD data set is stored in a

centralized repository using the

Subversion version control system. Any

changes to the data set are followed by a

‘commit’ request to the central reposi-

tory where the changes are either

accepted or refused. Subversion reposi-

tories can be set up to execute a specific

program called a pre-commit hook prior

to each commit. The current version of

the COD pre-commit hook runs the

COD::CIF::Parser on all newly added or

modified CIF files and rejects the

commit attempt if any parsing errors are

detected. As a result, all CIF files in the

COD are guaranteed to be syntactically

correct.

A certain degree of semantic validity

and adherence to domain-specific

requirements is ensured by the CIF

deposition pipeline accessible via the

COD website. The pipeline contains

tools that are capable of diagnosing

various issues and even correcting the

simple ones. In this case, validation

issues encountered during the deposi-

tion do not terminate the process

outright but are rather reported to the user for further

inspection. All validation issues are presented in a common

error message format and are assigned one of the following

severity levels: NOTE, WARNING or ERROR. Notes

contain information about suspicious data values or auto-

matically applied data corrections and can generally be

ignored if so desired. Warnings and errors, however, signal

more serious issues that need to be resolved in order to

continue with the deposition.

One may be tempted to include the programs from the

pipeline as Subversion pre-commit hooks alongside the

COD::CIF::Parser to ensure an even greater level of data

validity. However, while the syntactic correctness can be

viewed as the mandatory minimum quality requirement,

semantic inconsistencies or even domain-specific constraint

violations have to be tolerated to some extent. For example, it

is official COD policy to accept all syntactically correct CIF

files originating from peer-reviewed journals even if the data

do not fully adhere to the COD quality criteria; it would be

unreasonable to reject such data since they have already been

deemed significant in the eyes of the scientific community. CIF

files provided as pre-publication material or as personal

communications, however, are subjected to the strictest

available COD quality tests.

The same validation tools are also routinely used on the

entirety of the COD as part of the quality assurance strategy.

Collected validation messages are recorded in a SQL database

and manually analysed in order to identify the most common

issues as well as to develop software solutions that address

them. Analysis of one such routine checkup is presented in

Section 3.1.

3. Results

3.1. Comparison of DDL1-based and DDLm-based validation

Formal validation against DDL dictionaries was carried out

on revision 249495 of the COD using the cif_validate program

from the cod-tools package version 3.0.0. The entire data set

was validated using two different parameter sets which were

tailored either to DDL1-based or to DDLm-based ontologies.

The DDL1-based validation was run using the default options,

while the DDLm-based validation included an additional

--ignore-missing-su option. In both cases the

cif applications

666 Antanas Vaitkus et al. � Validation of the COD using CIF J. Appl. Cryst. (2021). 54, 661–672

Table 2
Comparison of validation issues identified in the COD using DDL1 and DDLm dictionaries.

Rows in bold contain data about arbitrary groupings of individual issue types, described in the subsequent
non-bold rows. The dash symbol (–) marks features that are not applicable to the given DDL version.

Affected COD entries

Number Percentage (%)

Validation issue type DDL1 DDLm DDL1 DDLm

Single-value-based validation 51846 54698 11.44 12.07
Value outside the permitted range 17242 20972 3.80 4.63
Value outside the enumeration set 37248 37370 8.22 8.25
Extra standard uncertainty value 814 83 0.18 0.02
Referential integrity validation 61243 61309 13.51 13.53
Missing foreign key item 46456 46429 10.25 10.25
Missing foreign key value 15220 15312 3.36 3.38
Category-based validation 172242 426703 38.01 94.16
Non-unique simple key values 3238 3256 0.71 0.72
Non-unique composite key values 109719 7478 24.21 1.65
Missing key item 81592 425629 18.00 93.92
Missing mandatory looped list item 81066 – 17.89 –
Looped list with items from several categories 943 388 0.21 0.09
Compromised category integrity 72 594 0.02 0.13
Loop eligibility validation 37160 597 8.20 0.13
Unlooped value inside a looped list 745 597 0.16 0.13
Looped value outside of a looped list 36471 – 8.05 –
Data type constraint validation 32211 78823 7.11 17.39
Non-numeric value 32211 – 7.11 –
Data type constraint violation (Integer) – 15819 – 3.49
Data type constraint violation (Float) – 29899 – 6.60
Data type constraint violation (Date) – 5 – 0.00
Data type constraint violation (DateTime) – 9406 – 2.08
Data type constraint violation (Symop) – 510 – 0.11
Forbidden symbol in non-numeric value – 34711 – 7.66
Data structure validation – 355009 – 78.34
Value not placed in a list – 32 – 0.01
Missing top level container – 355009 – 78.34
DDLm-specific validation – 1389 – 0.31
Mismatching values of aliased data items – 1389 – 0.31
Unrecognized data name 123972 123806 27.36 27.32
No validation issues 186507 17605 41.16 3.88



dictionary set was limited to the latest available revisions of

the CIF_CORE1,2 and CIF_COD3 dictionaries. Validation

results are summarized in Table 2.

DDL1-based and DDLm-based validation results differ for

several reasons. Some of the differences arise as a conse-

quence of the semantically richer DDLm descriptions, while

others stem from the ontological changes implemented during

the migration from DDL1 to DDLm. The following main

reasons were identified:

(i) Constraint modifications. Several data item definitions

have been changed in regards to the enumeration range,

enumeration values, s.u. eligibility and loop eligibility. The

resulting incompatibilities between the properties of corre-

sponding data items explain the majority of differences in the

single-value-based validation group.

(ii) Data type change. The DDLm version of the dictionary

uses a much richer type system. As a result, some value

constraints that were previously only provided as human-

readable descriptions became properly formalized. This

change allows the detection of deviations from specified non-

numeric data type syntax (i.e. Date, DateTime, Symop) as

well as differentiation between integer and floating-point

numbers in situations where this distinction is desired.

Examples of observed illegitimate floating-point value

usage include the Miller indices (_exptl_crystal_

face_index_*), the oxidation number (_atom_type_

oxidation_number) and the number of reflections

(_cell_measurement_reflns_used).

(iii) Case sensitivity. DDL1 character strings are strictly

case sensitive while the same is true only for some DDLm data

types. On the one hand, this change results in a few instances

of value uniqueness loss. On the other hand, it inadvertently

repairs several previously broken foreign key relationships.

(iv) Artificial primary keys. Several natural category keys in

the DDLm dictionary have been replaced by artificially

constructed ones. As a result, the uniqueness constraint was

dropped for the data items involved in the natural category

key. For example, in the DDL1 version of the dictionary the

symmetry operation string (_symmetry_equiv_pos_as_

xyz) serves as the key of the SYMMETRY_EQUIV category

while in the DDLm version an arbitrary integer value is used

as the key instead (_symmetry_equiv_pos_site_id). As

a result, duplicate symmetry operators are only reported when

validating with the DDL1 dictionary.

(v) Changed category keys. Several composite keys in the

DDLm dictionary have been changed to contain additional

data items in order to allow the construction of truly unique

identifiers. For example, the DDL1 dictionary defines the

GEOM_BOND category key as consisting of the atom labels

(_geom_bond_atom_site_label_*) whereas the DDLm

dictionary extends it by including the atom symmetry site data

items (_geom_bond_site_symmetry_*). This type of

modification both decreases the number of key uniqueness

violations and increases the number of missing key item

violations.

(vi) Treatment of partial category keys. Both DDL1 and

DDLm require that key data items have a combined unique

value, but only DDL1 explicitly states that all items of a

composite key must be collectively present. Because of this,

the DDL1-based validation only checks the uniqueness of a

composite key if all key items are present. Conversely, DDLm-

based validation always carries out a composite uniqueness

check on the existing key items even if they do not comprise a

complete key.

(vii) Additional data item definitions. The DDLm version of

the CIF_CORE dictionary has absorbed the definitions of the

CIF_SYM symmetry dictionary. Since the symmetry

dictionary was written in DDL2, it could not be used in the

DDL1-based validation. In addition, the DDLm-based

dictionary contains multiple data name aliases that are not

present in the DDL1-based dictionary in any form. The

combination of these two factors results in a slight decrease in

unrecognized data names.

(viii) Complex data structures. Several data item definitions

in the DDLm-compliant dictionaries have been assigned data

structures that are not supported by DDL1. For example, the

_atom_type_scat_versus_stol_list data item that

was originally designed to store scattering-factor information

in a free-form text field was redefined as a structured list. Even

though such changes allow the description of data in a more

formal way, they do have the downside of being incompatible

with both the DDL1 ontology and the CIF 1.1 data format.

The outlined differences highlight a set of changes that need

to be addressed while migrating from DDL1 to DDLm. The

overall trend suggests that due to the formalization of certain

constraints the DDLm-based validation is capable of detecting

additional inconsistencies in the data.

3.2. Advice on identifying and correcting issues in CIF files

Validation of the entire COD provides a useful insight into

a CIF data set that was accumulated and maintained over a

period of more than 20 years. However, since a variety of

semantic problems in the COD are routinely addressed by the

database maintainers, such analysis does not allow one to

identify all of the most common semantic problems that were

present in the original CIF files prior to their deposition to the

COD. This drawback was addressed by analysing more than

30 000 CIF files (collectively containing more than 66 000 data

blocks) that were provided as supplementary material for

publications from various peer-reviewed sources published

over the past five years (2016–2020).

The analysis revealed that �2% of files contain syntax

errors, �95% of files raise DDL1 validation issues and �98%

of files raise DDLm validation issues when validated using the

setup detailed in Section 3.1. The following are some of the

most common syntax and semantic issues present in the

recently published peer-reviewed CIF files:

cif applications

J. Appl. Cryst. (2021). 54, 661–672 Antanas Vaitkus et al. � Validation of the COD using CIF 667

1 DDL1 version 2.5.3 was retrieved from the official IUCr DDL1 dictionary
maintenance repository (COMCIFS, 2020c), master branch, commit 13f203a.
2 DDLm version 3.0.13 was retrieved from the official IUCr DDLm dictionary
development repository (COMCIFS, 2020b), v3.0.13 tag, commit 24f69f0
(Bollinger et al., 2020).
3 DDL1 version 0.050 and DDLm version 0.3.1 were both retrieved from the
svn://www.crystallography.net/cod/cif/dictionaries repository, revision 254590.



(i) The use of characters that do not belong to the permitted

character set, which in the case of CIF 1.1 files is limited to a

subset of the ASCII character set (Hall et al., 2006a). While

some special characters (i.e. Greek letters, accented char-

acters) can be expressed using special codes (i.e. ‘\a’ for ‘�’,

‘\"u’ for ‘ü’) (Hall et al., 2006b), the majority of Unicode

characters are not directly supported at all. However, such

characters still tend to appear in author names, experiment

descriptions or other free-text fields of CIF 1.1 files.

(ii) Omission of the mandatory _space_group_

symop_id data item. This data item allows one to assign

unique identifiers to symmetry operations provided using the

_space_group_symop_operation_xyz data item.

Although these identifiers almost always take the form of

sequential positive integers with the ‘x,y,z’ operation being

assigned the ‘1’ identifier, generally one should not auto-

matically extrapolate them from the order of symmetry

operations in the SPACE_GROUP category loop. The order of

data packets in a CIF looped list does not hold any special

meaning and therefore should be modifiable without affecting

the interpretation of the file contents. Since the _space_

group_symop_id data item is used in the construction of

other identifiers (i.e. the _geom_bond_site_symmetry_1

data item), explicitly assigning these symmetry operation

identifiers guards against the misinterpretation of data upon

the possible reorganization of the file.

(iii) Misspelt enumeration values of various data items. The

most common mistakes include incorrect capitalization (i.e.

‘Monoclinic’ instead of ‘monoclinic’), alternative spellings

(i.e. ‘whiteish’ instead of ‘whitish’) or incorrect hyphenation

(i.e. ‘multi scan’ instead of ‘multi-scan’).

(iv) Residual placeholder values. Some publishers provide

template files that contain data items with placeholder values

intended to ease the construction of supplementary CIF files

(i.e. the _chemical_absolute_configuration data item

with the ‘CHOOSE rm ad rmad syn or unk’ value). However,

the use of such templates sometimes also inadvertently leads

to the creation of semantically incorrect CIF files in which only

some of the placeholder data items have been reassigned

proper data values. Care should be taken to double-check and

update or remove placeholder data items that are not relevant

to the reported structures.

(v) Non-numeric values of the _chemical_melting_

point data item. Such values often incorrectly contain

explicit measurement units (i.e. ‘24 C’, ‘298.15 K’) or

provide a value range instead of a single value (i.e. ‘136–

145’). The value of the _chemical_melting_point data

item and most other data items that record temperature

measurements must be provided in kelvins and without a unit

designator (i.e. ‘298.15’). In cases when only a temperature

range is available, the _chemical_melting_point_gt

and _chemical_melting_point_lt data items should be

used to record the lower and the upper range bounds,

respectively.

(vi) Non-numeric values of the _exptl_crystal_

density_meas data item. Such values often indicate that the

density measurement was not carried out at all (i.e. ‘Not

measured’, ‘None’, ‘n/a’). This type of information can be

properly expressed in a uniform way by using CIF special

values ‘?’ and ‘.’ which correspond to unknown and inap-

plicable values, respectively.

(vii) Incorrect usage of CIF special values. According to the

CIF syntax, CIF special values are expressed using a single

character (either ‘?’ or ‘.’) without any delimiting strings.

Despite that, these characters are often incorrectly placed in

between single quotes, double quotes or even multiline string

delimiters, thus forcing them to be interpreted as text strings

consisting of a single question mark or full stop character.

While manually correcting problems in CIF files is feasible

and even required in more complex cases, most issues,

including the majority of the aforementioned ones, are quite

simple and can therefore be addressed using automated

means. On the basis of this observation, our team has devel-

oped the following tools:

(i) utf8-to-cif. Converts UTF-8 text to a form that is

compatible with the CIF 1.1 data format. Unicode characters

that fall outside the CIF 1.1 character set are preferably

expressed as CIF 1.1 special codes with hexadecimal numeric

character references being used as a fallback mechanism.

Since the use of numeric character references is not a

universally accepted approach when dealing with CIF 1.1 files,

CIF handling programs that were not developed by the COD

team are unlikely to place any special meaning on these

references. The program can be used as the initial step in the

CIF processing pipeline to avoid syntax errors that may be

caused by improperly expressed UTF-8 characters.

(ii) cif_fix_values. Resolves various simple semantic issues

in CIF files. The program can regularize the values of various

temperature data items (i.e. the _chemical_melting_

point), correct values of the _exptl_crystal_

density_meas data item, correct misspelt values by

consulting a built-in table or an external replacement list file,

and carry out various other minor corrections.

(iii) cif_correct_tags. Corrects misspelt data names in CIF

files. The program can restore the proper data name by

applying several ad hoc rules and by consulting a built-in table

or an external replacement list file.

Several examples of how these programs can be used as a

response to validation messages issued by the cif_validate

program are provided in the supporting information.

3.3. Dictionary management tools

The IUCr initiative to convert the official dictionaries from

DDL1 to DDLm has incentivized maintainers of other

dictionaries to follow suit. Adopting a new ontology comes

with its own set of challenges, which can be made even more

difficult by the inclusion of additional requirements such as

backward compatibility. Faced with the same problem in

regards to the COD-related CIF_COD dictionary our team

has developed the following tools to ease the DDL-based

ontology migration:

(i) cif_compare_dics. Checks a pair of DDL1/DDLm-based

dictionaries for compatibility-breaking differences. The

cif applications

668 Antanas Vaitkus et al. � Validation of the COD using CIF J. Appl. Cryst. (2021). 54, 661–672



program reports discrepancies between corresponding

enumeration sets, default values, permitted ranges, standard

uncertainty eligibility and loop eligibility, as well as data items

unique to one of the dictionaries.

(ii) cif_ddl1_dic_check. Checks a DDL1-based dictionary

against a set of best practices derived from the human-

readable portion of the DDL1 reference dictionary, official

IUCr publications (Hall & McMahon, 2006) and public

explanatory comments issued by the IUCr (2000, 2009). The

program reports internal dictionary discrepancies such as

missing, incomplete or contradictory definitions, deviations

from the naming convention, and incompatibilities with the

relational data model.

(iii) cif_ddlm_dic_check. Checks a DDLm-based dictionary

against a set of best practices derived from the human-

readable portion of the DDLm reference dictionary and

public explanatory comments issued by the IUCr (2000, 2009).

The program reports internal dictionary discrepancies such as

incomplete definitions, incorrect data item references and

incompatible enumeration ranges.

(iv) cif_ddlm_dic_print. Pretty-prints a DDLm dictionary

file. If requested, the program can resolve the embedded

dictionary import statements and combine data from multiple

input files into a single DDLm dictionary file.

(v) ddl1-to-ddlm. Converts CIF dictionaries from DDL1 to

DDLm. The conversion applies conservative heuristics to

determine data item types and assign appropriate data item

categories. Dictionaries generated by this program can be used

as a starting point for transition from DDL1 to DDLm.

(vi) dic2markdown. Produces Markdown-formatted

descriptions of DDLm dictionaries that can in turn be used to

generate HTML or PDF documents intended as user manuals.

It is similar in function to the makedict.pl program (IUCr,

2020c) used to produce International Tables for Crystal-

lography Volume G (Hall & McMahon, 2006) for DDL1

dictionaries. The intermediate Markdown format is also

employed to generate online versions of the COD CIF

dictionaries (Vaitkus et al., 2021).

3.4. Validation issue database

Validation issues associated with COD entries are stored in

a publicly available SQL database (cod_validation). The

database is updated daily by replacing outdated validation

issues with issues generated from changed or newly added

entries. The collected validation results can be retrieved via a

RestfulDB-based (Merkys et al., 2021) RESTful web interface

using conventional client programs (i.e. various web browsers,

cURL) or by directly querying the SQL database. A more

detailed description of the database schema as well as

instructions on how to query it is provided in the supporting

information.

4. Discussion

4.1. The importance of formal validation in ensuring FAIR data

The urgent need to obtain more value from accumulated

research data has been recognized by the scientific community

and promoted by research funders as well as on the political

level (Collins et al., 2018). The main guiding principles that

allow such value enhancement fall under the FAIR (Wilkinson

et al., 2016) acronym – data should be findable, accessible,

interoperable and reusable. While the first two principles are

more concerned with metadata and technical protocols,

interoperability and reusability depend crucially on the quality

of the data proper. The initial concerns of interoperability

were directed at the standardization of formats and data

representation; however, further measures need to be taken to

ensure that the contents of the data archives themselves are as

reliable as possible at the current state of scientific knowledge.

Robust automated syntax checks, validation against formal

dictionaries (Adams et al., 2011) and especially the application

of formal ontologies (Hester, 2016) are among the key actions

that have the potential to greatly improve data reusability and

interoperability. Reusability can be even further enhanced by

employing data analysis pipelines that enable one to auto-

matically reproduce or even improve the collected results as

showcased in recent work in the field of macromolecular

crystallography (Joosten et al., 2014; Grabowski et al., 2019).

The discipline of crystallography in general is known for

placing great importance on ensuring that data are both

reproducible and FAIR, with the development of CIF being

recognized as one of the most important achievements

towards this goal (Helliwell, 2019). CIF handling tools

developed by our team provide the means to apply validation

against DDL dictionaries to individual files as well as existing

collections of crystallographic data. Formal discrepancies

between data and dictionaries detected during the validation

process can then be addressed by either amending the data,

extending the dictionaries or noting semantic exceptions, thus

both making the data more suitable for large-scale in-depth

analysis and driving the development of the underlying

ontologies.

4.2. Stewardship of small-molecule crystallographic data

Strict formal validation of more than 450 000 entries from

the COD revision 249495 revealed that �36% of entries

produce no DDL1 validation issues while only�4% of entries

produce no DDLm validation issues. However, most publicly

available CIF files were created with DDL1 in mind and

should not be expected to conform to the stricter require-

ments imposed by DDLm. Although the changed DDLm

category keys as well as newly introduced mandatory complex

CIF 2.0 data structures are extremely useful in detecting more

obscure data anomalies, validation issues related to these

changes do not generally prevent the affected files from being

used for most applications. When validation issues involving

unrecognized data item names, missing category keys and

complex data structures are ignored, the number of COD

entries without validation issues rises to �52% for DDL1 and

�60% for DDLm. A more detailed breakdown of distinct

validation issue distribution per COD entry is provided in the

supporting information.

Even though some data inconsistencies might get acciden-

tally introduced during the deposition process, the majority of

cif applications

J. Appl. Cryst. (2021). 54, 661–672 Antanas Vaitkus et al. � Validation of the COD using CIF 669



reported issues can be traced back to the original data. Since

the COD data curation policy mandates that changes made to

the data must not misconstrue the original intent, resolution of

complex issues often requires input from the authors or at

least access to the original publication. As both of these

approaches require attention from a trained expert and do not

guarantee conclusive results, such issues are addressed on a

best efforts basis. On the other hand, simple data discrepancies

that can be tackled in an automated fashion are routinely

identified and corrected. Consequently, a comprehensive log

of validation issues becomes a valuable resource since it allows

the users to estimate the suitability of each COD entry as well

as aiding data maintainers in their data curation tasks.

Previous examination of the validation messages has

resulted in the development of computer programs capable of

automatically detecting and correcting some of the most

common data discrepancies (Gražulis et al., 2012). Misspelt

data names, incorrect enumeration values and improper usage

of temperature measurement units are among the addressed

issues; however, additional ones are routinely identified as the

database grows. For example, the most recent inspection of the

logs revealed a tendency to incorrectly record the _diffrn_

standards_interval_time data item values together

with their measurement units. Because of the simplicity and

prevalence of this issue it will also be addressed in an auto-

mated fashion. Once the appropriate software modifications

are made, the affected files will be reprocessed and the

updated software version will be integrated into the COD

processing pipeline to prevent the appearance of such

discrepancies in the future.

Although great care is taken to ensure the correct beha-

viour of the software, the negative effects of a coding error

cannot be underestimated. The COD mediates this risk by

applying changes in a transparent way and meticulously

versioning the data. As a rule, a changelog of any automated

modifications is both reported to the human operator and

recorded in the processed CIF file itself. In the worst-case

scenario, the data can always be restored to any of the

previous revisions due to the underlying Subversion reposi-

tory.

The use of a version control system is just one example of

how the COD was designed with reproducible scientific

research in mind. Openness, data provenance and facilitation

of reproducible results are some of the core principles that

permeate both the data curation policy and the underlying

software. As such, although the COD was developed in

regards to crystallographic data, the codebase has proven

modular enough to be easily adapted to other fields of

scientific research.

The most notable example of such code reuse is the Raman

Open Database (ROD) (El Mendili et al., 2019), a resource

that aims to apply the COD data curation practices to Raman

spectroscopy measurements as well as relate them to crystal-

lographic data. As a newly founded database the ROD was in

a unique position to adopt both the CIF 2.0 format and the

DDLm-based validation without inconveniencing the existing

users. In addition, semantic validity was deemed mandatory

and as a result all deposited files are required to conform to

the DDLm dictionaries drafted by the ROD Advisory Board.

Similar changes will be implemented in the COD once these

innovations are embraced by the larger crystallographic

community.

Several applications that support the CIF 2.0 file format

(Bollinger, 2016; Hester, 2006; Hanson, 2010) as well as those

capable of handling DDLm dictionaries (Hester, 2006) have

already been independently developed outside of the COD.

Most of them predate the COD implementations and some

even provide additional functionality such as DDL2-based

validation and advanced handling of dREL methods.

Although the COD mainly relies on CIF handling software

that was developed in-house and tailored to the specific needs

of data curation tasks, the importance of well maintained

alternative implementations should not be underestimated. As

previously demonstrated with a multitude of CIF 1.1 parsers

(Merkys et al., 2016), an in-depth comparison of different

programs can often reveal coding mistakes as well as ambi-

guities in the underlying specification.

4.3. Use of validation messages in ontology maintenance

Validation results collected from a sufficiently large data set

can also serve as a useful resource in the development of

related ontologies. While some of the validation issues

describe obvious mistakes, others involve data that simply

cannot be expressed within the bounds of a given ontology. As

such, routine inspection of the validation output is encouraged

in order to discover aspects of the underlying ontologies that

could be improved upon. Analysis of the COD validation

messages identified several possible enhancements to the

CIF_CORE dictionary that serve well as examples of the

general ontology maintenance approach.

Some of the enhancements are focused on improving the

existing data items. As the field of crystallography keeps

moving forward it is reasonable to expect changes in the

enumeration ranges, the enumeration sets or even the inter-

pretation of certain values. For example, over 8000 instances

of the _refine_ls_hydrogen_treatment data item have

the ‘riding’ data value that does not belong to the pre-

defined enumeration set. As such, this value should be

inspected and included in the existing set if deemed significant

enough.

Other enhancements require the introduction of new data

items. For example, numeric values of certain data items are

often incorrectly written together with the ‘less-than’ or

‘greater-than’ sign (e.g. ‘<0.001’, ‘>5’) to provide a range of

possible values instead of an exact one. The problem can

be resolved by introducing complementary *_lt and *_gt

data items to denote the lower and upper value bounds

accordingly. A similar approach is already employed in the

CIF_CORE dictionary for several data items, e.g. the

_chemical_melting_point data item. Data items that

would benefit most from this type of enhancement include

_diffrn_standards_decay_%, _refine_ls_shift/

su_max and _refine_ls_shift/su_mean.

cif applications

670 Antanas Vaitkus et al. � Validation of the COD using CIF J. Appl. Cryst. (2021). 54, 661–672



Although all final decisions regarding the ontology lie with

its maintainers, involvement of the community can greatly

expedite the development process by providing critical feed-

back. COD validation results serve a similar purpose by

providing insight into unofficial ontology extension trends

undertaken by the user community that are not visible from

individual CIF files.

5. Conclusions

The Crystallography Open Database is an open curated

resource that extensively utilizes the Crystallographic Infor-

mation Framework in the form of CIF files and DDL

dictionaries. The entirety of crystallographic data in the COD

is ingested, stored and presented using the CIF 1.1 file format.

Strict adherence to CIF syntax and automated syntax checking

ensure that any changes to the data result in a syntactically

correct CIF file. Semantic validity is addressed in a similar

fashion by routinely checking CIF files against domain-specific

DDL1 dictionaries as well as COD quality criteria. However,

differently from the syntax errors, semantic validation issues

are not considered fatal and are either automatically corrected

or recorded for further analysis. Validation messages collected

from over 450 000 COD files are not only instrumental in

various data maintenance tasks but also serve as a valuable

resource in the development of crystallographic software and

the underlying ontologies. In the spirit of open science, the

compiled validation issues as well as the software used to

identify them are made publicly available.

COD software was recently modified to support several

innovations of CIF, namely the CIF 2.0 file format and the

DDLm dictionaries. The updated stand-alone tools such as

cif_validate have been successfully used to process the entirety

of the COD. Comparison of validation results based on DDL1

dictionaries with those based on DDLm dictionaries revealed

the advantages and potential problems that might arise while

transitioning from DDL1 to DDLm. These observations led to

the development of additional tools aimed at facilitating the

DDL-based ontology migration.

A significant number of issues identified in supplementary

crystallographic data of peer-reviewed publications suggests

that CIF might be underutilized by the larger scientific

community. Wider adoption of CIF validation tools could have

a long-lasting positive effect on the quality of scientific data,

since problems detected prior to publication have a greater

chance of being unambiguously resolved due to the immediate

availability of the authors. As a result, researchers, publishers

and data curators are encouraged to make greater use of the

DDL dictionaries and a variety of open-source CIF tools

including the ones provided by the COD.

6. Source-code availability

All of the programs presented in this paper that were devel-

oped by the COD team are distributed as part of the cod-tools

software package under the terms of the LGPL-3 licence.

Instructions on how the software package can be retrieved and

installed are provided in the supporting information.

Acknowledgements

Conflict of interest: AV, AM and SG are volunteer maintainers

of the COD. AM and SG are members of the COD Advisory

Board.

Funding information

Funding for this research was provided by the Research

Council of Lithuania (grant No. MIP-20-21).

References

Adams, S., de Castro, P., Echenique, P., Estrada, J., Hanwell, M.,
Murray-Rust, P., Sherwood, P., Thomas, J. & Townsend, J. (2011). J.
Cheminform. 3, 38.

Ashraf, J., Chang, E., Hussain, O. K. & Hussain, F. K. (2015).
Knowledge-Based Systems, 80, 34–47.

Berman, H., Henrick, K. & Nakamura, H. (2003). Nat. Struct. Mol.
Biol. 10, 980.

Bernstein, H. J., Bollinger, J. C., Brown, I. D., Gražulis, S., Hester,
J. R., McMahon, B., Spadaccini, N., Westbrook, J. D. & Westrip, S. P.
(2016). J. Appl. Cryst. 49, 277–284.

Bollinger, J., Hall, S., Hester, J., Merkys, A., Spadaccini, N. & Vaitkus,
A. (2020). COMCIFS/cif_core: CIF Core March 2020, https://
doi.org/10.5281/zenodo.3887473.

Bollinger, J. C. (2016). J. Appl. Cryst. 49, 285–291.
Brown, I. D. & McMahon, B. (2002). Acta Cryst. B58, 317–324.
Chen, X., Dallmeier-Tiessen, S., Dasler, R., Feger, S., Fokianos, P.,

Gonzalez, J. B., Hirvonsalo, H., Kousidis, D., Lavasa, A., Mele, S.,
Rodriguez, D. R., Šimko, T., Smith, T., Trisovic, A., Trzcinska, A.,
Tsanaktsidis, I., Zimmermann, M., Kyle, C., Heinrich, L., Gordon,
W., Hildreth, M., Lloret Iglesias, L., Lassila-Perini, K. & Neubert, S.
(2018). Nat. Phys. 15, 113–119.

Collins, S., Genova, F., Harrower, N., Hodson, S., Jones, S.,
Laaksonen, L., Mietchen, D., Petrauskaitė, R. & Wittenburg, P.
(2018). Turning FAIR Into Reality. Technical Report European
Commission Expert Group on FAIR Data. https://www.
eoscsecretariat.eu/sites/default/files/ki0618206enn.en_.pdf.

COMCIFS (2020a). dREL, https://github.com/COMCIFS/dREL.
COMCIFS (2020b). IUCr Core CIF Development Repository, https://

github.com/COMCIFS/cif_core.git.
COMCIFS (2020c). DDL1-legacy-dictionaries, https://github.com/

COMCIFS/DDL1-legacy-dictionaries.git.
El Mendili, Y., Vaitkus, A., Merkys, A., Gražulis, S., Chateigner, D.,

Mathevet, F., Gascoin, S., Petit, S., Bardeau, J.-F., Zanatta, M.,
Secchi, M., Mariotto, G., Kumar, A., Cassetta, M., Lutterotti, L.,
Borovin, E., Orberger, B., Simon, P., Hehlen, B. & Le Guen, M.
(2019). J. Appl. Cryst. 52, 618–625.

Gao, S., Sperberg-McQueen, C. M. & Thompson, H. S. (2012).
Editors. W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures, https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405.

Grabowski, M., Cymborowski, M., Porebski, P. J., Osinski, T.,
Shabalin, I. G., Cooper, D. R. & Minor, W. (2019). Struct. Dyn. 6,
064301.

Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós,
M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A.
(2009). J. Appl. Cryst. 42, 726–729.

Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L.,
Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T. & Le Bail,
A. (2012). Nucleic Acids Res. 40, D420–D427.

Hall, S. R. (2006). International Tables for Crystallography, Vol. G,
Definition and Exchange of Crystallographic Data, 1st online ed.,

cif applications

J. Appl. Cryst. (2021). 54, 661–672 Antanas Vaitkus et al. � Validation of the COD using CIF 671

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB24


ch. 4.9, pp. 471–472. Chester: International Union of Crystal-
lography. https://doi.org/10.1107/97809553602060000749.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. 47, 655–685.
Hall, S., du Boulay, D., Castleden, I. R. & Spadaccini, N. (2008). Draft

Specifications of the Dictionary Relational Expression Language
dREL, https://www.iucr.org/__data/assets/pdf_file/0007/16378/dREL_
spec_aug08.pdf.

Hall, S. R. & Cook, A. P. F. (1995). J. Chem. Inf. Model. 35, 819–825.
Hall, S. R. & McMahon, B. (2006). Editors. International Tables for

Crystallography, Vol. G, Definition and Exchange of Crystal-
lographic Data, 1st online ed. Chester: International Union of
Crystallography. https://doi.org/10.1107/97809553602060000107.

Hall, S. R., Spadaccini, N., Brown, I. D., Bernstein, H. J., Westbrook,
J. D. & McMahon, B. (2006a). International Tables for Crystal-
lography, Vol. G, Definition and Exchange of Crystallographic
Data, 1st online ed., ch. 2.2.7.1.5, pp. 27–27. Chester:
International Union of Crystallography. https://doi.org/10.1107/
97809553602060000753.

Hall, S. R., Spadaccini, N., Brown, I. D., Bernstein, H. J., Westbrook,
J. D. & McMahon, B. (2006b). International Tables for Crystal-
lography, Vol. G, Definition and Exchange of Crystallographic
Data, 1st online ed., ch. 2.2.7.4, pp. 32–36. Chester:
International Union of Crystallography. https://doi.org/10.1107/
97809553602060000753.

Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.
Helliwell, J. R. (2019). Struct. Dyn. 6, 054306.
Hester, J. R. (2006). J. Appl. Cryst. 39, 621–625.
Hester, J. R. (2016). Data Science J. 15, https://doi.org/10.5334/dsj-

2016-012.
IUCr (2000). cif-developers: Discussion List for CIF Software

Developers, https://www.iucr.org/__data/iucr/lists/cif-developers.
IUCr (2003). Differences Between Versions 2.3 and 2.2 of the Core

CIF Dictionary, https://www.iucr.org/resources/cif/dictionaries/
cif_core/diffs2.3-2.2.

IUCr (2009). ddlm-group: Discussion List of the IUCr COMCIFS
Working Group on DDLm Adoption, https://www.iucr.org/__data/
iucr/lists/ddlm-group.

IUCr (2020a). Details of checkCIF/PLATON Tests, https://journals.
iucr.org/services/cif/datavalidation.html.

IUCr (2020b). Dictionary Definition Language DDL1, https://
www.iucr.org/resources/cif/ddl/ddl1.

IUCr (2020c). makedict.pl and makedicthtml.pl, https://www.iucr.org/
resources/cif/software/archived/makedict.

Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. (2014).
IUCrJ, 1, 213–220.

JSON (2019). JSON Schema – Specification, https://json-schema.org/
specification.html.

Levy, K. & Johns, D. M. (2016). Big Data Society, 3, 1–6.
Longo, D. L. & Drazen, J. M. (2016). N. Engl. J. Med. 374, 276–277.
McMahon, B. (2012). J. Cheminform, 4, 19.
Merkys, A. (2021a). Source Package: cod-tools (2.3+dfsg-3), https://

packages.debian.org/source/stable/cod-tools.
Merkys, A. (2021b). Ubuntu cod-tools Package, https://launchpad.net/

ubuntu/+source/cod-tools.
Merkys, A. (2021c). pycodcif 3.0.1, https://pypi.org/project/pycodcif.
Merkys, A., Grybauskas, A., Konovalovas, A., Vaitkus, A. & Gražulis,

S. (2021). RestfulDB, https://projects.ibt.lt/repositories/projects/
restfuldb.

Merkys, A., Vaitkus, A., Butkus, J., Okulič-Kazarinas, M., Kairys, V. &
Gražulis, S. (2016). J. Appl. Cryst. 49, 292–301.

NIST (2020). Standard Uncertainty and Relative Standard
Uncertainty, https://www.physics.nist.gov/cgi-bin/cuu/Info/Constants/
definitions.html.

Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C. M. &
Thompson, H. S. (2012). Editors. W3C XML Schema Definition
Language (XSD) 1.1 Part 2: Datatypes, https://www.w3.org/TR/
2012/REC-xmlschema11-2-20120405.

Spadaccini, N., Castleden, I. R., du Boulay, D. & Hall, S. R. (2012). J.
Chem. Inf. Model. 52, 1917–1925.

Spadaccini, N. & Hall, S. R. (2012). J. Chem. Inf. Model. 52, 1907–
1916.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
Vaitkus, A., Merkys, A. & Gražulis, S. (2021). Index of /cif/

dictionaries, https://wiki.crystallography.net/cif/dictionaries.
Vrandečić, D. & Krötzsch, M. (2014). Commun. ACM, 57, 78–85.
Westbrook, J. D. & Hall, S. R. (2006). International Tables for

Crystallography, Vol. G, Definition and Exchange of Crystal-
lographic Data, 1st online ed., ch. 4.10, pp. 473–478. Chester:
International Union of Crystallography. https://doi.org/10.1107/
97809553602060000750.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos,
L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas,
M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R.,
Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe,
J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok,
J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson,
B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A.,
Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A.,
Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J. &
Mons, B. (2016). Sci. Data, 3, 160018.

Williams, A. J. & Ekins, S. (2011). Drug Discov. Today, 16, 747–
750.

cif applications

672 Antanas Vaitkus et al. � Validation of the COD using CIF J. Appl. Cryst. (2021). 54, 661–672

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5065&bbid=BB53

