
research papers

J. Appl. Cryst. (2021). 54, 1179–1188 https://doi.org/10.1107/S1600576721005744 1179

Received 8 September 2020

Accepted 2 June 2021

Edited by H. Chapman, DESY/Universität

Hamburg, Germany

Keywords: fluctuation X-ray scattering;

multitiered iterative phasing; polar Fourier

transform; spherical harmonic transform;

GPU acceleration; CUDA programming; HIP

programming; NVIDIA GPUs; AMD GPUs.

Supporting information: this article has

supporting information at journals.iucr.org/j

GPU-accelerated multitiered iterative phasing
algorithm for fluctuation X-ray scattering

Pranay Reddy Kommera,a,b* Vinay Ramakrishnaiah,a Christine Sweeney,a* Jeffrey

Donatellic,d and Petrus H. Zwartc,e

aApplied Computer Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, bDepartment of Electrical

and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA, cCenter for Advanced Mathematics for

Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, dDepartment of

Applied Mathematics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, and eMolecular Biophysics

and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. *Correspon-

dence e-mail: pranay.kommera@gmail.com, cahrens@lanl.gov

The multitiered iterative phasing (MTIP) algorithm is used to determine the

biological structures of macromolecules from fluctuation scattering data. It is an

iterative algorithm that reconstructs the electron density of the sample by

matching the computed fluctuation X-ray scattering data to the external

observations, and by simultaneously enforcing constraints in real and Fourier

space. This paper presents the first ever MTIP algorithm acceleration efforts on

contemporary graphics processing units (GPUs). The Compute Unified Device

Architecture (CUDA) programming model is used to accelerate the MTIP

algorithm on NVIDIA GPUs. The computational performance of the CUDA-

based MTIP algorithm implementation outperforms the CPU-based version by

an order of magnitude. Furthermore, the Heterogeneous-Compute Interface for

Portability (HIP) runtime APIs are used to demonstrate portability by

accelerating the MTIP algorithm across NVIDIA and AMD GPUs.

1. Introduction

The study of structures and functionalities of biological

macromolecules plays a vital role in understanding their

behavior. Fluctuation X-ray scattering (FXS) (Kam et al.,

1981) is an X-ray solution scattering technique used to

determine macromolecular structure where multiple identical

copies of the sample are exposed to an ultrashort X-ray pulse

and the resulting diffraction patterns are collected. By

collecting these X-ray snapshots at rates below the rotational

diffusion times of the particles, FXS data encode high-

resolution structural details unlike standard solution scat-

tering techniques such as small-angle X-ray scattering

(SAXS), which mainly captures particle size and bulk shape

information, and wide-angle X-ray scattering (WAXS), which

can give details of hierarchical structure information or

ordering within particles. The advent of X-ray free-electron

lasers (XFELs) has made FXS experiments possible (Kurta et

al., 2017; Mendez et al., 2014, 2016; Pande et al., 2018a,b),

because they provide sufficiently short and powerful X-ray

pulses. In particular, the time taken for XFEL X-rays to

interact with and scatter from macromolecules is shorter than

the time taken for full rotation of the macromolecule,

preventing rotational averaging of the data as seen in SAXS/

WAXS (Neutze et al., 2000).

Early methods for reconstructing macromolecular structure

from fluctuation X-ray scattering were based on algebraic

phasing (Poon et al., 2013; Saldin et al., 2011) and reverse

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576721005744&domain=pdf&date_stamp=2021-07-30


Monte Carlo (Liu et al., 2013) methods. These methods have

limitations such as not being adaptable to determine the

molecular structure for general cases, being computationally

complex or having difficulties in convergence. More recently, a

multitiered iterative phasing (MTIP) algorithm (Donatelli et

al., 2015) has been developed that is able to efficiently

reconstruct general biological structures from the FXS data

and has desirable convergence properties. In this method, an

electron density model is iteratively updated by projection

operators to satisfy real-space constraints while matching the

generated computed FXS data to the external FXS data

(Section 2). In practice, several independent reconstructions

are performed with different random starting densities, which

are aligned, averaged and interpolated to a Cartesian grid for

creating a visual structure of the macromolecules. The MTIP

FXS algorithm enabled the first successful 3D reconstructions

from experimental FXS data using both single particles per

shot (Kurta et al., 2017) and multiple particles per shot (Pande

et al., 2018a), and offers higher-resolution reconstruction

models than the SAXS/WAXS methods (Podorov et al., 2006;

Svergun et al., 2001).

With limited XFEL facilities available to researchers, a high

cost for operation of these facilities, a significant research

demand and limited beam time, it is important for the

experiments to be analyzed in near real time to ensure that

sufficient data are collected and to increase the throughput of

experiments. Determining the 3D structure of the macro-

molecules as part of the experimental workflow in near real

time would allow instantaneous feedback on the quality of the

data collected. The feedback obtained can be used to tune the

XFEL’s components and operational parameters to collect

data of sufficient quantity and significance.

The MTIP algorithm lends itself well to the use of compu-

tational resources to accelerate the FXS data analysis to near

real time. The iterative use of linear algebraic functions in the

MTIP algorithm makes it ideal for achieving speedup on

multicore and many-core architectures.

In this paper, we use hardware acceleration to achieve an

order of magnitude speedup relative to the central processing

unit (CPU)-based MTIP algorithm for a three-dimensional

reconstruction of the electron density map of macromolecules

from FXS data. We present an accelerated version of the

MTIP algorithm implementation on general-purpose graphics

processing units (GPGPUs). The MTIP algorithm is ported to

NVIDIA graphics processing units (GPUs) using the

Compute Unified Device Architecture (CUDA) programming

model. We take advantage of the data-level parallelism in the

mathematical operations to achieve the speedup.

In addition to the CUDA-based MTIP algorithm, we

develop a portable cross-platform MTIP implementation

using the C++ Heterogeneous-Compute Interface for Port-

ability (HIP) programming model. The HIP-based MTIP

implementation works across the contemporary NVIDIA and

Advanced Micro Devices Inc. (AMD) GPUs without making

any architecture-specific changes to the code. It is imperative

to achieve portability across platforms owing to the advent of

different GPU accelerators and programming models from

different vendors. Therefore, we present a comparison of the

performance of the MTIP algorithm using CUDA and HIP on

NVIDIA GPUs. In addition, we develop a Python-based

numerical validation tool to numerically estimate the overall

quality of the reconstruction.

2. MTIP algorithm

2.1. Overview

The MTIP algorithm is an iterative process of repeatedly

updating an electron density map of a macromolecule to make

it consistent with real-space constraints, and enforcing the

constraint that the computed FXS data derived from the

density map match the external FXS data. The relation

(Donatelli et al., 2015) between the angular correlation func-

tion obtained from the diffraction images and the harmonic

coefficients of the intensities is used to obtain the external

FXS data (supplementary Section S1).

The algorithm is devised using a spherical harmonic basis

for three-dimensional functions as described by Donatelli et al.

(2015). A 3D spherical polar grid as shown in Fig. 2 (see

Section 5) is used, where the radial components in real space r

and Fourier space q, as well the azimuthal angles �, are

equispaced. The inclination angles � lie on the arccosines of

Gauss–Legendre quadrature nodes.

The relation between the cross-correlation data Bl(q, q0)

and the intensity spherical harmonic coefficients is used to

derive the computed FXS data:

Bc
l ðq; q0Þ ¼

Pl

m¼�l

Im
l ðqÞI

m
l
�ðq0Þ; ð1Þ

where Bc
l ðq; q

0

Þ are the computed FXS data, Im
l are the

intensity spherical harmonic coefficients of order l and degree

m, and * represents the conjugate of the quantity.

The intensity spherical harmonic coefficients and the

computed FXS data can be derived from the electron density

(supplementary Fig. S2). This process is referred to as the

‘forward direction’ in the rest of the paper. In the forward

direction, the electron density �(r, �, �) in real space is

transformed into structure factors �̂�ðq; �; �Þ using the polar

Fourier transform (Section 2.2). The intensity I(q, �, �) is the

square magnitude of the structure factors. The intensity

spherical harmonic coefficients Im
l ðqÞ are computed from the

intensity function using the spherical harmonic transform

(Section 2.2). The obtained intensity spherical harmonic

coefficients are used to derive the computed FXS data using

equation (1).

Similarly to obtaining FXS data from the electron density,

the electron density in real space is updated by applying a

series of projection operators starting from the FXS data

(supplementary Fig. S3), which is referred to as the ‘inverse

direction’ in the rest of the paper. The inverse direction is used

to compute an updated electron density map from the FXS

data. In the inverse direction, the intensity spherical harmonic

coefficients Im
l ðqÞ are computed from the FXS data as

part of the correlation projections (Section 2.2). The intensity

research papers

1180 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS J. Appl. Cryst. (2021). 54, 1179–1188



function I(q, �, �) is derived from the intensity spherical

harmonic coefficients using the inverse spherical harmonic

transform (Section 2.2). The structure factors are obtained

from the intensity function using a magnitude projection

operator, by preserving the phase information. The electron

density is obtained from the structure factors using the inverse

polar Fourier transform (Section 2.2).

The forward direction, correlation projection, inverse

direction and real-space projection constitute one iteration of

the MTIP algorithm. The final electron density obtained from

an iteration is used as the initial electron density for the next

iteration.

2.2. MTIP pipeline

The MTIP algorithm can be categorized into four stages as

shown in Fig. 1: Stage 1 – the forward direction of obtaining

computed FXS data Bc
l ðq; q0Þ from the electron densities

�(r, �, �), where the superscript c indicates that this is the

computed quantity; Stage 2 – matching the external FXS data

Be
l ðq; q0Þ to the computed FXS data by correlation projectors,

resulting in modified intensity spherical harmonic coefficients

Im
lmodðqÞ, where mod indicates ‘modified quantity’ and e

‘external quantity’; Stage 3 – the inverse direction of obtaining

an updated electron density �mod(r, �, �) from the intensity

spherical harmonic coefficients; Stage 4 – imposing the real-

space constraints by real-space projectors. The real-space

constraints are imposed in real space and the FXS data are

matched in the Fourier space.

The electron density, intensity function and spherical

harmonic coefficient quantities of the polar nodes can be

aligned in the computing memory as vectors/arrays. All the

respective transforms can be applied on these arrays and

vectors efficiently if the quantities are arranged in contiguous

memory. The forward and inverse directions involve various

mathematical operations such as the polar Fourier transform,

square modulus, spherical harmonic transform, inverse sphe-

rical harmonic transform and inverse polar Fourier transform.

The spherical harmonic transforms can be efficiently

computed from a given function by a combination of the

Fourier transform and the associated Legendre transform

(Schaeffer, 2013) [supplementary equations (S4)–(S6) and

Fig. S4]. The Fourier transform is computed using the fast

Fourier transform operation, and the associated Legendre

transform can be computed using matrix–matrix multi-

plications on the quantities stored as vectors/arrays.

Similarly, the inverse spherical harmonic coefficients can be

efficiently computed from the given function by a combination

of the inverse Fourier transform and the inverse associated

Legendre transform (Schaeffer, 2013) [supplementary equa-

tions (S7)–(S9) and Fig. S5]. The inverse Fourier transform is

computed using the inverse fast Fourier transform, and the

inverse associated Legendre transform can be computed using

matrix–matrix multiplications on the quantities stored as

vectors/arrays. The spherical harmonic transform and its

inverse are computed independently for each radius, r or q.

In addition, the relation between the spherical Hankel

transform (Donatelli et al., 2015) and the spherical harmonic

coefficients of a function in real and Fourier space are

exploited to compute the polar Fourier transform and inverse

polar Fourier transform as shown in supplementary Figs. S6

and S7.

Apart from the forward and the inverse directions, the

projectors in real space and Fourier space are used to impose

the constraints on the quantities. Correlation projectors

(Donatelli et al., 2015) are used to match the computed FXS

data and the external FXS data (supplementary Section S4;

Gower & Dijksterhuis, 2004). In addition, various physical

constraints (Donatelli et al., 2015), such as a finite support,

symmetry, lower and upper bounds, and nonnegativity, can be

research papers

J. Appl. Cryst. (2021). 54, 1179–1188 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS 1181

Figure 1
Flowchart of the multitiered iterative phasing algorithm.



imposed on the electron density using the real-space projec-

tors.

2.3. MTIP iterations

The operations described in Fig. 1 can be combined in a

number of different ways. Here we apply all these operations

iteratively using generalizations of both the error-reducing

(ER) (Gerchberg, 1972) and the hybrid input–output (HIO)

(Fienup, 1978) methods, as described by Donatelli et al. (2015).

In particular, HIO is a global optimization technique that uses

negative feedback to prevent stagnation into local minima. In

contrast, ER is a local minimizer used to refine a solution and

consists of simply applying the operations in Fig. 1 in

sequential order without the use of negative feedback.

Both the ER and HIO methods are used for a set number of

iterations one after the other to improve the convergence of

the electron density. These methods are combined with

shrinkwrap (Marchesini et al., 2003) to update estimates of the

density support region which is enforced in the HIO and ER

steps. The pseudocode described below represents how HIO,

ER and shrinkwrap are alternated within the MTIP algorithm

implementation and is called the iterative stage in the rest of

the paper.

Alogrithm 1.

3. Literature review

Modern GPGPUs targeting high-performance computations

are widely used in various scientific applications. The light-

weight properties of the processing cores, which are large in

number on GPGPUs, make them ideal for large-scale arith-

metic operations. In contrast, CPUs with their complex logical

circuitry are suitable for serial and conditional instructions.

In many scientific applications, GPUs are used as co-proces-

sors for compute-intensive and time-consuming arithmetic

operations.

In the past decade, GPUs have been successfully used in

various structure analysis computations. Single-particle elec-

tron microscopy (Schmeisser et al., 2009) was one of the first

areas to introduce the use of GPU computing technologies for

determination of the structure of macromolecules. The

parallelism offered by GPUs is exploited in computation of

diffuse scattering patterns (Gutmann, 2010), Debye function

analysis (Gelisio et al., 2010; Sestu et al., 2014), computation of

scattering maps (Favre-Nicolin et al., 2011) and many other

applications.

Various diffraction data analysis applications have recently

shown a significant performance boost when using GPUs. The

SHARP package (Marchesini et al., 2016) and multimode

ptychography (Dong et al., 2018) use GPUs to achieve high-

throughput ptychographic (Hegerl & Hoppe, 1970) recon-

structions. A GPU version of the TREOR algorithm (Šimeček

et al., 2015) was developed for indexing powder diffraction

data. Other applications such as atom-based polychromatic

diffraction simulation (E et al., 2018) have effectively utilized

GPUs to accelerate computations.

In addition to the use of GPUs to achieve higher compu-

tational throughput in the algorithms, they have been

employed in data classification and processing techniques such

as classification algorithms for XFEL data (Shi et al., 2019),

data reduction (Narayanan et al., 2018) and identifying useful

diffraction patterns for further study (Cichocka et al., 2018).

Various libraries and toolbox packages like the Astra Tomo-

graphy Toolbox (Palenstijn et al., 2011), pyFAI (Ashiotis et al.,

2015), crYOLO (Wagner et al., 2020) and SIR2011 software

algorithms (Shalaby & Oliveira, 2013) utilize GPUs for effi-

cient parallel calculations.

4. GPU programming models

Various parallel programming models are available for

programming GPGPUs. We chose CUDA (Nvidia, 2010) and

HIP (AMD, 2016) for our implementations. CUDA is an

application programming interface (API) model used to

program NVIDIA GPUs. The CUDA programming model

includes a large set of accelerated libraries for linear algebra,

signal and image processing, and deep learning frameworks,

which are highly optimized and ready to use.

HIP is a runtime API and kernel language used to create a

portable application that can execute on both the NVIDIA

and AMD GPUs. HIP also has support for various libraries.

HIP APIs implicitly invoke the CUDA library APIs when

executing on NVIDIA GPUs and invoke APIs from the

ROCm stack (ROCm, 2016) when executing on AMD GPUs.

The CUDA and HIP APIs are syntactically similar with

different prefixes (supplementary Table S1).

5. MTIP application characteristics and CPU-based
profiling

In the MTIP algorithm, the functions are discretized into polar

nodes/points, which are used to approximate the integral. The

3D spherical-polar grids used in MTIP consist of N spherical

shells as shown in Fig. 2(a) at equispaced radii r1, . . . , rN in real

space and q1, . . . , qN in Fourier space. The nth spherical shell,

as shown in Fig. 2(b), contains Ln inclination angles

�n;1; . . . ; �n;Ln
, which are given by the arccosines of the Lnth-

order Gauss–Legendre quadrature nodes, and Mn equispaced

azimuthal angles �n;1; . . . ; �n;Mn
. In real space, the values of Ln

research papers

1182 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS J. Appl. Cryst. (2021). 54, 1179–1188



and Mn differ for each spherical shell and are chosen to

balance between maximizing the accuracy of the spherical

harmonic transforms and minimizing the number of degrees of

freedom used to represent the solution (i.e. by preventing the

grid point density from blowing up at the center). In the

current implementation Ln = �n + 1 and Mn = 2Ln � 1.

However, in Fourier space, the values of Ln and Mn are instead

set to the same constants L and M for each spherical shell in

order to fully maximize the accuracy of the spherical harmonic

transforms, since the degrees of freedom have already been

limited by the real-space representation. In the current

implementation we use L = �(N � 1) + 15 and M = 2L � 1.

All the quantities on the spherical polar grid are stored

contiguously in computing memory before the respective

operations. The contiguous arrangement of the quantities in

memory results in effective coalesced memory access. As a

result, the quantities are reordered before every mathematical

operation such that they are contiguous with respect to

parameters like inclination angle and azimuthal angle. The

associated Legendre transforms (ALT), Hankel transforms

(HT), and their inverses IALT and IHT involve the use of

matrix–matrix multiplications. The Fourier transforms

involved in polar Fourier transforms, the spherical harmonic

transforms and their inverses are computed using the fast

Fourier transform (FFT) and an inverse fast Fourier transform

(IFFT).

Each iteration of the MTIP algorithm involves computing a

set of mathematical operations in a sequential order as shown

in Fig. 1, to obtain an updated electron density. The outputs

from each mathematical operation are reordered to be

contiguous with respect to one of the parameters. This reor-

dering results in contiguous memory access and efficient

computation of fast Fourier transforms and matrix–matrix

multiplications. The MTIP algorithm also involves other

computations (Donatelli et al., 2015) including singular value

decompositions, eigen-decompositions, the shrinkwrap

method and other mathematical operations while enforcing

the projections using mathematical operators.

Fig. 3 shows a pie chart representation of the timing profile

for the CPU-based implementation of the iterative stage in the

MTIP algorithm, derived using Intel VTune Amplifier (Intel,

2020). The iteration parameters as represented in Algorithm 1

used for the iterative stage of the MTIP algorithm imple-

mentation in this paper are iter = 15; HIOiterations = 60;

ERiterations = 40; Refineiterations = 200. The mentioned iteration

parameter configuration is used as it has provided good

convergence. From Fig. 3, it is evident that the FFT, IFFT and

matrix–matrix multiplications are the major bottlenecks in the

implementation.

Owing to the varied values of the angles in both the real

space and the Fourier space, the matrix–matrix multiplications

and the fast Fourier transforms consist of varied array/vector

sizes for each value of n. The MTIP algorithm is implemented

using double-precision floating-point arithmetic to eliminate

small numerical roundoff errors on the order of 10�10, which

would grow after several iterations and eventually cause the

iterations to become unstable. The algorithm executes inde-

pendently for various different initial electron densities by

distributing the code to multiple message passing interface

(MPI) (Gropp et al., 1999) ranks and randomly initializing the

electron density. The obtained reconstructions from each of

the MPI ranks are averaged and interpolated to a Cartesian

grid for visualization. A higher number of reconstructions

results in improved model accuracy.

6. Methods

In this section, we describe the details of the GPU acceleration

of MTIP, the hardware and libraries used for our performance

study, and the validation tool that we developed. We use the

CUDA programming model, because it is a low-level language

targeting NVIDIA GPUs effectively, and it can provide a good

baseline for the best GPU performance possible. We show

portability to AMD GPUs via HIP owing to its similarity to

CUDA syntax and for its ease of porting.

The performance of the GPU-accelerated MTIP algorithm

implementation is demonstrated by reconstructing the Para-

mecium bursaria Chlorella virus (PBCV-1) (Van Etten et al.,

1983) from experimental data (Pande et al., 2018a,b), and the

Methanococcus marapaludis archeal chaperonin (MMAC)

(Zhang et al., 2010) protein from simulated data.

6.1. GPU acceleration of MTIP

6.1.1. Initialization stage. The MTIP code implementation

has an initialization stage followed by an iterative stage. The

initialization stage involves initializing parameters for polar

Fourier transforms, spherical harmonic transforms and their

inverses by creating plans for fast Fourier transforms and the

execution environment for matrix–matrix multiplications. The

research papers

J. Appl. Cryst. (2021). 54, 1179–1188 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS 1183

Figure 3
Pie chart of the timing profile for different mathematical sections of the
iterative stage in the CPU-based MTIP algorithm implementation.

Figure 2
Spherical polar grid, where r and q are radii in real and Fourier space, and
� and � are inclination and azimuthal angles.



polar Fourier transforms, spherical harmonic transforms and

their inverses involve the use of various special function

evaluations, which are used in the transforms. These functions

are evaluated once in the initialization stage and used in every

iteration of the MTIP algorithm. To compute fast Fourier

transforms, all the libraries targeting CPUs or GPUs require

plan creation. The plan is a data structure that stores all the

information required to compute the transforms. Since the

plans do not change between iterations of the MTIP algo-

rithm, they are created once in the initialization stage. Simi-

larly, the dimensions of various matrices generated in the

MTIP algorithm are constant. Abstractions for various

matrix–matrix operations are created in the initialization stage

by using user-defined datatypes (classes) in C++.

6.1.2. Fast Fourier transforms. Fourier transforms and their

inverses in the MTIP algorithm involve real-to-complex,

complex-to-real and complex-to-complex transforms. The

complex-to-complex transforms in the cuFFT library

(NVIDIA, 2013) handle the entire transform effectively using

optimized kernels. However, the library involves the use of

different algorithms for the real-to-complex and complex-to-

real transforms depending on the input size.

In addition, the pointers to the input and output of the

transforms for the real-to-complex and complex-to-real

transforms in cuFFT are required to be aligned to the complex

data type (NVIDIA, 2013) and otherwise will throw an invalid

error. Therefore, the starting address of the input real type and

output real type should be in the even address space, which is

not the case in the MTIP algorithm.

For example, let us consider different sub-vectors (in

different colors) arranged linearly in memory and accessed as

a single vector as shown in Fig. 4. The cuFFT library can

readily access Input+0 and Input+2 memory locations as they

are aligned to the complex data type. But the Input+7 memory

location cannot be accessed by the library and will throw an

error as it is not aligned to the complex data type.

Three possible workarounds have been explored. In the first

technique, temporary vectors are initialized with the size of

each sub-vector, and the sub-vectors are copied into them.

Each temporary vector is passed as an argument to the cuFFT

API calls. This results in additional initialization and data

transfers. The second technique consists of padding the vector

such that each sub-vector is in the even address space as

shown in Fig. 5. The padded memory layout will result in a

change of the input vector size. The third technique consists of

converting all the real data types into complex data types by

adding a zero-valued imaginary component. The output of the

real-to-complex transforms will then be equal to the first half

of the output vector from the complex-to-complex transform.

By converting the real data type to a complex data type, the

memory usage in the FFT-related computations was doubled.

The third technique resulted in around 25% better perfor-

mance compared with the second technique. And as the

memory increase by converting the real data type to the

complex data type is significantly lower than the entire

application’s memory requirement, we implemented the third

technique. As a result, we reorganized all the real-to-complex

and complex-to-real transforms as complex-to-complex

transforms during the reordering step.

6.1.3. Matrix–matrix multiplication. We implemented the

matrix–matrix multiplications in the GPU-accelerated MTIP

algorithm using the cuBLAS library (Nvidia, 2008). Each of

the matrix–matrix multiplications is independent across order

l and m. These independent matrix–matrix multiplications can

be executed asynchronously. Therefore, we use CUDA

streams to execute each matrix–matrix multiplication asyn-

chronously.

6.1.4. Reordering. Data dependencies across different

mathematical operations in each iteration and the iterations

themselves restrict the GPU-based computations to targeting

each mathematical operation and iteration individually one

after the other. In each of the mathematical operations, the

inputs and outputs are reordered such that they are contig-

uous in terms of various parameters, including radial compo-

nent, expansion order, polar angle, azimuthal angle, real space

and Fourier space. This contiguous reordering at each step

within an iteration results in effective memory access patterns

for the Fourier transforms and matrix–matrix multiplications.

Unlike in fast Fourier transforms and matrix–matrix multi-

plications where respective cuBLAS and cuFFT library API

calls are invoked, we have developed all the reordering

modules using manually written CUDA kernels.

Note that MTIP uses a small (80–95) number of radial

nodes N and relatively small (size of Mn) array sizes in matrix–

matrix multiplications and vector sizes in the FFT and IFFT.

Profiling of the mathematical operations by the NVIDIA

Profiler (NVIDIA, 2020) shows that the achieved occupancy

of the GPU is lower than 15%. This lower achieved occupancy

means that the GPU is not being used at its maximum

computational capability and is due to fewer computations

being performed on the GPU because of the smaller array/

vector sizes. Despite the fact that fewer computations are

performed on the GPU when compared with its capacity, each

mathematical operation is computed on the GPU indepen-

dently in a sequence because of their dependency across the

operations in the algorithm.

6.2. Hardware and libraries

We ran the accelerated MTIP algorithm using 96 ranks on

the Summit supercomputer (https://www.olcf.ornl.gov/summit/).

research papers

1184 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS J. Appl. Cryst. (2021). 54, 1179–1188

Figure 4
Memory layout of different vectors.

Figure 5
Padded memory layout for different sub-vectors.



Summit nodes have IBM Power9 CPUs and six NVIDIA Tesla

V100 GPUs. Each Tesla V100 GPU has a 16 GB memory limit.

The accelerated portions of the algorithm are executed on the

Tesla V100 GPUs and the non-accelerated portions of the

algorithm on the Power9 CPUs.

We demonstrate the cross-platform implementation by

executing the accelerated MTIP algorithm with one rank using

HIP on the NVIDIA Tesla V100 and AMD Radeon Instinct

MI50 GPUs. The accelerated portions of the algorithm are

executed on the AMD MI50 GPUs, and AMD EPYC CPUs

are used for running the non-acceleration portions of the

algorithm when employing HIP on the AMD GPU.

As the MTIP algorithm consists of a significant number of

matrix–matrix multiplications, FFTs and IFFTs, the use of

highly optimized libraries targeting specific architectures

would be beneficial for the performance. Therefore, we use

cuBLAS (Nvidia, 2008) and cuFFT (NVIDIA, 2013) in our

CUDA implementation and hipBLAS and hipFFT (https://

github.com/ROCmSoftwarePlatform) in our HIP imple-

mentation. The HIP runtime and library APIs implicitly

invoke their CUDA counterparts on NVIDIA GPUs, resulting

in a portable application. Other mathematical computations

like reordering, shrinkwrap and projection operators are

implemented by explicitly developing CUDA/HIP kernels on

the NVIDIA/AMD GPUs.

6.3. Validation

The GPU-accelerated MTIP algorithm uses multiple MPI

ranks on multiple nodes with each rank executing the algo-

rithm independently, starting with different initial electron

densities. The final electron densities (reconstructions)

obtained from each rank are then aligned, averaged and

interpolated to a Cartesian grid for visualization. In addition

to the visualization, the phase retrieval transfer function

(PRTF) (Marchesini et al., 2005) values are computed to

validate the resolution of the reconstruction with respect to an

initial reconstruction obtained using sequential computations.

The PRTF is a one-dimensional curve, which is a function of

resolution and can be used to estimate the overall quality of

the reconstruction. The estimated resolution of the recon-

struction is provided as the first PRTF value that is below a

threshold of 1/e.

We numerically validate the reconstruction by checking if

all the PRTF values above 0.25 have less than �5% variation

compared with the initial reconstruction. We developed a

Python-based numerical validation tool to validate the final

reconstructions obtained. The validation tool compares the

PRTF values obtained from the GPU-accelerated MTIP

algorithm with the PRTF values of the CPU-based MTIP

algorithm and visually represents the variations.

7. Results

We ran the CUDA-based and the CPU-based MTIP algo-

rithms for different numbers of radial nodes, and the execu-

tion time taken by 96 MPI ranks for computing the iterative

stage for the PBCV-1 virus is shown in Fig. 6. The time

displayed is for the iterative stage as shown in Algorithm 1

with the iteration parameters given in Section 5.

The CPU-based code was executed on the Power9 archi-

tecture. Various optimization techniques were employed to

improve the performance of the CPU-based MTIP algorithm.

Among the compiler-based optimizations, the XL compiler

was used with the level-3 compiler optimization flag to

perform high-order transformations on loops along with loop

unrolling, which improved the performance compared with

the use of the PGI compiler. In addition, various optimizations

were employed in both the initialization and iterative stages of

the algorithm. In the initialization stage, the preliminary

computations of the special function evaluations, which

involve trigonometric functions and other mathematical

computations, require a significant amount of time and are

identical across the MPI ranks. As a result, these preliminary

computations were evaluated and written into a file to be read

during the initialization stage. Reading the preliminary input

from a file reduces the time of the initialization stage by 45%.

In the iterative stage, various optimization techniques such as

minimizing the recurring computations by storing them in

scalar variables for further use and contiguous memory

storage for effective memory access were implemented to

improve performance. These techniques along with the XL

compiler-based optimizations improved the performance of

the iterative stage by around 15%. The use of Intel Broadwell

CPUs with Intel compilers resulted in 18% improvement in

performance of the CPU-based MTIP implementation

compared with the Power9 CPUs. To maintain homogeneity,

results from Power9 CPUs are compared for the CPU-based

and CUDA-based implementations.

The CUDA-based MTIP algorithm was executed using 96

MPI ranks distributed on 16 nodes of the Summit super-

computer (which has six Tesla V100 GPUs per node) with six

MPI ranks per node and one MPI rank per GPU. The initi-

alization stage uses 96 MPI ranks and was executed on the

research papers

J. Appl. Cryst. (2021). 54, 1179–1188 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS 1185

Figure 6
Timing comparison of iterative stage on Power9 CPUs and NVIDIA Tesla
V100 GPUs.



Power9 CPU cores, and the iterative stage was offloaded to the

GPUs. The CUDA implementation achieved a speedup of

approximately one order of magnitude for different numbers

of radial nodes. Figs. 7 and 8 show the final reconstructions of

virus/protein obtained using the CUDA-based implementa-

tion. We compared the numerical validation of the CUDA-

based implementation with the CPU-based implementation

using the Python validation tool, and the PRTF values of the

GPU implementation are well within the �5% variation, as

shown in Fig. 9.

Owing to memory limitations on GPUs, the CUDA-based

MTIP algorithm cannot run more than 95 radial nodes. Even

though it is possible to run the CPU-based MTIP algorithm

with more than 95 radial nodes, we did not see any further

improvement in the quality of reconstruction when doing so.

However, it increased the computational load significantly.

Therefore, we only show results up to 95 radial nodes.

We initially ported the iterative stage completely to GPUs,

but the correlation projection on GPUs had a negative impact

on the performance. This is due to synchronous execution of

the singular value decomposition on smaller-dimensional

matrices. As a result, we modified the code to execute the

correlation projection on the CPU by copying data to and

from the CPU, before and after the correlation projection.

To achieve performance portability across different GPU

architectures (NVIDIA and AMD), we ported the CUDA-

based code to use the HIP programming interface. The HIP

interface has support for BLAS (hipBLAS) and FFT

(hipFFT) libraries but they are not as performant (at the time

of this acceleration effort) as their CUDA counterparts. As a

result, the HIP-based MTIP code on AMD GPUs takes

considerably more time than the CUDA-based MTIP code on

NVIDIA GPUs. The execution time of the HIP-based MTIP

code on AMD GPUs is around six times slower than that of

the CUDA-based MTIP code on NVIDIA GPUs.

The HIP-based MTIP code on the NVIDIA GPUs has

similar performance to the CUDA-based MTIP code on the

NVIDIA GPUs. Fig. 10 shows that both the HIP and CUDA

implementations have similar performance on NVIDIA

GPUs. Although, at present, the performance of HIP libraries

on AMD GPUs is not comparable to that of CUDA libraries

on NVIDIA GPUs, developing the code in HIP will readily

provide us with a portable code without any performance

penalty on the NVIDIA GPUs. Further improvements to the

research papers

1186 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS J. Appl. Cryst. (2021). 54, 1179–1188

Figure 7
Reconstruction of PBCV-1 virus using the MTIP CUDA implementation.

Figure 8
Reconstruction of MMAC protein using the MTIP CUDA implementa-
tion.

Figure 9
MTIP numerical validation using a Python-based validation tool, showing
that the PRTF values of the CUDA-based implementation are within 5%
of those of the CPU-based implementation.

Figure 10
Timing comparison of CUDA and HIP programming models on NVIDIA
GPUs.



HIP libraries in the future will implicitly improve the perfor-

mance of GPU MTIP code on the AMD GPUs.

8. Discussion

In our experiments, the number of radial nodes was varied

(supplementary Section S5) between 80 and 95. The para-

meters including inclination angles and azimuthal angles in

real/Fourier space depend on the number of radial nodes. As a

result, a change in the number of radial nodes will implicitly

change all the parameters in the MTIP algorithm.

With the increase in number of nodes, there is an increase in

the vector sizes of variables involved in the various transforms

and matrix–matrix multiplications. In addition, the total

number of FFTs, IFFTs and matrix–matrix multiplication

operations also increases with increasing number of radial

nodes. Fig. 11 provides information about the approximate

memory required by the MTIP algorithm for various numbers

of radial nodes and the rate at which the memory requirement

increases. The rate of increase in memory requirement was

compared with the memory requirement of the MTIP algo-

rithm for 80 radial nodes. Fig. 11 shows that, as the number of

radial nodes increases, the memory required for the MTIP

algorithm increases significantly. The plot numerically indi-

cates that a 30% increase in the number of nodes increases the

memory requirement by more than two times.

From a computational perspective, the occupancy of the

GPUs is less than 30–40%, because the algorithm is restricted

to computing each mathematical operation in a serial order.

Increasing the number of radial nodes will increase the vector

sizes and the number of operations, resulting in improved

occupancy of the GPUs. The increase in occupancy of the

GPUs would generally improve the computational

throughput, but in the MTIP algorithm the increase in vector

sizes is lower. This is because the number of radial nodes is

increased in small proportions, resulting in a lower increase of

occupancy in the GPUs. To achieve higher occupancy, the

number of radial nodes must be increased significantly, which

leads to a memory limitation on the GPUs. On the other hand,

reducing the number of radial nodes to below 80 would further

decrease the occupancy of the GPUs. The MTIP algorithm can

be categorized as a memory-bound problem, where higher

memory access is required for fewer computations. As a result,

the number of radial nodes must be chosen such that better

output reconstructions can be obtained from a lower number

of radial nodes, which would involve possible higher occu-

pancy on the GPUs.

Fig. 6 shows that the speedup does not change significantly

with an increase in the number of radial nodes. The speedup of

the mathematical operations like transforms and matrix–

matrix multiplications individually ranges from 5� to around

30�. With the increase in the number of radial nodes, the

speedup of these individual operations would increase further

but not significantly owing to the lower increase in the number

of radial nodes. As these operations are cumulated serially as

part of the MTIP iteration, and a significantly larger number

of iterations are executed, the overall speedup improvement is

not significant. From the available timing results, it can be

observed that with the increase in the number of radial nodes

the time increases linearly in both the CPU-based and the

GPU-based implementations. But the speedup does not

change significantly, indicating that the rate of change of time

in CPU-based implementation for a varied number of radial

nodes is proportional to the rate of change of time in GPU-

based implementation for a varied number of radial nodes.

9. Conclusion

In this paper, we presented GPU acceleration efforts for the

multitiered iterative phasing algorithm using the CUDA

programming model. We detailed the limitations of the real-

to-complex and complex-to-real fast Fourier transforms and

their inverses in the CUDA libraries particular to MTIP data

and proposed different workarounds. The CUDA-based

MTIP fluctuation X-ray scattering analysis program outper-

forms the CPU-based version by an order of magnitude. In

addition to the CUDA implementation, we developed a

portable application using the HIP programming interface.

Although the performance on AMD GPUs is restricted by the

HIP libraries, we demonstrated a pathway to use the HIP

interface to develop a cross-platform application for NVIDIA

and AMD GPUs.

Acknowledgements

We thank the NESAP program and NVIDIA for their assis-

tance in GPU optimization during the GPU hackathon

scheduled in March 2019. We also thank David O. Rich who

manages the local Los Alamos National Laboratory Darwin

cluster for his help in reliably making the Darwin Power9/

Volta and AMD CPU/GPU nodes available to us for code

development. The content of this article is solely the respon-

sibility of the authors and does not necessarily represent the

official views of the NIH.

research papers

J. Appl. Cryst. (2021). 54, 1179–1188 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS 1187

Figure 11
Memory requirement in the MTIP algorithm for varying number of radial
nodes, and rate of increase in memory with respect to 80 radial nodes.



Funding information

The following funding is acknowledged: Office of Science and

National Nuclear Security Administration [grant No. 17-SC-

20-SC; WBS 2.2.4.05 to Exascale Computing Project, Data

Analytics at the Exascale for Free Electron Lasers (ExaFEL)].

This research also used resources of the National Energy

Research Scientific Computing Center, a DOE Office of

Science User Facility supported by the Office of Science of the

US Department of Energy under contract DE-AC02-

05CH11231. PHZ was supported in part by the National

Institute of General Medical Sciences of the National Insti-

tutes of Health (NIH) under award R01GM109019.

References

AMD (2016). HIP: C++ Heterogeneous-Compute Interface for Por-
tability, https://github.com/GPUOpen-ProfessionalCompute-Tools/
HIP.

Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J. P., Karkoulis, D.,
Picca, F. E. & Kieffer, J. (2015). J. Appl. Cryst. 48, 510–519.

Cichocka, M. O., Ångström, J., Wang, B., Zou, X. & Smeets, S. (2018).
J. Appl. Cryst. 51, 1652–1661.

Donatelli, J. J., Zwart, P. H. & Sethian, J. A. (2015). Proc. Natl Acad.
Sci. USA, 112, 10286–10291.

Dong, Z., Fang, Y.-L. L., Huang, X., Yan, H., Ha, S., Xu, W., Chu, Y S.,
Campbell, S. I. & Lin, M. (2018). 2018 New York Scientific Data
Summit (NYSDS), https://doi.org/10.1109/NYSDS.2018.8538964. IEEE.

E, J. C., Wang, L., Chen, S., Zhang, Y. Y. & Luo, S. N. (2018). J.
Synchrotron Rad. 25, 604–611.

Favre-Nicolin, V., Coraux, J., Richard, M.-I. & Renevier, H. (2011). J.
Appl. Cryst. 44, 635–640.

Fienup, J. R. (1978). Opt. Lett. 3, 27–29.
Gelisio, L., Azanza Ricardo, C. L., Leoni, M. & Scardi, P. (2010). J.

Appl. Cryst. 43, 647–653.
Gerchberg, R. W. (1972). Optik, 35, 237–246.
Gower, J. C. & Dijksterhuis, G. B. (2004). Procrustes Problems,

Oxford Statistical Science Series, Vol. 30. Oxford University Press
on Demand.

Gropp, W., Gropp, W. D., Lusk, E., Skjellum, A. & Lusk, A. D. F. E. E.
(1999). Using MPI: Portable Parallel Programming With the
Message-Passing Interface. Cambridge: MIT Press.

Gutmann, M. J. (2010). J. Appl. Cryst. 43, 250–255.
Hegerl, R. & Hoppe, W. (1970). Ber. Bunsen. Phys. Chem. 74, 1148–

1154.
Intel (2020). Intel VTune Profiler, https://software.intel.com/en-us/

vtune.
Kam, Z., Koch, M. H. & Bordas, J. (1981). Proc. Natl Acad. Sci. USA,

78, 3559–3562.
Kurta, R. P., Donatelli, J. J., Yoon, C. H., Berntsen, P., Bielecki, J.,

Daurer, B. J., DeMirci, H., Fromme, P., Hantke, M. F., Maia,
F. R. N. C., Munke, A., Nettelblad, C., Pande, K., Reddy, H. K. N.,
Sellberg, J. A., Sierra, R. G., Svenda, M., van der Schot, G.,
Vartanyants, I. A., Williams, G. J., Xavier, P. L., Aquila, A., Zwart,
P. H. & Mancuso, A. P. (2017). Phys. Rev. Lett. 119, 158102.

Liu, H., Poon, B. K., Saldin, D. K., Spence, J. C. H. & Zwart, P. H.
(2013). Acta Cryst. A69, 365–373.

Marchesini, S., Chapman, H. N., Barty, A., Cui, C., Howells, M. R.,
Spence, J. C. H., Weierstall, U. & Minor, A. M. (2005).
arXiv:physics/0510033.

Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A.,
Howells, M. R., Weierstall, U. & Spence, J. C. H. (2003). Phys. Rev.
B, 68, 140101.

Marchesini, S., Krishnan, H., Daurer, B. J., Shapiro, D. A., Perciano,
T., Sethian, J. A. & Maia, F. R. N. C. (2016). J. Appl. Cryst. 49, 1245–
1252.

Mendez, D., Lane, T. J., Sung, J., Sellberg, J., Levard, C., Watkins, H.,
Cohen, A. E., Soltis, M., Sutton, S., Spudich, J., Pande, V., Ratner,
D. & Doniach, S. (2014). Philos. Trans. R. Soc. B, 369, 20130315.

Mendez, D., Watkins, H., Qiao, S., Raines, K. S., Lane, T. J., Schenk,
G., Nelson, G., Subramanian, G., Tono, K., Joti, Y., Yabashi, M.,
Ratner, D. & Doniach, S. (2016). IUCrJ, 3, 420–429.

Narayanan, T., Sztucki, M., Van Vaerenbergh, P., Léonardon, J.,
Gorini, J., Claustre, L., Sever, F., Morse, J. & Boesecke, P. (2018). J.
Appl. Cryst. 51, 1511–1524.

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J.
(2000). Nature, 406, 752–757.

NVIDIA (2008). cuBLAS Library, https://docs.nvidia.com/cuda/
cublas/index.html.

NVIDIA (2010). CUDA Toolkit Documentation v11.4.0, https://docs.
nvidia.com/cuda/.

NVIDIA (2013). CUDA Fast Fourier Transform Library (cuFFT).
NVIDIA Corporation, Santa Clara, California, USA.

NVIDIA (2020). Profiler User’s Guide, https://docs.nvidia.com/cuda/
profiler-users-guide/index.html#nvprof-overview.

Palenstijn, W. J., Batenburg, K. J. & Sijbers, J. (2011). J. Struct. Biol.
176, 250–253.

Pande, K., Donatelli, J. J., Malmerberg, E., Foucar, L., Bostedt, C.,
Schlichting, I. & Zwart, P. H. (2018a). Proc. Natl Acad. Sci. USA,
115, 11772–11777.

Pande, K., Donatelli, J. J.., Malmerberg, E., Foucar, L., Poon, B. K.,
Sutter, M., Botha, S., Basu, S., Bruce Doak, R., Dörner, K., Epp,
S. W., Englert, L., Fromme, R., Hartmann, E., Hartmann, R.,
Hauser, G., Hattne, J., Hosseinizadeh, A., Kassemeyer, S., Lomb,
L., Montero, S. F. C., Menzel, A., Rolles, D., Rudenko, A., Seibert,
M. M., Sierra, R. G., Schwander, P., Ourmazd, A., Fromme, P.,
Sauter, N. K., Bogan, M., Bozek, J., Bostedt, C., Schlichting, I.,
Kerfeld, C. & Zwart, P. H. (2018b). Sci. Data, 5, 180201.

Podorov, S. G., Faleev, N. N., Pavlov, K. M., Paganin, D. M., Stepanov,
S. A. & Förster, E. (2006). J. Appl. Cryst. 39, 652–655.

Poon, H. C., Schwander, P., Uddin, M. & Saldin, D. K. (2013). Phys.
Rev. Lett. 110, 265505.

ROCm (2016). ROCm, a New Era in GPU Computing, retrieved 13
November 2019 from https://rocm.github.io/.

Saldin, D. K., Poon, H. C., Schwander, P., Uddin, M. & Schmidt, M.
(2011). Opt. Express, 19, 17318–17335.

Schaeffer, N. (2013). Geochem. Geophys. Geosyst. 14, 751–758.
Schmeisser, M., Heisen, B. C., Luettich, M., Busche, B., Hauer, F.,

Koske, T., Knauber, K.-H. & Stark, H. (2009). Acta Cryst. D65, 659–
671.

Sestu, M., Corrias, A., Casula, M. & Navarra, G. (2014). Acta Cryst.
A70, C1445.

Shalaby, E. M. & Oliveira, M. A. (2013). J. Appl. Cryst. 46, 594–600.
Shi, Y., Yin, K., Tai, X., DeMirci, H., Hosseinizadeh, A., Hogue, B. G.,

Li, H., Ourmazd, A., Schwander, P., Vartanyants, I. A., Yoon, C. H.,
Aquila, A. & Liu, H. (2019). IUCrJ, 6, 331–340.

Šimeček, I., Rohlı́ček, J., Zahradnický, T. & Langr, D. (2015). J. Appl.
Cryst. 48, 166–170.

Svergun, D. I., Petoukhov, M. V. & Koch, M. H. (2001). Biophys. J. 80,
2946–2953.

Van Etten, J. L., Burbank, D. E., Xia, Y. & Meints, R. H. (1983).
Virology, 126, 117–125.

Wagner, T., Lusnig, L., Pospich, S., Stabrin, M., Schönfeld, F. &
Raunser, S. (2020). Acta Cryst. D76, 613–620.

Zhang, J., Baker, M. L., Schröder, G. F., Douglas, N. R., Reissmann, S.,
Jakana, J., Dougherty, M., Fu, C. J., Levitt, M., Ludtke, S. J.,
Frydman, J. & Chiu, W. (2010). Nature, 463, 379–383.

research papers

1188 Pranay Reddy Kommera et al. � GPU-accelerated MTIP algorithm for FXS J. Appl. Cryst. (2021). 54, 1179–1188

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cw5031&bbid=BB47

