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An approach based on the Fisher information (FI) is developed to quantify the

maximum information gain and optimal experimental design in neutron

reflectometry experiments. In these experiments, the FI can be calculated

analytically and used to provide sub-second predictions of parameter

uncertainties. This approach can be used to influence real-time decisions about

measurement angle, measurement time, contrast choice and other experimental

conditions based on parameters of interest. The FI provides a lower bound on

parameter estimation uncertainties, and these are shown to decrease with the

square root of the measurement time, providing useful information for the

planning and scheduling of experimental work. As the FI is computationally

inexpensive to calculate, it can be computed repeatedly during the course of an

experiment, saving costly beam time by signalling that sufficient data have been

obtained or saving experimental data sets by signalling that an experiment needs

to continue. The approach’s predictions are validated through the introduction

of an experiment simulation framework that incorporates instrument-specific

incident flux profiles, and through the investigation of measuring the structural

properties of a phospholipid bilayer.

1. Introduction

The Fisher information (FI) (Fisher, 1925) has been applied

across many fields, from information theory and communica-

tions (Wang & Yin, 2010; Barnes et al., 2019) to quantum

mechanics (Barndorff-Nielsen & Gill, 2000; Petz, 2002),

quantitative finance (Taylor, 2019) and volcanology (Telesca et

al., 2009). The FI provides a way of measuring the amount of

information an observable variable carries about an unknown

parameter of a distribution that models the observable. For

certain situations it is possible to calculate the FI analytically,

giving a measure of parameter uncertainty and inter-

parameter covariances from which correlations can be

derived. Neutron reflectometry allows one to model a

measured reflectivity curve in order to determine the prop-

erties of the thin-film layer structure that produced the curve.

Most reflectometry analyses use sampling methods to extract

parameter uncertainties, though this is expensive and cannot

be performed in real time with current software (Nelson &

Prescott, 2019; Kienzle et al., 2017; Hughes, 2017). In this work,

we describe an application of the FI to neutron reflectometry

in enabling real-time estimation of parameter uncertainties, as

well as a projection of these with time. We compare the results

with established sampling methods and demonstrate the FI’s

use for experimental design, and for potentially enabling early

stopping of experiments based on counting statistics.
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In reflectivity, a thin film is described by a thickness, a

scattering length density (SLD), which is the product of the

neutron scattering length and the film density, and an inter-

facial roughness; thin-film heterostructures are composed of

multiple thin films on top of each other. In the analysis of

reflectometry data, we are presented with data points of

reflectivity r as a function of momentum transfer Q and wish

to infer the SLD profile from the top surface to the substrate.

For a single interface, i.e. a semi-infinite substrate, the neutron

reflectivity decays as �Q�4, also called the Fresnel reflectivity.

A single layer on a substrate is analytically solvable (Sivia,

2013), but for more layers multiple reflections are possible,

and the inversion of the curve to an SLD profile is non-trivial.

In fact, the loss of phase information upon reflection makes

inversion of the SLD profile from the reflectivity profile an

inverse problem (Majkrzak & Berk, 1995) and approximations

are required.

Typically, reflectometry analysis is model dependent, where

a model is defined using a series of contiguous layers and the

model reflectivity is calculated using the Abelès matrix

formalism for stratified media (Abelès, 1948) or the Parratt

recursive method (Parratt, 1954). However, the solution to

this analysis is not necessarily unique and often requires a

priori knowledge such as details of the system or the under-

lying science. Such prior knowledge helps to limit the

dimensionality of the optimization space by reducing the

number of structures that agree with the experimental data

within some tolerance. Methods have been devised to estimate

interface properties, using this prior knowledge, that describe

the data while adhering to a given set of constraints. Such

methods include optimizers applying gradient projection

(Byrd et al., 1995), annealing processes (Xiang et al., 1997) and

evolutionary algorithms (Storn & Price, 1997).

Another approach to optimization is the use of sampling

methods, of which two are discussed in this work, namely the

Metropolis–Hastings Markov chain Monte Carlo (MCMC)

method (Metropolis et al., 1953; Hastings, 1970) and nested

sampling (Skilling, 2004, 2006), both of which are Bayesian

and sample the parameter posterior distribution. Due to the

typically high dimensionality of the parameter space in

reflectometry, Bayesian sampling methods tend to be

computationally expensive and impractical for obtaining

results, such as parameter estimates and covariances, in real

time. We use refnx for MCMC sampling (Nelson & Prescott,

2019) and dynesty for nested sampling (Speagle, 2019) to

sample our data and compare the results with those derived

from the FI; refnx uses the emcee package (Foreman-Mackey

et al., 2012) to provide an implementation of an invariant

MCMC ensemble sampler (Goodman & Weare, 2010).

Much work has been undertaken on quantifying the infor-

mation content of a reflectivity data set, with most applying

Bayesian statistics, where probability represents a degree of

belief or plausibility based on the evidence at hand (Sivia &

Skillings, 2012). One such approach looked at experimental

optimization by determining the information gain from a given

experiment using the entropies of the posterior and prior

probability density functions (Treece et al., 2019). Similarly,

work has been done on quantifying the information gain from

scattering experiments as a function of the SLD of molecular

components (Heinrich et al., 2020). Many other Bayesian

information-based approaches have been applied to reflecto-

metry, including the use of Bayesian evidence to determine the

set of free parameters that maximize model information

density (McCluskey et al., 2020), and using maximum entropy

to reconstruct an SLD profile from a reflectivity curve (Sivia et

al., 1991).

Similarly to previous work, we propose a methodology for

quantifying the information content of a reflectivity data set

for use in determining the maximum information gain and

experimental design optimization. However, we attempt to

solve a slightly different problem to previous work, and the

calculations that are made using our framework are different

from those of Bayesian techniques. Although the goal of these

estimation procedures remains the same, we derive the

maximum information that the data set contains, given the

current data point uncertainties, not the information content

that can be readily extracted, for example, by sampling the

posterior distribution.

For our application, the uncertainties on our reflectivity

points are defined as the square root of the number of neutron

counts and these counts are governed by Poisson statistics.

Under these assumptions, we can analytically calculate the FI

and apply the Cramér–Rao bound (Cramér, 1946; Rao, 1994).

The bound states that the inverse of the FI provides a strict

lower bound on the variance of an observable variable and, as

a consequence, the FI provides us with a strict upper bound on

the amount of information extractable from the observable. In

practice, using this analytical derivation, we can achieve sub-

second calculations of parameter uncertainties.

To evaluate the FI approach, we developed an experiment

simulation framework based on the underlying assumptions of

Poisson statistics for neutron counts. Since the FI is calculated

using neutron counts, such a framework is necessary in

calculating the FI in the general case where any model is

given. Furthermore, this framework allows us to calculate the

information content of any experimental conditions without

costly beamtime to acquire the same data. The simulation

framework is general in that it can simulate any beamline,

given the incident flux profile of the instrument in question,

and is shown to be accurate without requiring computationally

expensive Monte Carlo methods.

2. Methods

2.1. The Fisher information matrix

The FI is a fundamental quantity in statistical theory and

quantifies parametric changes in probability distributions in

terms of information. It is related to various kinds of infor-

mation ‘distance’, most notably the Kullback–Leibler (KL)

divergence, a building block for many familiar information

theoretic measures (Kullback, 1997). The KL divergence is the

standard way of measuring a difference between distributions

in terms of information and, when applied to parametric
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distributions, provides the ‘distance’ between parameter

values. As a rule of thumb, we can understand a one sigma

(one standard deviation) difference in parameters as a KL

divergence of one nat (natural unit of information). To a first

approximation, this distance is calculated from the FI.

More formally, the FI matrix, g, is the first nonzero term in

the series expansion of the KL divergence from one (vector)

parameter � to � + �� [written here as D(� k � + ��)]:

Dð� k � þ��Þ ¼ 1
2 �n g �nT

þOðj��j3Þ: ð1Þ

Thus, we can think of the FI matrix as a way of scaling the

parameters so that, for sufficiently small changes in para-

meters, the square Euclidean distance is the informational

change. The FI is therefore relative to the specified parameters

and measured in nats per parameter unit squared; it is local

and not dimensionless.

The one nat per sigma relationship is exact for many widely

used distributions, such as for a multivariate normal with

constant covariance. In this case, the FI is the inverse of the

associated covariance matrix. Correspondingly, a practical way

this is used is to set an information threshold, e.g. one nat (one

sigma), and find out by how much the parameters must change

to reach this threshold, thereby specifying an acceptance and/

or confidence region, as discussed in Section 2.4 and the

supporting information.

2.2. Derivation

To derive the equations for information content quantifi-

cation using the FI, we must first provide a structure for given

reflectivity data of N points (equivalently, histogram bins).

This structure consists of contiguous layers representing a

physical sample, with each layer being defined by its thickness,

SLD and interfacial roughness. A model is then described by

this structure and given measurement background noise,

experimental scale factor and instrument resolution; we need

only vary the M unknown parameters of this model. Such a

model describes the reflectance at a given neutron momentum

transfer, for example, using the Abelès matrix formalism

implemented in refnx. The reader is referred to the supporting

information for the full derivation but, in summary, the FI

matrix g� for the M parameters � of a model of N reflectivity

points is given by

g� ¼ JT M J; ð2Þ

where J is the Jacobian of the reflectances ri with respect to the

parameters �, and M is a diagonal matrix of incident counts si

divided by model reflectances ri. In the FI matrix, the FI for an

individual parameter �i corresponds to the diagonal

element g�i;i ,

J ¼

@r1=@�1 @r1=@�2 � � � @r1=@�M

@r2=@�1 @r2=@�2 � � � @r2=@�M

..

. ..
. . .

. ..
.

@rN=@�1 @rN=@�2 � � � @rN=@�M

2
6664

3
7775; ð3Þ

M ¼

s1=r1 0 � � � 0

0 s2=r2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � sN=rN

2
6664

3
7775: ð4Þ

Using equation (2), we can calculate the FI for a model

describing a single data set. However, more complicated

experiments often involve multiple data sets, such as

measuring multiple experimental contrasts. For such cases, n

models, potentially containing inter-model parameter

constraints, are required as input. The calculation is the same

as in equations (2), (3) and (4), except the parameters � are the

union of all of the (potentially shared) parameters of the n

models. Additionally, the Jacobian J and matrix M are calcu-

lated over the concatenated incident counts and model

reflectances.

2.3. Experiment simulation

To simulate an experiment, we require both a model and

knowledge of the flux of incident neutrons as a function of

wavelength. In our case, this was taken on the OFFSPEC

reflectometer (Dalgliesh et al., 2011). We can multiply this

incident neutron flux by a constant in order to change the

experimental counting time and give us the number of incident

neutrons for a simulated experiment; this approach was

developed from the ideas presented by Mironov et al. (2021).

To account for different measurement angles, we multiply this

incident flux by a factor to compensate for different colli-

mating slit openings. Since both of the slits that are used to

define the beam footprint scale linearly with the angle, we

scale the intensity as the square of the angle.

We calculate the momentum transfer Q for each wavelength

� in the file using the measurement angle � and the equation

Q ¼ ð4� sin �Þ=�: ð5Þ

By default, these Q values are assigned to geometrically

spaced bins, with the number of bins being set to the desired

number of points for the simulated data set. Following this, we

calculate each bin’s centre, Qi . Alternatively, a given set of Q

bin centres can be used. The model reflectivity for each bin, ri ,

is calculated using refnx and additive instrument background

noise � is added (optionally, this can be accounted for in the

model reflectivity calculation). Next, this reflectivity is multi-

plied by the bin’s incident flux �i to obtain the reflected flux,

and then multiplied by the simulated measurement time � to

get the reflected counts for the bin. We use the reflected

counts as the mean rate parameter of a Poisson distribution,

from which we obtain a random value giving us an appro-

priately randomized number of reflected counts Ni,

Ni � Poisson ðri þ �Þ�i�
� �

: ð6Þ

The bin’s uncertainty in count space is then the square root of

this value, (Ni)
1/2. To obtain the reflectivity and associated

uncertainty, we simply divide the ‘noisy’ counts and uncer-

tainty by the number of incident neutrons for the bin si (i.e. the

product of the bin’s incident flux and measurement time, �i�).
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The above-described process will generate a single reflec-

tivity data set for a given model. For more complicated

experiments involving multiple data sets, n models are

required as input, and the above process is repeated for each

model, yielding n simulated data sets.

2.4. Applying the Fisher information

The FI can be applied to both experimentally measured and

simulated data. As the FI measures the instrumental uncer-

tainty relative to changes in model parameters, a para-

meterized model must be provided and parameter values

input. These parameter values can be obtained as estimates

based on data, or specified manually if the task is simply the

verification of a particular structure.

We use refnx to define a model and to load the model’s

associated measured or simulated reflectivity data. The para-

meters of the model are then optimized using a fitting algo-

rithm of choice, in our case differential evolution (Storn &

Price, 1997), according to the 	2 distance or, equivalently, the

negative log-likelihood. The likelihood provides a measure of

difference between a given data set and model and, for this

work, is defined as its implementation in refnx,

� lnL ¼ 1
2

XN

i¼1

ri � rim


ri

� �2

þ ln 2�ð
riÞ
2

� �( )
; ð7Þ

where N is the number of measured data points, ri is the

experimental reflectivity at the ith Q point, 
ri is the uncer-

tainty in the experimental reflectivity at the ith Q point and rim

is the model reflectivity at the ith Q point calculated using the

Abelès matrix formalism.

From here on, we no longer need the data, since the model

and Poisson statistics describe the data sufficiently. Next, we

calculate the Jacobian J, whose entries are the gradient of the

model reflectivity ri with respect to each of the model para-

meters �j. We estimate this using a finite difference approx-

imation based on the reflectance for parameter values 0.5%

either side of the input value. Using this and the diagonal

matrix M of incident counts divided by model reflectances, we

can calculate the FI matrix using equation (2). Since the

calculation of this matrix is relatively simple, implementation

for use in other fitting software (Kienzle et al., 2017; Hughes,

2017; Björck & Andersson, 2007) should be straightforward.

The FI matrix contains all of the information about para-

meter variances and covariances but these values require

extraction. The variance of a single parameter is simply given

by the inverse of the FI and so its uncertainty is given by the

square root. In the general case of multiple parameters, the

uncertainty �i for a parameter �i is obtained from the square

root of the inverse of the diagonal elements of the FI matrix,

�i ¼ 1=g�i;i
� �1=2

: ð8Þ

Finally, to extract the covariance between any two parameters,

we can calculate a confidence ellipse of given size k standard

deviations (see the supporting information for details).

2.5. Application to soft matter

To illustrate the utility of the FI, we applied our framework

to an experiment measuring a common model system for

structural biology: a 1,2-dimyristoyl-sn-glycero-3-phospho-

choline (DMPC) bilayer deposited onto a silicon surface. The

lipids were measured against two water contrasts, H2O and

D2O. The data were taken using the CRISP neutron reflect-

ometer (Penfold et al., 1987) as part of the ISIS neutron

training course and simultaneously fitted using RasCAL

(Hughes, 2017). This fitting was constrained against measured

data for a bare Si/D2O interface including a native SiO2 layer.

Our model for the bilayer was defined by two lipid leaflets

with fixed surface coverage. The model was fitted by area per

molecule rather than volume fractions, to avoid ambiguity

arising from differing total molar quantities of headgroup and

tailgroup components. The model also accounted for the

headgroups and tailgroups containing water through defects

across their surfaces, and for the water bound to the hydro-

philic headgroups. After fitting the experimental data, we

reparameterized the bilayer model as a function of contrast

SLD and, using this new model, were able to simulate the

DMPC bilayer experiment on the OFFSPEC reflectometer

(using our instrument flux profile) with arbitrary contrast

SLD. We then investigated the change in the FI for each model

parameter with contrast SLD.

For our parameterization, we have assumed that the

molecular volumes of the headgroups and tailgroups are

known and constant, and that any changes in molecule surface

area are inversely proportional to the headgroup and

tailgroup thicknesses. Structural biology is a large field of

research with varying values used for these molecular

volumes. Furthermore, these molecular volumes may vary

with measurement conditions and may not necessarily be

constant in practice (Campbell et al., 2018). However, so as to

not overcomplicate our model we have fixed them. The full

details of the bilayer model parameterization and fitting can

be found in the supporting information.

3. Results and discussion

3.1. Measured versus simulated data

To demonstrate the robustness of our experiment simula-

tion, we compare a data set measured using the OFFSPEC

neutron reflectometer with its simulated counterpart. The data

were measured experimentally using angles of 0.3, 0.4, 0.5, 0.6,

0.7, 2.0 and 3.0� with measurement times of 7.5, 7.5, 7.5, 15, 15,

60 and 120 min, respectively. The data from these angles were

stitched together to produce a single data file. To obtain a

‘ground truth’ model for simulation, we fitted these stitched

data using refnx to get Table 1. The background, experimental

scale factor and resolution used for fitting were 8 � 10�7, 0.783

and 2.5% dQ/Q, respectively.

To facilitate a measurable difference in the noise char-

acteristics of the experimentally measured data and the data

generated by our simulation framework, we took 1.5 min time

slices from the measured data associated with each individual
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angle. For each measurement angle, we used the same angle,

counting time and number of points for the simulation. As can

be seen in Fig. 1, the noise characteristics of the time-sliced

measured data and the simulated data are very similar.

Statistically, comparing the data sets we find, using the

Hotelling t2 test, p = 0.874 and t2 = 0.159, Anscombe trans-

formed (Hotelling, 1931; Anscombe, 1948), implying no

significant differences between the measured and simulated

data.

3.2. Benchmarking

As mentioned above, the FI approach has notable perfor-

mance upsides. To demonstrate this, we compared the time to

obtain parameter uncertainties using the new approach and

using established Bayesian methods, given a correct and fitted

model. Fitting times have been excluded from these results

since the time to fit would dominate the computation time of

the FI approach, and thus they would provide little insight into

the computational advantage of the FI calculation. Addi-

tionally, since fitting is typically required for MCMC sampling

but not for nested sampling, a fair comparison between all

methods becomes difficult. We therefore focus on the time

taken for each method to reach completion, given optimal

starting values.

The benchmark was run on a CPU with no methods having

multiprocessing explicitly enabled. MCMC sampling was run

with a 400 step burn-in period followed by a 30 step sample,

with each sample being separated by 100 iterations. Nested

sampling was run using the default dynesty stopping criteria

which are optimized for evidence estimation (Speagle, 2019).

Uniform priors were used with a 25% bound above and below

the ground truth for each parameter. Following this, we ran

our FI approach on the same samples. Table 2 compares the

mean processing times of ten samples for each number of

layers and, as can be clearly seen, the FI approach is signifi-

cantly faster. Note that our implementation is not particularly

optimized and we believe further performance gains could be

obtained if they were required.

For each number of layers in the interval [1, 6], we

randomly generated ten samples and varied the SLD, thick-

ness and interfacial roughness of each layer in each sample.

Each sample used a silicon substrate of SLD 2.047 � 10�6 Å�2,

and the random SLD, thickness and roughness of each layer

were sampled from uniform distributions of intervals

[�1, 10] � 10�6 Å�2, [20, 1000] Å and [2, 8] Å, respectively.

Using our experiment simulation, we synthesized data for

each of these samples and ran both MCMC and nested

sampling to obtain parameter uncertainties. Each experiment

simulation consisted of 140 points obtained from two angles,

0.7 and 2.0�, using simulated measurement times of 7.5 and

30 min, respectively. Background noise of 10�6, instrument

resolution of 2% dQ/Q and an experimental scale factor of 1.0

were used.

research papers

1104 James H. Durant et al. � Optimizing experimental design in neutron reflectometry J. Appl. Cryst. (2021). 54, 1100–1110

Table 1
Fitted SLD, thickness and roughness values for each layer of the model
corresponding to the measured data set.

SLD (10�6 Å�2) Thickness (Å) Roughness (Å)

Layer 1 (Si) 1.795 790.7 24.5
Layer 2 (Cu) 6.385 297.9 3.50
Substrate (quartz) 3.354 N/A 12.9

Table 2
Calculation time of parameter uncertainties, in seconds, for MCMC
sampling, nested sampling and the FI approach.

For each number of layers, ten samples were randomly generated using that
number of layers, with the mean and standard deviation of the calculation time
recorded for each approach.

Calculation time (s)

MCMC sampling Nested sampling FI approach

No. of
layers

No. of
parameters Mean SD Mean SD Mean SD

1 3 197.829 3.344 53.310 8.947 0.015 0.005
2 6 229.641 5.032 155.480 35.920 0.024 0.004
3 9 262.568 5.334 363.318 120.075 0.036 0.004
4 12 292.382 3.244 19680.574 124.743 0.047 0.004
5 15 330.579 9.531 2967.707 561.529 0.060 0.004
6 18 372.116 5.667 3862.186 700.430 0.076 0.005

Figure 1
Experimentally measured reflectivity (top) and simulated reflectivity
(bottom) versus momentum transfer Q for each measurement angle of
the Table 1 sample.



3.3. Corner plots and confidence ellipses

In refnx and dynesty, the results of MCMC and nested

sampling, respectively, can provide a corner plot which is ‘an

illustrative representation of different projections of samples

in high dimensional spaces’ (Foreman-Mackey, 2016). These

Bayesian sampling methods sample the parameter posterior

distribution, allowing contours to be drawn through samples

that are equally probable. The FI, however, is developed from

a frequentist view and the confidence ellipses bound regions

where we have at least a k� confidence in the value. Despite

these fundamental differences, the sampling corner plots do

still often agree very closely with the FI confidence ellipses.

For samples with mostly uncorrelated parameters, we found

that corner plots show strong agreement with confidence

ellipses. However, when more parameter correlation is

present, the sampling uncertainties are much larger and we
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Figure 2
The FI confidence ellipses for k = 1, 2, 3 (red) overlaid on the corner plots of MCMC (black) and nested sampling (blue) for the mostly uncorrelated
parameter sample (left) and correlated parameter sample (right). Insets are the SLD profiles (top) and rebinned simulated reflectivity curves (bottom) of
the two samples.



reach a point at which the FI still represents the maximum

obtainable information, but this seemingly cannot be

extracted from the experimental data. As a consequence, the

confidence ellipses do not match the corner plots as closely.

This discrepancy is shown in Fig. 2, which compares two

samples: a simple sample with mostly uncorrelated parameters

and a more complicated sample with more parameter corre-

lation due to similar layer SLDs. The data sets of Fig. 2 were

both simulated with the same run condition as detailed in

Section 3.2.

One potential source of deviation between corner plots and

confidence ellipses may come from our fitting algorithm of

choice. For our application of the FI, our estimator is a fitting

algorithm and, so far, we have assumed that this estimator is

unbiased. Thus, the Cramér–Rao bound implies that the

inverse of the FI is a lower bound on the variance of this

estimator. However, in practice, we found that our fitting

algorithm of choice, differential evolution in refnx, may

exhibit bias in some cases. To measure this bias we simulated

1000 experiments, using the same simulation conditions as

used previously, for a number of different samples of varying

complexity, and calculated the difference between the ground

truth and mean fitted parameter values. Table 3 shows the

fitting biases in the parameters of the Fig. 2 samples. As can

readily be seen, the fitting bias is greater in the sample with

larger inter-parameter correlations, particularly in the layer

thicknesses; these biases are model dependent and potentially

fitting-package dependent.

The Cramér–Rao bound may be modified for a biased

estimator. However, for a real measurement, there is no way

to tell if such a bias exists. As such, we leave our approach with

the stricter limit (since any bias always increases the variance),

and remind ourselves that the maximum possible information

contained in the data is not always going to be the maximum

extractable.

3.4. Time dependence

One potential use of the FI in reflectometry is enabling

early stopping of experiments based on counting statistics. To

determine the feasibility of this application, and to validate

our implementation, we investigated how parameter uncer-

tainties change with measurement time. As derived in the

supporting information, we should expect the uncertainty of a

parameter � to be inversely proportional to the square root of

the experiment measurement time �. By using the fact that �/

1/�1/2, introducing a nonzero proportionality constant � and

taking the natural logarithm of both sides we see

ln � ¼ lnð�=�1=2Þ ¼ ln �� ln ð�1=2Þ

¼ � 1
2 ln � þ ln �: ð9Þ

Using this result, we should expect the gradient of the plot of

log parameter uncertainty ln � versus log time ln � to be� 1
2. To

confirm this is the case, we compared established fitting

uncertainty measures and uncertainties derived from the FI

with increasing time using our experiment simulation frame-

work; the fitting uncertainties were calculated using differ-

ential evolution in refnx and the FI uncertainties using

equation (8).

Using simple linear regression, we found that the time

dependence for any parameter’s uncertainty was indeed

determined by the square root of the measurement time, as

shown in Fig. 3. We used the same samples and simulation

parameters as used for Fig. 2 except for the simulated

measurement time. Both samples were initially simulated

using the same times as before and then these times were

multiplied by an increasing ‘time factor’ from 1 to 1000. This

essentially split a fixed time budget between the simulated

angles 0.7 and 2.0� with a ratio of 1:4.

For the simple sample, the relationship is perfectly exhib-

ited. However, for the more complicated sample, the results

are slightly noisier due to the increased difficulty of fitting.

This is particularly noticeable when the counting time is low

and the data being fitted are impacted by our added noise to a

greater degree. With low counting statistics, differential

evolution may terminate in a minimum of the 	2 parameter

space that does not represent the ground truth model (i.e. the

simulated data no longer uniquely describe the true parameter

set), resulting in uncertainties that deviate from the time-

dependence relationship previously derived. This difficulty in

fitting is shown in Fig. 3, where the mean absolute error

between the ground truth and fitted parameter values is

plotted against time. As can be seen, the fitting errors at lower

counting times are approximately an order of magnitude

larger than those at higher counting times.

Since we now know that parameter uncertainties decrease

as the square root of the measurement time, we are easily able

to project the evolution of these uncertainties and can predict

when some desired threshold will be reached, at which time we

may want to cease the measurement. It is for the experimenter

to decide on such a threshold, with the choice probably

weighing up factors including time to change angle, time to

change sample, total time budget and number of samples

being measured. Such choices are not necessarily easy to make

prior to starting an experiment and so automating this process

may warrant further investigation.

3.5. Application to soft matter

As detailed in Section 2.5, we applied our framework to a

soft matter experiment by taking experimentally measured

data, fitting a DMPC bilayer model and reparameteristing the

model as a function of bulk water contrast SLD. The fitted
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Table 3
Fitting biases in layer SLDs and thicknesses for the uncorrelated and
correlated parameter samples of Fig. 2.

Fitting bias

SLD (10�6 Å�2) Thickness (Å)

Sample Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

Uncorrelated �0.003 �0.002 N/A �0.011 0.010 N/A
Correlated �0.012 �0.054 0.012 �0.556 0.286 0.264



SLD profiles and experimental reflectivity data are shown in

Fig. 4. Using the model, data were simulated for each contrast

SLD from �0.56 � 10�6 to 6.35 � 10�6 Å�2 (pure H2O to

pure D2O) and the FI calculated for each model parameter,

obtained from the diagonal elements of the FI matrix of

equation (2). These results are shown in Fig. 4 for an initial

contrast choice and for a second contrast choice, assuming

D2O was measured first. For the simulation, angles of 0.7 and

2.0� and times of 15 and 60 min, respectively, were used

(typical measurement times). Shown also are the nested

sampling corner plots from sampling simulated data of solely

D2O and of D2O and H2O contrasts using the reparameterized

model. Included in these corner plots are the sampling

uncertainties associated with each parameter.
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Figure 3
Log FI uncertainty (top), log fitting uncertainty (middle) and mean absolute error (bottom) versus log measurement time multiplier for each parameter
of the mostly uncorrelated parameter sample (left) and correlated parameter sample (right). The uncertainties are taken as the mean from ten simulated
experiments for a given time multiplier. Included in the legends of the uncertainty time-dependence plots are approximations of the gradients of the lines
m, as given by linear regression.



Since the units of the FI are nats per parameter unit

squared, it is not technically correct to compare the FI directly

between parameters. However, we can still compare the

information content of parameters of the same unit. As might

naı̈vely be expected, we show that it is possible to extract more

information about some parameters than others. This result is

certainly no surprise for researchers in the field who have

experience fitting this system, but it does allow us to quantify it.

We show that the information of a parameter as a function

of contrast is non-monotonic, almost certainly due to hydra-

tion of various components, leading to them becoming indis-

tinguishable from neighbouring components for some bulk

water deuterium concentrations. This is particularly noticeable

with the SiO2 hydration parameter for the initial contrast

choice, where the large drop in information is due to the

matching of contrasts. Since most of the other model para-

meters describe multiple interfaces, with only one interface

being able to become ‘invisible’ through contrast matching at a

time, there are no zeroes in the FI for these plots.

Fig. 4 indicates that the most information is almost always

obtainable from the highest SLD water, D2O. For the initial

measurement contrast, the difference in information between

the H2O and D2O extremes is significant. However, when

considering the second measurement contrast, the information

gain between the two contrast SLDs is less. It is well estab-

lished that measuring multiple contrasts of different SLDs will
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Figure 4
FI versus bulk water contrast SLD for each model parameter of the reparameteristed DMPC bilayer model, for an initial contrast choice (top left) and
second contrast choice (bottom left), assuming D2O was measured first. Also shown are the nested sampling corner plots from sampling simulated data
of solely D2O (top right), and D2O and H2O contrasts (bottom right). Insets are the experimentally fitted SLD profiles (top) and reflectivity curves
(bottom) for the Si/D2O interface and the two solution isotopic contrast data sets, H2O and D2O, offset by factors of 10�2 and 10�3, respectively, for
clarity.



reduce parameter uncertainties and so this result may seem

unusual; it could suggest that measuring D2O for twice as long

would reduce the parameter uncertainties so that they are

similar to those when measuring D2O and H2O. However, we

believe the aim of measuring multiple contrasts is not only to

lower parameter uncertainties but also to decouple parameter

correlations (i.e. lowering inter-parameter covariances).

Therefore, only considering which contrasts maximize the FI

will not account for this covariance reduction. This is illu-

strated in the corner plots of Fig. 4, where the estimated

posterior distributions from the D2O and H2O data are clearly

much better defined (i.e. more Gaussian) than those from just

D2O. For example, the model roughness parameters are very

poorly defined with just a single D2O measurement.

While difficult to display due to the number of parameter

pairs, if one has a model, it would be possible to calculate the

optimal contrast to measure in order to minimize both para-

meter variances and inter-parameter covariances. The optimal

solution is almost certainly model dependent, but given the

broad features found here, having a slightly incorrect model is

unlikely to be an issue.

3.6. Limitations

Our framework is essentially frequentist and, much like one

does in hypothesis testing, it proceeds by calculating prob-

abilities based on hypothetical, assumed or estimated para-

meter values. The sizes of uncertainties, for example, are those

that would exist if the estimated parameter values were

correct. Determining uncertainties in this way may appear to

be an issue, particularly in reflectometry, since the determi-

nation of the globally ‘correct’ model is non-trivial. As ever, it

is the choice of the experimenter to decide whether their

model, guided by their underlying knowledge of the system,

will accurately represent the true system. However, even if the

model is not exactly correct, the FI still provides value. Since

our calculations effectively perform a sensitivity analysis of

the parameters (more sensitive means a larger gradient in the

Jacobian J, and therefore a larger FI), similar models with

differing values are still very likely to have the same behaviour

and give the same trends. For example, for our DMPC bilayer

data, there are many more model parameterizations that have

been argued in the literature, and differing values for the

parameters we have chosen to fix. However, our simplifying

assumptions describe the measured data to a satisfactory level

and we are confident that equivalent parameterizations would

not change the trends found from our calculations.

Usually, to optimize the parameter values, the model is

fitted before calculating the FI; in our case, we have used

differential evolution. Fitting algorithms can often provide

estimates of parameter variances and covariances and in some

cases these values may be very similar to those provided by

our framework. However, the fit-derived (co)variances have

no deeper statistical underpinning and do not allow further

investigation of the system. Our framework, being based on

the counting statistics and parameter sensitivity of the model,

enables almost instant calculation of uncertainties measured

at any point in the future, or for different contrasts/conditions.

Determining the (co)variances from a fit several hundreds of

times to create a ‘phase diagram’, similar to those described in

Section 3.5, is not feasible in anything close to real time, as

would be useful during an experiment.

4. Future work

The presented framework has many potential applications in

neutron reflectometry and in other scattering techniques

based on counting statistics. As demonstrated by our soft-

matter application, experimental design is one such use where

the FI could be used to influence real-time decisions regarding

measurement angle and/or contrast choice; a similar Bayesian

approach would be unfeasible for real-time application due to

computational overhead. We would also like to apply our

framework to more complex real-world systems, such as

magnetic structures. This could provide answers to common

questions posed in the literature and give insight as to why

particular experimental design choices have found popularity.

The FI framework has the possibility of being extended to

quantify additional factors of an experiment, such as the time

to change the sample or angle. Additionally, work on quan-

tifying and incorporating fitting biases and inter-parameter

correlations into the FI calculation and subsequent analysis

could bridge the gap between our framework and established

methods. Since the FI uncertainties do not always match those

obtained from established methods, it could also be possible to

provide experimenters with a metric detailing how closely the

FI results would be expected to match established methods.

Since the largest variations were found to occur when para-

meters are strongly correlated, the Pearson correlation co-

efficient applied to the FI matrix (or similar) could be

indicative here.

5. Conclusions

In this work, we have presented a framework for determining

the maximum information gain and experimental design

optimization of neutron reflectometry experiments using the

Fisher information. We have demonstrated how the FI allows

us to quantify the information content of a measured data

point in relation to given model parameters. To illustrate this

point, we have developed a robust framework for simulating

experimental data with realistic noise characteristics, and then

compared the FI-derived results with Bayesian sampling

methods. The FI describes the maximum possible extractable

information and therefore can be significantly different from

sampling methods. However, this approach has significant

upsides in its run time and its ability to project uncertainties, as

well as the ability to run experiments in silico. Finally, we have

demonstrated a practical application of the approach in

determining the information content of the parameters of a

DMPC bilayer sample parameterized as a function of the bulk

water contrast, allowing us to ascertain optimal measurement

conditions.
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The code for this work is open source and freely available

on GitHub (Durant et al., 2021).
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