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X-ray diffractometers primarily designed for surface X-ray diffraction are often

used to measure the diffraction from powders, textured materials and fiber-

texture samples in 2� scans. Unlike in high-energy powder diffraction, only a

fraction of the powder rings is typically measured, and the data consist of many

detector images across the 2� range. Such diffractometers typically scan in

directions not possible on a conventional laboratory diffractometer, which gives

enhanced control of the scattering vector relative to the sample orientation.

There are, however, very few examples where the measured intensity is directly

used, such as for profile/Rietveld refinement, as is common with other powder

diffraction data. Although the underlying physics is known, converting the data

is time consuming and the appropriate corrections are dispersed across several

publications, often not with powder diffraction in mind. This paper presents the

angle calculations and correction factors required to calculate meaningful

intensities for 2� scans with a (2 + 3)-type diffractometer and an area detector.

Some of the limitations with respect to texture, refraction and instrumental

resolution are also discussed, as is the kind of information that one can hope to

obtain.

1. Introduction

Since the early studies by Debye & Scherrer (1916), powder

X-ray diffraction (PXRD) has become a well established

characterization technique. It has proved to be a fundamental

tool for phase identification and structure determination of

materials. Quantitative analyses of PXRD data enable access

to information such as size, strain and stress of the crystallites,

the number of different phases in multi-phase materials, and

atomic and unit-cell parameters. PXRD data quality improves

significantly when synchrotron X-ray beams are employed,

which provide a high photon flux, enhanced collimation,

tunable energies and a superior angular resolution. In surface

X-ray diffraction (SXRD), an experimental setup composed

of a (2 + 3) diffractometer and an area detector is used at

some beamlines. The (2 + 3) diffractometer was presented by

Vlieg (1997) and its combination with an area detector was

explored by Schlepütz et al. (2005). Although this setup was

originally designed for single-crystal SXRD, it can also be used

in PXRD and in grazing-incidence X-ray diffraction (GIXRD)

by rotating the detector about the diffractometer center in

longitudinal and equatorial 2� scans, across the Debye–

Scherrer cones. In this scenario, the major benefit of the

(2 + 3) diffractometer is control over the orientation of the

sample and of the detector (and thus of the scattering vector),

which enables convenient investigations of specimen textures

and preferred orientations. This experimental setup is thus
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well suited for a wide range of sample types with an extended

face, such as thin polycrystalline films on substrates. The

control over the grazing-incidence angle and thus over the

X-ray penetration depth enables the study of layered mate-

rials and buried interfaces. Furthermore, the relatively high

resolution of the instrument (compared with bench-top

diffractometers) enhances the study and the identification of

multi-phase systems.

The phenomena involved in PXRD are well known and

have been extensively studied in the past century. A significant

step forward in the analysis of PXRD data was the Rietveld

method (Rietveld, 1966, 1967; Young, 1993; van Laar &

Schenk, 2018). Such refinement is usually performed on

PXRD patterns where the intensity is plotted as a function of

2�. Therefore, with the (2 + 3) setup at the I07 beamline

(Nicklin et al., 2016), it is necessary to integrate the two-

dimensional data collected by the area detector into a one-

dimensional pattern. Furthermore, a series of intensity

corrections should be applied to the measured intensities, to

obtain the structure factors that depend on the underlying

crystallography of the sample.

Area detectors with fixed position have been used exten-

sively in powder diffraction, e.g. in the mapping of grain

boundaries (Poulsen et al., 2001) and in texture analysis (Wenk

& Vasin, 2017). Furthermore, software meant for the analysis

of two-dimensional diffraction data has been developed. For

instance, Fit2D (Hammersley, 2016) and pyFAI (Kieffer &

Wright, 2013) enable the integration of two-dimensional data

to a one-dimensional pattern only for detectors with fixed

position. The software BINoculars (Roobol et al., 2015; Drnec

et al., 2014) is tailored toward the analysis of surface X-ray

diffraction data and is used to assign the intensity detected by

every single pixel of an area detector to a bin in the three-

dimensional reciprocal space. This means that it is possible to

reduce the powder diffraction data collected by a (2 + 3)

diffractometer with this software, although it is computation-

ally expensive and requires a backend.

In this work, we present the calculations and the correction

factors needed to extract quantitative information from 2�
scans with (2 + 3) diffractometers and area detectors. The

calculations are part of a process intended for the character-

ization of polycrystalline materials, as illustrated by the flow-

chart in Fig. 1. We assess the validity of the calculations and of

the correction factors by refining an LaB6 reference sample.

Furthermore, we calculate the instrumental resolution func-

tion of the setup and compare the integrated intensities

collected in different experimental geometries, namely capil-

lary in transmission, grazing incidence and Bragg–Brentano.

2. Experimental setup

The experimental work was conducted at beamline I07, a hard

X-ray (8–30 keV) high-resolution diffraction beamline at

Diamond Light Source, UK (Nicklin et al., 2016). The X-ray

beam had an energy of 20 keV and a size of 100 mm vertically

and 200 mm horizontally. To record the powder diffraction

intensities, a Huber (2 + 3) diffractometer (Vlieg, 1998) and a

Pilatus 100K detector were used.

A schematic diagram of the Huber (2 + 3) diffractometer is

shown in Fig. 2. The coordinate frame of reference depends on

whether the sample geometry is horizontal (blue) or vertical

(red). In both modes of operation the sample is mounted on a

hexapod (Micos), which allows scanning of the sample trans-

lations and rotations for the initial alignment. The grazing-

incidence angle of the synchrotron beam onto the sample

surface and the azimuth are given by the rotation of �h and ’h

in the horizontal geometry, and by �v and ’v in the vertical

geometry.

The three detector circles are fully independent of the two

sample circles and allow for radial scans in the horizontal
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Figure 1
Flowchart outlining the steps and the relevant equations involved in the
investigation of powdered samples from the experiment to the
determination of the structure.

Figure 2
Schematic of a (2 + 3) diffractometer. The arrows point towards the
positive direction of rotation in the case of horizontal (blue) or vertical
(red) geometry and for the detector (black).



plane (�) or out of the horizontal plane (�), and rotation of the

detector around its surface normal (�).

The Pilatus 100K area detector consists of an array module

of 487 � 195 pixels with size 172 � 172 mm, resulting in an

active area of 83.8 � 33.5 mm, and it can detect photons in an

energy range of 3–30 keV with a dynamic range of 220 (Kraft et

al., 2009). A set of slits is positioned between the detector and

the sample. The primary function of the slits is to reduce the

background and isolate the signal originating from the sample

at the center of rotation of the instrument. This is particularly

useful in surface diffraction/scattering experiments where the

sample is contained in a sample environment with entrance

and exit windows that are producing high-intensity back-

ground. The sample-to-detector distance and the slit positions

are adjustable and can be adapted according to the setup and

the experimental parameters to eliminate window-generated

background (see Appendix A2) and optimize the angular

resolution.

Owing to the size of the detector and to the energy range

available in this experimental setup, the detection of whole

Debye–Scherrer rings in an image is not feasible. Therefore,

the detector arm is usually scanned across the diffraction

cones and small fractions of the Debye–Scherrer rings are

detected.

3. Angle calculations

With the setup described above, the Debye–Scherrer rings are

detected by scanning the detector arm along � and �. The

sequence of detector images collected during a scan can be

integrated and processed to obtain diffracted intensities as a

function of the diffraction angle 2� and the azimuthal angle �,

illustrated in Fig. 3(a). A detailed derivation of these angles

for every pixel of an area detector is given in Appendix A.

Accordingly, 2� and � are expressed as

2� ¼ arccosðcos � cos �Þ; ð1Þ

� ¼ arctan tan �=tan �ð Þ: ð2Þ

Fig. 3(b) shows the angles �p and �p subtended by a generic

detector pixel (i, j), located at a certain distance d from the

diffractometer center. Once the coordinates (xp, yp, zp) of this

pixel are determined using the rotation matrices shown in

Appendix A, it is possible to calculate �p and �p as follows:

�p ¼ arctan zp=yp

� �
; ð3Þ

�p ¼ arcsin xp=d
� �

: ð4Þ

Therefore, equations (3) and (4) can be substituted into

equations (1) and (2) to produce angle maps like those shown

in Fig. 4. The maps in Fig. 4 are calculated for the case where

� = 30� and � = 20�, assuming a detector distance of 897 mm,

which is the distance at which the data were collected in this

work.
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Figure 4
2D plots of the angle values assigned to each pixel of a Pilatus 100K
detector positioned at � = 30�, � = 20� and R = 897 mm. The plots show �p

(a), �p (b), 2� (c) and azimuthal �p (d).

Figure 3
(a) Schematic representation of the angles �, �, 2� and �, subtended by
the incoming beam wavevector k and a generic scattering wavevector k0

and (b) diagram showing the offsets �x and �z from the detector center
of a generic (i, j) pixel. The vector d (where |d| is the distance of the pixel
from the diffractometer center) subtends the angles �p and �p.



4. Intensity correction factors

The intensity of a powder diffraction pattern can be expressed

as

Ið2�Þ / �0MhkljFhklð2�Þj
2Pð�; �ÞLð2�ÞV; ð5Þ

where �0 is the incident photon flux, Mhkl is the multiplicity

(i.e. the number of symmetry-equivalent reflections contri-

buting to a single peak), Fhkl is the structure factor, P(�, �) is

the polarization factor, L(2�) is the Lorentz factor and V is the

sample volume from which the diffracted intensity arises.

Deviations from this are often due to the presence of a

preferred orientation or crystal texture.

4.1. Polarization factor

The X-ray beam produced by the I07 undulator has a strong

horizontal polarization (Nicklin et al., 2016) and therefore the

scans in the horizontal plane (i.e. � scans) are more affected by

this factor than the scans out of the horizontal plane (i.e. �
scans). For this reason it is more convenient to express the

polarization factor P as a function of (�, �) using the following

expression which has been presented by several authors

(Vlieg, 1997; Schlepütz et al., 2005):

Pð�; �Þ ¼ phð1� cos2 � sin2 �Þ þ ð1� phÞð1� sin2 �Þ: ð6Þ

The polar plot in Fig. 5(a) illustrates the polarization factor as

a function of 2� and �. This factor varies significantly in �
scans (i.e. when � = 0�), while it is fairly constant for � scans

(i.e. when � = 90�).

In high-energy X-ray diffraction, where the beam energy is

usually in the 60–80 keV range and the whole Debye–Scherrer

rings are detected, this factor is often neglected. With high

energies, although the beam polarization is almost entirely

horizontal (e.g. 98%), the angular-dependent decay does not

have a significant impact. Assuming a detector distance of

1.5 m and that a large flat-panel detector is used (e.g.

40 � 40 cm), the highest q accessible has an absolute value of

approximately 5.8 Å�1. If the beam energy is 80 keV, the

corresponding 2� angle will be 8.2�, and the highest drop in

intensity due to the polarization on the detector horizon can

be calculated using equation (6) and equals 4%. This small

drop in intensity becomes even less significant when the

intensity is integrated over the whole Debye–Scherrer ring.

When lower energies are used (e.g. 20 keV), the 2� angle

corresponding to a scattering vector magnitude of 5.8 Å�1 is

33.2�. When the detector arm of a (2 + 3) diffractometer is

scanned horizontally (i.e. � = 0�) and reaches a � value of

33.2�, the polarization has dropped by 31%. This decay must

be taken into account, especially since only a fraction of the

Debye–Scherrer rings are detected.

4.2. Lorentz factor

A detailed derivation of the Lorentz factor was given by

Buerger (1940), who defined it to be proportional to the time

that a reflection stays in the Bragg condition. The Lorentz

factor depends on the type of experiment performed and

especially on the scanning variable employed to detect reci-

procal space (Vlieg, 1997). For instance, in single-crystal

diffraction, the integrated intensity is measured by rotating the

sample over the entire width of a reflection while the detector

position is fixed, in what is known as a rocking scan or � scan.

In that case, the measured intensities need to be corrected by a

geometrical factor, i.e. the Lorentz factor, that expresses the

relative time spent by each point in reciprocal space in the

reflecting position during the � scan. In PXRD, instead, the

detector is rotated while the sample position is stationary, and

thus there is virtually no access to reciprocal-space volume.

However, owing to the random orientation of the crystallites, a

powder can be seen as a single crystal that is rotated along the

� axis and an axis orthogonal to the � rotation.

In PXRD, the Lorentz factor L is the product of three

terms. The first term is the ‘Darwinian’ single-crystal part

(Darwin, 1922), which accounts for changes in integration

volume as a function of 2�:

L1 ¼ 1= sin 2�: ð7Þ

The second term is proportional to the fraction of the

diffraction ring detected for different 2� values. If we express

the radius of the base of a generic Debye–Scherrer cone as

2�k sin 2�, the fraction recorded by the detector is
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Figure 5
Intensity correction factors calculated at a distance of 897 mm from the
diffractometer center. Polar contours of polarization factor (a) and
Lorentz factor (b), as a function of the diffraction and the azimuthal
angles. Flat-detector correction calculated for a Pilatus 100K with center
pixel coordinates (ci, cj) = (246, 100) (c).



k��=2�k sin 2� and therefore the second term will be

proportional to

L2 ¼ ��= sin 2�; ð8Þ

where �� is the range of azimuthal � values accessible by the

detector at a given � and � and can be considered constant

(Als-Nielsen & McMorrow, 2011). This effect is evident in

Fig. 6, where the diffraction intensity from a borosilicate

capillary containing NIST LaB6 SRM 660c is plotted as a

function of 2� and �. Here, the range of accessible � values

decreases significantly with the increase of 2�.

The third term is proportional to the number of lattice

points observable at the same time and therefore to the

circumference of the base-circle of the Debye–Scherrer cones.

If we denote a particular reciprocal lattice vector with Ghkl,

this circumference is Ghkl sin ð�=2� �Þ = Ghkl cos �. Under the

assumption that the crystallites and thus their reciprocal-

lattice points are homogeneously distributed on the Ewald

sphere, this term is proportional to

L3 ¼ cos �: ð9Þ

Note that L3 is not proportional to the possible permutations

of (h, k, l) since these are already accounted for by the

multiplicity factor Mhkl in equation (5). The Lorentz factor is

given by the product L1L2L3 as in equation (10), which is

rearranged in equation (11):

Lð2�Þ ¼
1

sin 2�

1

sin 2�
cos �; ð10Þ

Lð2�Þ ¼
1

sin � sin 2�
: ð11Þ

As shown in Fig. 5(b), the Lorentz factor has a rather quick

decay as a function of 2�, regardless of the azimuthal angle �.

It is perhaps the most significant intensity correction that

needs to be applied to experimental data, especially at

small 2�.

4.3. Flat-detector corrections

In addition to the polarization and the Lorentz factor, the

decrease of the subtended solid angle for the different pixels

has to be taken into account. Two contributions normally

describe this change. The first is due to the fact that pixels

away from the detector center are also further away from the

diffractometer center, as depicted in Fig. 7. To account for this

change in distance the measured intensities should be multi-

plied by

Cd ¼ d2=R2: ð12Þ

Cd is greater than unity for every pixel of the detector except

the detector center C, where d = R. The second contribution is

due to the non-normal incidence of the scattered beam owing

to the flat detector surface and is given by Schlepütz et al.

(2011):

Ci ¼ 1=cos ðarctan �r=RÞ; ð13Þ

where �r = (�x2 + �z2)1/2.

For a better visualization of these correction factors, the

product CdCi is plotted in Fig. 5(c) for the same detector

distance R. The correction becomes more significant close to

the edges of the detector image, where it exhibits a maximum

change of about 0.35% from the detector center. The signifi-

cance of this correction increases as the detector distance

decreases or as the detector size increases.

4.4. Transmission corrections

The sample volume that gives rise to diffracted intensity

depends on the geometry of the experiment and is often a

function of the scattering angle 2�, the incidence angle �, and

the angle between the sample surface and the diffracted beam
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Figure 6
Diffracted intensity as a function of 2� and � originating from a NIST LaB6 SRM 660c sample encapsulated in a 1 mm-diameter borosilicate capillary.
The data were collected in the Debye–Scherrer geometry by scanning the detector in the horizontal plane (� scan).

Figure 7
The flat surface of the Pilatus 100K (blue rectangle) intersects a sphere
centered in the diffractometer (orange frame) at the point C (the detector
center). A generic diffracted beam would impinge on the point C
normally and subtend a non-normal angle with any other generic point P.



� = 2� � �. The diffracting specimen volume is often modeled

as an exponential aberration. Table 1 summarizes this

correction for some common experimental geometries. As a

general remark, the interaction volume is proportional to the

area of illuminated sample, A, and is inversely proportional to

the linear absorption coefficient, 	. Furthermore, note that

refraction leads to a reduction of the penetration depth and

thus the interaction volume when the incidence angle is below

the critical value. This effect is well described by Feidenhans’l

(1989), in a formalism that considers evanescent waves and

their penetration into surfaces.

4.5. Summary of intensity corrections

The corrected intensity is given by

Icorr ¼ Iobs

CdCi

LPV
; ð14Þ

where Iobs is the observed intensity.

5. Peak profile analysis

Analysis of the line-profile shape is useful for the determi-

nation of crystallite size and strain of a specimen. However,

the width of a diffraction peak is a function of 2� and it

depends not only on specimen properties but also on experi-

mental conditions and sample size. Furthermore, instrumental

features such as monochromators, collimating and refocusing

optics, slits, beam divergence and energy bandwidth influence

the broadening of diffraction peaks (Gozzo et al., 2006).

As the mentioned causes of broadening have either Gaus-

sian or Lorentzian nature, the most used fitting functions for

PXRD peaks are based on Voigt or pseudo-Voigt line shapes.

The FWHM of the Voigt profile depends on the widths of the

associated Gaussian and Lorentzian components �G and �L

(Thompson, Cox & Hastings, 1987; Thompson, Reilly &

Hastings, 1987).

5.1. Gaussian and Lorentzian broadening

The Gaussian widths contain information on the instru-

mental resolution function (IRF) and on the sample strain. An

analytical description of the IRF was given by Caglioti et al.

(1958):

�r ¼ ðU tan2 � þ V tan � þWÞ
1=2
: ð15Þ

Specimen contributions to the Gaussian widths are the

expression of crystal defects, dislocations and deformation of

the unit cells, in what is known as inhomogeneous strain

broadening:

�s ¼ 4
 tan �; ð16Þ

where the root mean square strain 
 is a coefficient that

depends on the elastic compliance and the mechanical prop-

erties of the specimen. Since this contribution is proportional

to tan �, some authors have merged the strain contribution

into equation (15). For example, Thompson, Cox & Hastings

(1987) incorporated the coefficient 
 into the constant V and

Wu et al. (1998) into the constant U. In this work we adopt the

solution presented by Thompson, Reilly & Hastings (1987),

where the Gaussian width broadening is expressed as

�G ¼ ð�
2
r þ �2

s Þ
1=2: ð17Þ

The Lorentzian widths �L take into account the spectral

bandwidth of the source and the sample crystallite size

through the following equation (Cox, 1991):

�L ¼ X tan � þ Y= cos �: ð18Þ

The X coefficient depends on the monochromating optics and

it is of the order of magnitude of 10�4 for most of the

synchrotron beamlines where Si(111) crystals are employed.

The dependence of the bandwidth term on tan � can be

derived by differentiating Bragg’s law. The second term in

equation (18) is the Scherrer crystallite size contribution.

Here, Y = K�/D, where K is a dimensionless shape factor

(generally close to unity), � is the wavelength of the X-ray

radiation and D is the crystallite size. One should remember

that the use of equation (18) relates to the size of the coherent

diffraction domains rather than the size of the crystallites per

se (Scherrer, 1912; Patterson, 1939; Hargreaves, 2016).

Equation (18) can be rearranged as

�L cos � ¼ X sin � þ Y: ð19Þ
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Table 1
Volume corrections for some common experimental geometries.

Geometry Equation Note References

Flat-plate, symmetric
(Bragg–Brentano)

VSR ¼ A=ð2	Þ – Cheary et al. (2004)
Egami & Billinge (2003)

Flat-plate, asymmetric
(grazing incidence)

VAR ¼ ðA=	Þ 1þ sin�=sin �ð Þ
�1 – Toraya et al. (1993)

James (1967)

Flat-plate with finite thickness V ¼ 2 1þ sin�=sin �ð Þ
�1 1� exp �	tð1=sin�þ 1=sin �Þ½ �
� �

t = thickness Egami & Billinge (2003)
Symmetric geometry when � = �

Capillary in transmission
(Debye–Scherrer)

Að�Þ ¼ AL cos2ð�Þ þ AB sin2
ð�Þ z = 2	r Dwiggins (1972)

AL ¼ 2I0ðzÞ � L0ðzÞ � ½I1ðzÞ � L1ðzÞ�=z I� = �th-order modified Bessel function Sabine et al. (1998)
AB ¼ ½I1ð2zÞ � L1ð2zÞ�=z L� = �th-order modified Struve function



Plotting �L cos � against sin � in equation (19) would produce

a line where the intercept depends on the crystallite size while

the slope depends on the beam spectral bandwidth. Such a

plot is known as a Williamson–Hall plot (Williamson & Hall,

1953) and an example of such analysis is given in Section 6.1.

5.2. Beam footprint

The beam footprint on the sample causes a broadening that

affects the instrumental resolution. This is especially true for

grazing-incidence geometries, where the beam spills over the

sample and illuminates it over its whole length. This geometric

effect is depicted in Fig. 8. Assuming that every volume

element illuminated by the beam scatters, all intensity occur-

ring at the diffraction angle 2� is spread out into a radial range

� on the detector. The angular spreads for in-plane scans

[Fig. 8(a)] and for out-of-plane scans [Fig. 8(b)] are, respec-

tively, given by

�i ¼ 2 arctan
w sin 2�

2R

� �
; ð20Þ

�o ¼ 2 arctan
w sinð2� � �Þ

2R

� 	
; ð21Þ

where w is the sample width and R is the sample-to-detector

distance.

Fig. 8(c) shows a simulated intensity profile of an Au(311)

peak at 20 keV (2� = 29.1996�), for different sample widths,

assuming an out-of-plane scan and a grazing-incidence angle

of 0.1�. The simulated peaks were calculated as Voigt profiles,

where the Lorentzian and Gaussian components were deter-

mined by the IRF of the I07 beamline at Diamond Light

Source (see Section 6.1). The �o broadening was calculated

using equation (21) and summed to the Gaussian component

of the Voigt profile as follows:

�G ¼ ð�
2
r þ �

2
oÞ

1=2: ð22Þ

A more insightful way to account for the beam footprint is

to determine the peak profile change induced by specimen

absorption. Equations (20) and (21) work on the assumption

that the intensity of the incoming beam does not change

significantly through the whole sample width w. This is not

always true, since the intensity decays exponentially as

described by Beer–Lambert’s law (Swinehart, 1962). There-

fore, a change in diffraction peak profile due to absorption can

be modeled as an exponential function. Such effects are well

described for several diffraction geometries in the work of

Rowles & Buckley (2017). Once the transmission profile

function has been modeled, it can be convoluted with a Voigt

or pseudo-Voigt profile in a refining algorithm. This approach

not only works for correcting the beam footprint effect but

also accounts for possible peak asymmetries.

The beam footprint broadening can be limited by engaging

the guard slits between the sample and the detector. If the

aperture is small enough, the diffraction originating from a

limited region of the sample is detected and the peak broad-

ening is no longer angle dependent but it is rather defined by

the slit aperture width. A description of the geometry invol-

ving detector slits is available in Appendix A.

5.3. Rietveld refinement

Rietveld refinement (also known as ‘profile refinement’; van

Laar & Schenk, 2018) is a well established analysis method for

PXRD data and it is widely employed in the characterization

of polycrystalline materials (Rietveld, 1966, 1967; Young,

1993; Loopstra & Rietveld, 1969; van Laar & Yelon, 1984).

This method consists of fitting the experimental data with a

calculated intensity profile which is based on the structural

parameters of the material. A nonlinear least-squares algo-

rithm (or other optimization strategy) finds the parameters for
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Figure 8
Schematic depiction of the geometric broadening due to the beam
footprint at grazing incidence: top view of a � scan (a) and side view of a �
scan (b). Simulation of an Au(311) peak at 20 keV, at a grazing angle of
0.1�, scanned out of plane, for increasing sample widths (c).



a theoretical profile that best matches the experimental

intensities. The Rietveld method can be used to find unit-cell

parameters, phase quantities, crystallite size and strain, atomic

coordinates, and texture. Furthermore, it is possible to model

texture and preferred orientations, for example using sphe-

rical harmonics (Whitfield, 2009), although this is outside the

scope of the present article.

The quality of the data and having a good starting model are

what mainly determine the success of the refinement. For a

good PXRD measurement the X-ray beam size should be

slightly larger than the crystallite size. In this way, the statis-

tical significance of the detected intensity is maximized

because of the larger interaction volume, which leads to the

formation of homogeneously continuous diffraction rings. In

common PXRD setups the sample is spun to facilitate the

measurement of uniform rings, and this is also possible with

(2 + 3)-type diffractometers by rotating ’h in the horizontal

geometry or ’v in the vertical geometry.

To perform Rietveld analysis, software like FullProf

(Rodrı́guez-Carvajal, 1993), GSAS-II (Toby & Von Dreele,

2013) and DIFFRAC.SUITE TOPAS (Coelho et al., 2011) has

been developed. In our somewhat unconventional case, where

the data have been manually corrected by Lorentz and

polarization factors, e.g. by using equation (14), it is possible to

prevent FullProf from applying further instrumental correc-

tions by selecting ‘Lorentz Polarization not performed’ as the

diffraction geometry. However, we could not determine how

to disable the instrumental corrections in GSAS-II without

modifying the Python code making such corrections. We did

not test if this was possible in TOPAS. Another option would

be to multiply the corrected data by the inverse Lorentz–

polarization factors used in software such as GSAS and

TOPAS. In this way, it should be possible to use these

programs for Rietveld refinement of data collected on a

(2 + 3) diffractometer.

In the absence of preferred orientations, equation (5)

describes the proportionality between the intensity of a

diffraction pattern and the square modulus of the structure

factor. Any deviations from this proportionality can be

attributed to preferred orientations and refined in software

like FullProf. These deviations due to preferred orientations

can be modeled by, for example, the modified March function

(Dollase, 1986). More complex models involve the generalized

spherical-harmonic description (Sitepu, 2002). In order to find

further evidence of preferred orientations, one could plot the

intensity as a function of 2� and �, as in Fig. 6. This complete

view of all the data gathered in a detector scan enables the

search for qualitative evidence of preferred orientations, such

as intensity variations along the Debye–Scherrer rings. From

the orientation of the scattering vector, it should be possible to

quantify the preferred orientation.

5.3.1. Refinement of a NIST LaB6 reference. The LaB6

powder is a standard reference material commonly used in

powder diffraction for the calibration of diffraction line

positions and shapes. A sample of this powder was encapsu-

lated in a borosilicate capillary of 0.5 mm radius, mounted

vertically (i.e. with the capillary axis parallel to the z axis) and

measured in a series of � radial scans in the range 5–60�. In

order to measure continuous powder rings, the capillary was

rotated by 0.5� along the z axis (i.e. increasing ’h in Fig. 2)

between each scan. A total of 135 � scans were combined,

each one at a different ’h.

The angle calculations presented in Section 3 were used to

plot intensity against 2� in the one-dimensional pattern shown

in Fig. 9 and to correct the data by the Lorentz–polarization

factor, flat-detector effects and interaction volume from a

capillary in transmission geometry (see Table 1). Therefore,

the corrected data are proportional to the squared modulus of

the structure factors and the multiplicity of each diffraction

peak. Since the LaB6 standard has very well defined unit-cell
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Figure 9
Rietveld refinement of a NIST LaB6 SRM 660c PXRD pattern, measured with a 20 keV X-ray beam, performed with Fullprof using the pseudo-Voigt
line shape. Before the refinement, the data were corrected by Lorentz and polarization factors, flat-detector corrections and interaction volume of X-rays
with a capillary. The background was subtracted by fitting a Chebychev polynomial (16 coefficients).



parameters, the positions of the diffraction peaks were used to

calibrate the sample-to-detector distance and the nominal

position of the � and � motors.

The good agreement of the calculated model with the

observed data is indicated by fairly low residuals (see Fig. 9).

This shows that the setup and data processing employed in this

work can be used not only to investigate lattice parameters

and phases, but also to record meaningful intensities propor-

tional to structure factors and symmetry multiplicity. Devia-

tions from this proportionality are a clear sign of texture and

preferred orientation.

Rietveld refinement of a standard material thin film

measured at grazing incidence would be an interesting topic of

discussion. However, the fabrication of such thin films often

leads to sample morphology with prohibitive roughness. A

film of LaB6 on a silicon wafer was produced in this work (the

fabrication is described in Section 6.2). Owing to the high

roughness of this film, the control over the incidence angle, the

interaction volume and the refraction effect was limited. The

fact that Rietveld refinement was not feasible for this parti-

cular sample does not exclude the possibility that it would be

possible with a smooth polycrystalline film. In this case, it is

recommended to select a grazing-incidence angle � above the

critical angle of the substrate, in order to avoid diffraction

generated by the reflected beam, which would lead to two

overlapping diffraction patterns with a shift of 2�.

6. Further examples

The pattern in Fig. 9 was used to determine the IRF of the I07

beamline at Diamond Light Source. Furthermore, a different

LaB6 powder sample (Sigma–Aldrich, grain size 10 mm),

prepared by spin coating on an Si substrate, was measured in

grazing-incidence and in Bragg–Brentano geometry.

6.1. Instrumental resolution function of the I07 beamline

As discussed in Section 5.1, the peak widths contain

instrumental as well as specimen-related information.

Although software like FullProf and GSAS-II has built-in

options to refine such parameters, a precise knowledge of the

IRF is required to obtain significant information. In this work,

we processed the data from the NIST LaB6 standard described

in the previous section to calculate the IRF.

All the peaks in Fig. 9 were fitted one by one with a Voigt

profile. The FWHM reported in Fig. 10(a) shows a broadening

that has both Gaussian and Lorentzian contributions. The

Gaussian and Lorentzian FWHMs of the peak widths were

extracted and are reported in Fig. 10 in the form of a Caglioti

function (a) and a Williamson–Hall plot (b). The dominance of

the Gaussian component in the broadening can be explained

by the large average crystallite size, i.e. above 1 mm as certified

by NIST. Because of this large crystallite size, the Scherrer

contribution to the Lorentzian broadening is negligible and

outside the limits imposed by coherent scattering domains

(Miranda & Sasaki, 2018). Furthermore, since the unit cell of

LaB6 is not known to show inhomogeneous strain features, we

can assume that �s in equation (17) is zero and that the

Gaussian broadening in Fig. 10(a) is only due to instrumental

contributions. Therefore, fitting the Gaussian widths with the

Caglioti function will produce a triplet of U, V and W values

which describe the IRF. Note that the result of the fitting is

affected by the choice of the units expressing the angle. In this

work, the Gaussian FWHMs were expressed in degrees.

Furthermore, the Williamson–Hall plot in Fig. 10(b), based on

equation (19), provides X and Y values which are character-

istics of the X-ray beam bandwidth and the specimen grain

size, respectively. All these fitting parameters are reported in

Table 2 with their respective standard errors.

6.2. Refraction at grazing incidence

A sample of LaB6 spin-coated on an Si(100) substrate was

measured in Bragg–Brentano and grazing-incidence geome-

tries, using a beam energy of 20 keV. The sample was prepared

by mixing 500 mg of an LaB6 powder (Sigma–Aldrich,

nominal grain size = 10 mm) with 10 mg of ethyl cellulose

[Sigma–Aldrich, 48.0–49.5%(w/w) ethoxyl basis] as a binding
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Figure 10
Peak broadening analysis of an LaB6 standard reference material. The
total FWHMs are plotted together with the Gaussian FWHMs, which are
fitted by a Caglioti function [see equation (15)], in (a), while the
Lorentzian FWHMs, multiplied by cos �, are fitted by a Williamson–Hall
plot in (b).

Table 2
Fitting parameters of the Caglioti function (U, V, W) and of the
Williamson–Hall plot (X, Y), with their respective standard errors.

Value Standard error

U 2.6912 � 10�3 7.1727 � 10�4

V 1.2460 � 10�3 4.8220 � 10�4

W 5.2366 � 10�5 7.3779 � 10�5

X 7.7621 � 10�4 2.4310 � 10�5

Y 1.4088 � 10�4 8.3376 � 10�6



agent, in 2 ml of ethanol. The mixture was spin-coated onto a

6 mm square of Si(100) at 800 r min�1. Fig. 11 shows the LaB6

(211) peak for the different geometries employed in this work,

namely Debye–Scherrer (taken from the capillary data in

Section 5.3), Bragg–Brentano, and GIXRD at fixed grazing

incidence of 0.1 and 0.2�. The plots exhibit a shift in the peak

position from the theoretical diffraction angle, 2�calc, which

can be explained by refraction of light in the LaB6 film

covering the Si substrate. For small incidence angles and a thin

film with material constant �, Lim et al. (1987) modeled this

shift as follows:

�2� ¼
�

sin 2�calc

2þ
sin �

sin 2�calc

þ
sin 2�calc

sin �

� �
: ð23Þ

The positions of the peaks in Fig. 11 for �h = 0.1 and 0.2�

were calculated in terms of the center of mass and used to

calculate the experimental peak shift by subtracting 2�calc =

21.0467� for LaB6(211). The experimental shift is reported

against the theoretical shift calculated using equation (23) in

Table 3. The discrepancy between the two sets of values can be

explained by density inhomogeneities in the LaB6 film, which

also contains ethyl cellulose for the practical purpose of

consolidating the film. Furthermore, the LaB6 used for this

layered sample is not a standard and it could have a slightly

different lattice parameter from that reported in the literature

after the dissolution in ethanol. Although this kind of sample

is not recommended for calibration of XRD setups, it could be

used as a reference sample to determine instrumental broad-

ening at grazing incidence. In order to calibrate the detector

distance and the motor positions accurately, a well calibrated

standard is always recommended.

Equation (23) provides a way of correcting the data which is

especially significant in strain analysis. In fact, the homo-

geneous strain 
 is calculated as the relative deviation of the

atomic spacing d in the strained material from the atomic

spacing d0 in the ideally unstrained material:


 ¼ ðd� d0Þ=d0: ð24Þ

This means that a polycrystalline strained material measured

in grazing-incidence geometry will diffract at 2� angles that

slightly deviate from the values predicted by Bragg’s law, not

only because of refraction but also because of strain. If the

strain of such a material needs to be determined, equation (23)

helps to correct for refraction peak shifts.

7. Conclusions

The angle calculations presented in this work describe how to

convert data measured by a (2 + 3) diffractometer equipped

with an area detector into a one-dimensional XRD pattern,

more familiar to the chemistry and materials science

communities. We also collected some dispersed knowledge on

the phenomena contributing to the peak widths and on the

intensity corrections. Since the calculations and the correc-

tions are energy independent, they can be applied to data

collected at beamlines operating with hard X-rays (8–30 keV)

as well as with high energies (40–150 keV). The Python code

used in this work for such corrections and angle calculations is

available on Github (https://github.com/giuseppe-abbondanza/

pyLjus).

Quantitative PXRD using surface diffractometers is not

often done. This work should, however, facilitate quantitative

studies using such instruments, including for example in situ

studies under grazing-incidence conditions.

Furthermore, the calculations presented in this work can be

modified to apply to diffractometers with other geometries

[e.g. (2 + 2), four-circle and six-circle], and they can even apply

to setups where the detector is not mounted on a motor and

therefore has a fixed position, facing the direct beam. In this

configuration, one can assume that effectively � = � = 0�.

APPENDIX A
Here we present the coordinate transformations to assign a

diffraction angle 2� and an azimuthal angle � to every pixel of

an area detector, given the distance R of the detector from the

center of the diffractometer and the nominal detector angles �
and �. The angles and the wavevectors involved in the calcu-

lations are schematically shown in Fig. 3. The following deri-

vation is based on the reciprocal-space coordinate calculations

given by Schlepütz et al. (2011).

These calculations are valid for both horizontal geometry

and vertical geometry. In both cases, the laboratory frame of

reference has its zero coordinates on the diffractometer center

and the y axis points in the direction of the synchrotron beam.

Therefore, the wavevector of the incoming X-ray beam is
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Figure 11
LaB6(211) peak for different experimental geometries: Debye–Scherrer
(D-S), Bragg–Brentano (B-B), and GIXRD out of plane at � = 0.1 and
0.2�. The shift decreases with increasing incidence angle and can be
explained by refraction inside the LaB6 film.

Table 3
Experimental and theoretical �2� due to refraction in an LaB6 film.

Incidence angle (�) � = 0.2 � = 0.1
Experimental shift (�) 0.03841 0.07142
Theoretical shift (�) 0.03488 0.06909
Relative error (%) 9.19 3.27



k ¼ k

0

1

0

0
@

1
A; ð25Þ

where k = 2�/� is the magnitude of the wavevector and � is the

wavelength of the X-ray beam. Similarly, a generic scattered

wavevector such as the one in Fig. 3(a) can be represented as

k0 ¼ k

cos � sin �
cos � cos �

sin �

0
@

1
A: ð26Þ

Under the assumption that the scattering is elastic (i.e. jkj =

jk0j = k), the angle 2� can be found using the definition of the

scalar product as follows:

k � k0 ¼ jkjjk0j cos 2�; ð27Þ

k � k0 ¼ k2 cos � cos �; ð28Þ

2� ¼ arccosðcos � cos �Þ: ð29Þ

The azimuthal � angle can be calculated as

� ¼ arctan tan �=tan �ð Þ: ð30Þ

Therefore, when � and � are known for each pixel of the

detector, it is possible to assign a 2� and a � value to each

pixel. To this end, we need to calculate the exact position of

the detector center.

We define the detector center as the point on which the

direct beam impinges when the detector is in the zero position

(i.e. when � = � = � = 0, as shown in Fig. 2). In this position, the

coordinates of the detector center are given by calculating the

‘center of mass’ of an image recorded while the direct beam

impinges on the detector:

c ¼
1

S

X
i;j

Iði; jÞ pði; jÞ; ð31Þ

where (i, j) are the detector pixel coordinates, c is the vector

pointing to the center of mass, S is the sum of all intensities

detected in the image, and I(i, j) and pði; jÞ are the intensity

and the vector describing the position of the (i, j) pixel.

Let us denote the coordinates of the detector center found

in equation (31) by (cx, cz). A pixel with coordinates (i, j) has

an offset (�x, �z) from the detector center given by

�x ¼ ðcx � iÞwx; ð32Þ

�z ¼ ðcz � jÞwz; ð33Þ

where wx and wz are the width of the pixel along the x and z

directions, respectively (for a Pilatus 100K detector wx = wz =

172 mm). Fig. 3(b) illustrates the typical offsets in pixel posi-

tion described above. Here we assign the (0, 0) coordinates to

the upper-left detector pixel. When the detector is at the zero

position, the position of a generic (i, j) pixel in the laboratory

coordinates is simply

xp

yp

zp

0
@

1
A ¼ �x

R

�z

0
@

1
A: ð34Þ

For nonzero detector angles, the new (xp, yp, zp) coordinates

of the (i, j) pixel are found by rotating the vector (�x, R, �z)

by �, � and � around the z, y and x axes, respectively. There-

fore, the pixel position in the laboratory frame of reference

becomes

xp

yp

zp

0
@

1
A ¼ CDN

�x

R

�z

0
@

1
A; ð35Þ

where C, D and N are the matrices describing the rotations

around the z, x and y axes, defined as follows:

C ¼ Rzð�Þ ¼
cos � � sin � 0

sin � cos � 0

0 0 1

0
@

1
A; ð36Þ

D ¼ Rxð�Þ ¼
1 0 0

0 cos � � sin �
0 sin � cos �

0
@

1
A; ð37Þ

N ¼ Ryð�Þ ¼
cos � 0 sin �

0 1 0

� sin � 0 cos �

0
@

1
A: ð38Þ

The order of matrix multiplication depends on how the

diffractometer is built up. Since the � circle holds the � circle,

which in turn sustains the � motor, the order of matrix

multiplication is Rz, Rx and Ry .

The angle values for a generic pixel �p and �p can be

calculated as follows:

�p ¼ arctan zp=yp

� �
; ð39Þ

�p ¼ arcsin xp=d
� �

; ð40Þ

where d is the distance of the pixel from the center of the

diffractometer, given by

d ¼ �x2
þ R2 þ�z2

� �1=2
: ð41Þ

A1. Detector slits

Apertures and slits are used in PXRD to control the beam

size, divergence and angular resolution, as well as to isolate

the diffracted signal of the sample from the background

caused by the sample environment. High-density metals are

often used in the fabrication of slits owing to their low X-ray

transmission. When the detector slits are engaged, part of the

diffracted X-ray beam is blocked and the effect of the beam

footprint on the peak broadening is reduced (see Section 5.2).

The detected signal can be seen as originating from a point

within the slit aperture rather than from the diffractometer

center. Therefore, we can derive a new set of ‘effective’

detector angles (�p, �p), as illustrated in Fig. 12.

The � rotation axis is always perpendicular to the aperture

plane for every nominal detector angle (�, �), i.e. the slit

aperture rotates with the detector. Under this assumption, the
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coordinates of the aperture in the laboratory coordinate

system are given by

xs

ys

zs

0
@

1
A ¼ CD

0

Rs

0

0
@

1
A; ð42Þ

where Rs is the slit distance from the diffractometer center.

The effective detector angles are now dependent on the

distance between the pixel and the slit and are given by

dd;s ¼ ðxd � xsÞ
2
þ ðyd � ysÞ

2
þ ðzd � zsÞ

2

 �1=2

; ð43Þ

�p ¼ arctan
zp � zs

yp � ys

 !
; ð44Þ

�p ¼ arcsin
xp � xs

dd;s

� �
: ð45Þ

A2. Vertical geometry

In the vertical geometry the surface normal of the sample

and the y axis lie in the horizontal plane, while the x axis points

upwards. The equations for the incoming beam wavevector

and those for the offset from the detector center are the same

as in the horizontal geometry, i.e. equations (25), (32) and (33),

while the generic scattering vector is given by

k0 ¼ k

sin �
cos � cos �
cos � sin �

0
@

1
A: ð46Þ

Since the y component has not changed, the equation for the

2� angle is the same as equation (29). The equation for the �
angle (30) is also the same in both geometries. The rotation

matrices, however, are different in this frame of reference and

are given by

C ¼ Rxð�Þ ¼
1 0 0

0 cos � � sin �
0 sin � cos �

0
@

1
A; ð47Þ

N ¼ Ryð�Þ ¼
cos � 0 sin �

0 1 0

� sin � 0 cos �

0
@

1
A; ð48Þ

D ¼ Rzð�Þ ¼
cos � sin � 0

� sin � cos � 0

0 0 1

0
@

1
A: ð49Þ

As in the case of horizontal geometry, equation (35) applies to

the calculation of pixel coordinates.
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Council through the Röntgen–Ångström Cluster ‘In Situ High

Energy X-ray Diffraction from Electrochemical Interfaces

(HEXCHEM)’ (project No. 2015-06092) and project grant

‘Understanding and Functionalization of Nano Porous Anodic

Oxides’ (project No. 2018-03434) by the Swedish Research

Council. GA acknowledges financial support from NanoLund

under grant p05-2017.

References

Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray
Physics. Chichester: John Wiley & Sons.

Buerger, M. J. (1940). Proc. Natl Acad. Sci. USA, 26, 637–642.
Caglioti, G., Paoletti, A. & Ricci, F. (1958). Nucl. Instrum. 3, 223–228.
Cheary, R. W., Coelho, A. A. & Cline, J. P. (2004). J. Res. Natl Inst.

Stand. Technol. 109, 1–25.
Coelho, A. A., Evans, J., Evans, I., Kern, A. & Parsons, S. (2011).

Powder Diffr. 26, S22–S25.
Cox, D. (1991). Handbook on Synchrotron Radiation, Vol. 3, edited

by G. Brown & D. Moncton, ch. 5. Amsterdam: North Holland.
Darwin, C. (1922). London Edinb. Dubl. Philos. Mag. J. Sci. 43, 800–

829.
Debye, P. & Scherrer, P. (1916). Nachr. Kgl. Ges. Wiss. Göttingen,

Math. Physik. Kl. pp. 1–15.
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.
Drnec, J., Zhou, T., Pintea, S., Onderwaater, W., Vlieg, E., Renaud, G.

& Felici, R. (2014). J. Appl. Cryst. 47, 365–377.
Dwiggins, C. W. (1972). Acta Cryst. A28, 219–220.
Egami, T. & Billinge, S. J. (2003). Underneath the Bragg Peaks:

Structural Analysis of Complex Materials. Kidlington: Elsevier.
Feidenhans’l, R. (1989). Surf. Sci. Rep. 10, 105–188.
Gozzo, F., De Caro, L., Giannini, C., Guagliardi, A., Schmitt, B. &

Prodi, A. (2006). J. Appl. Cryst. 39, 347–357.
Hammersley, A. P. (2016). J. Appl. Cryst. 49, 646–652.
Hargreaves, J. S. J. (2016). Catal. Struct. React. 2, 33–37.
James, R. (1967). The Optical Principles of the Diffraction of X-rays.

London: G. Bell and Sons.
Kieffer, J. & Wright, J. (2013). Powder Diffr. 28, S339–S350.
Kraft, P., Bergamaschi, A., Bronnimann, C., Dinapoli, R., Eikenberry,

E. F., Graafsma, H., Henrich, B., Johnson, I., Kobas, M., Mozzanica,
A., Schleputz, C. M. & Schmitt, B. (2009). IEEE Trans. Nucl. Sci.
56, 758–764.

Laar, B. van & Schenk, H. (2018). Acta Cryst. A74, 88–92.
Laar, B. van & Yelon, W. B. (1984). J. Appl. Cryst. 17, 47–54.

research papers

J. Appl. Cryst. (2021). 54, 1140–1152 Giuseppe Abbondanza et al. � Quantitative PXRD with a (2 + 3) diffractometer 1151

Figure 12
Diagram showing how the detector angles are affected by the use of
guard slits.
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