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A new method for estimation of intragranular strain fields in polycrystalline

materials based on scanning three-dimensional X-ray diffraction (scanning

3DXRD) data is presented and evaluated. Given an a priori known anisotropic

compliance, the regression method enforces the balance of linear and angular

momentum in the linear elastic strain field reconstruction. By using a Gaussian

process (GP), the presented method can yield a spatial estimate of the

uncertainty of the reconstructed strain field. Furthermore, constraints on spatial

smoothness can be optimized with respect to measurements through

hyperparameter estimation. These three features address weaknesses discussed

for previously existing scanning 3DXRD reconstruction methods and, thus, offer

a more robust strain field estimation. The method is twofold validated: firstly by

reconstruction from synthetic diffraction data, and secondly by reconstruction of

a previously studied tin (Sn) grain embedded in a polycrystalline specimen.

Comparison against reconstructions achieved by a recently proposed algebraic

inversion technique is also presented. It is found that the GP regression

consistently produces reconstructions with lower root-mean-square errors, mean

absolute errors and maximum absolute errors across all six components of

strain.

1. Introduction

Three-dimensional X-ray diffraction (3DXRD), as pioneered

by Poulsen (2004) and co-workers, is a nondestructive mate-

rials probe for the study of bulk polycrystalline materials. The

experimental technique is typically implemented at synchro-

tron facilities where access to hard X-rays (�10 keV) facil-

itates the study of dense materials with sample dimensions in

the millimetre range. In contrast to powder diffraction,

3DXRD enables studies on a per-grain basis, which requires

that the Debye–Scherrer rings consist of a set of well defined,

separable single-crystal peaks. To achieve this, the beam and

sample dimensions must be selected accordingly, limiting the

number of grains illuminated per detector readout. By various

computer-aided algorithms (cf. Lauridsen et al., 2001), the

single-crystal diffraction peaks can be segmented and cate-

gorized on a per-grain basis, enabling the study of individual

crystals within a sample. Typical quantities retrieved from such

analyses are the grain average strain and average orientation

(Poulsen et al., 2001; Oddershede et al., 2010). From further

analysis it also possible to retrieve an approximate grain

topology map (Poulsen & Schmidt, 2003; Poulsen & Fu, 2003;

Markussen et al., 2004; Alpers et al., 2006).

Reducing the X-ray beam cross section to sub-grain

dimensions not only allows for the study of samples with large

numbers of grains but also enables the investigation of intra-

granular variations. This special case of 3DXRD is commonly

referred to as scanning 3DXRD since, to acquire a full data
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set, the narrow beam must be scanned across the sample. In

this setting, it is possible to measure the diffraction signal from

approximate line segments across the grains, collecting infor-

mation on the intragranular structure. Any inversion proce-

dure, in pursuit of such intragranular quantities, then poses a

rich tomography problem where the ray transform typically

involves higher-order tensorial fields.

Recent advances in diffraction contrast tomography

(Reischig & Ludwig, 2020) show promising results for inver-

sion for both orientation and strain fields in three dimensions

with intragranular resolution. In scanning 3DXRD where

higher angular resolution on scattering vectors is achieved at

the cost of diffraction peak resolution (Nervo et al., 2014),

multiple proposals for inversion operating solely from scat-

tering vectors have been made. Initially, Hayashi et al. (2015,

2017) proposed a method for a per-voxel strain refinement to

approximate intragranular strains using scanning 3DXRD

data. Unfortunately, this procedure was shown to introduce

bias in the reconstruction related to strain state (Hayashi et al.,

2019; Hektor et al., 2019). These obstacles were later overcome

by Henningsson et al. (2020), who proposed an inversion

method that takes the tomographic nature of the problem into

account. As has been pointed out by several other authors (cf.

Margulies et al., 2002; Lionheart & Withers, 2015), the

sampling of strain is not uniform in 3DXRD and, as a result,

some additional constraints on the reconstructed field are

often desirable. Henningsson et al. (2020) proposed a simple

smoothing constraint to each of the strain components with

success. However, the parameter selection and the physical

interpretation of these constraints are not well defined.

For powder-diffraction-type data, excellent progress to

overcome the weaknesses highlighted above has been made

using a Gaussian process (Hendriks et al., 2020). In this current

work, we adapt the Gaussian process (GP) framework to

scanning 3DXRD and extend it to a wider class of anisotropic

materials. This framework allows for the introduction of a

static equilibrium constraint, which ensures that the retrieved

strain reconstruction will satisfy the balance of both angular

and linear momentum. The GP naturally incorporates spatial

correlation in the predicted fields via a covariance function,

which, together with the equilibrium prior, replaces the need

for previously used smoothing constraints. Moreover, the GP

produces an estimate of the uncertainty in the reconstructed

strain field, as a by-product of regression. Overall, the

presented regression procedure addresses several weaknesses

of previous work and provides a tool for uncertainty estima-

tion in the reconstructed strain fields.

2. Diffraction measurements

2.1. Experimental acquisition

In scanning 3DXRD, a polycrystalline specimen is placed

on a sample stage associated with an attached coordinate

system (x̂x!, ŷy!, ẑz!). The sample stage commonly has several

degrees of freedom, some of which are used for initial align-

ment and calibration and others for data collection. Since the

calibration procedure is the same for all 3DXRD-type

experiments, here we only describe the degrees of freedom

related to data acquisition; for details on calibration see

Oddershede et al. (2010), Edmiston et al. (2011), Borbely et al.

(2014) and Sharma et al. (2012). A fixed laboratory coordinate

system (x̂xl, ŷyl, ẑzl) is introduced, which is related to the sample

coordinate system through a positive rotation about ẑzl and a

translation in the ylzl plane (Fig. 1). For a given sample

position (yl, zl), rotation in ! is performed in discrete steps of

�!. The scattered intensity in each �! rotation interval is

generally integrated during the acquisition, resulting in a

series of frames for each (yl, zl) position. After any necessary

spatial distortion corrections have been made, the raw pixe-

lated image stacks (yd, zd, !) can be segmented into separate

connected regions of diffracted intensity for which centroids

and average intensities can be calculated. The resulting data

set is six dimensional, with each diffraction peak average

intensity and detector centroid (�, �) mapping to a sample

stage setting (yl, zl, !).

2.2. Laue equations and scattering notation

From the diffraction peak centroids (�, �) it is possible to

compute scattering vectors, G, defined in the laboratory frame

as

Gl ¼
2�

�

cosð2�Þ � 1

� sinð2�Þ sinð�Þ
sinð2�Þ cosð�Þ

2
4

3
5: ð1Þ

Using the notation of Poulsen (2004) and considering that the

Laue equations are fulfilled during diffraction, we can also

express the scattering vectors as

Gl ¼ XUBGhkl; ð2Þ

where X and U are unitary square 3 � 3 rotation matrices

describing, respectively, the turntable rotation around ẑz!
and the crystal unit-cell orientation with respect to the

!-coordinate system. The matrices U and B can now be

uniquely defined as the polar decomposition of their inverse
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Figure 1
Scanning 3DXRD experimental setup. The sample coordinate system
(subscript !) is attached to the sample turntable while the laboratory
(subscript l) coordinate system is fixed in relation to the sample. The
sample is rotated and translated in the ylzl plane across the beam to
record diffraction from the full volume [modified from Henningsson et al.
(2020)].



product, (UB)�1, in which the rows contain the real-space

unit-cell lattice vectors a, b and c described in the sample

!-coordinate system:

ðUBÞ�1
¼

aT

bT

cT

2
4

3
5 ¼ a1 a2 a3

b1 b2 b3

c1 c2 c3

2
4

3
5: ð3Þ

The integer vector Ghkl = [h k l]T holds the Miller indices.

2.3. Grain mapping

Given a measured set of scattering vectors, the procedure

known as grain mapping is concerned with finding a set of

uniform crystals that explain the data. In this setting, grains

are represented by their average (UB)�1 matrices together

with their real-space centroid coordinates. To contextualize

the grain-mapping procedure, a simplified schematic of the

scanning 3DXRD analysis steps is presented in Fig. 2.

In essence, the grain-mapping procedure results in a map

between diffraction peaks and individual average grain

(UB)�1 matrices and centroids. The diffraction peaks asso-

ciated with a single grain can be extracted from such peak–

grain maps and grain shape reconstruction can be performed

by tomographic methods (cf. Poulsen & Schmidt, 2003; Alpers

et al., 2006), utilizing the scattered intensity associated with

each diffraction peak. The peak–grain maps also enable

studies on a per-grain basis, something which simplifies

analysis both conceptually and computationally. Software for

performing grain mapping is freely available in the ImageD11

package (Wright, 2005), and further details on various algo-

rithm options can be found in the literature (Moscicki et al.,

2009; Oddershede et al., 2010; Edmiston et al., 2011; Sharma et

al., 2012; Schmidt, 2014). In this paper we are concerned with

reconstruction of intragranular strain, and thus we focus on

the final step of analysis and proceed with the assumption that

all preceding quantities have been computed.

3. Measurement model

3.1. Strain revealing transformations

Henningsson et al. (2020) described the procedure to

calculate strains in individual lattice planes from scanning

3DXRD measurements via the Bragg equations as first laid

out by Poulsen et al. (2001) and Margulies et al. (2002). To

enrich the framework, allow for consistent use of the Laue

equations and clarify how the integration of strain can take

place, here we adopt a different route, rewriting the Laue

equations and performing a first-order Taylor series expan-

sion. We start by recollecting that the 3 � 3 continuum

deformation gradient tensor, F, should have the property that

v ¼ Fv0; ð4Þ

where v0 is a vector in the reference configuration and v is the

corresponding deformed vector. Applying this to a crystal

reference unit cell (a0, b0, c0) given in the sample !-coordinate

system and collecting the equation in matrix format, we find

that

a b c
� �

¼ F a0 b0 c0

� �
: ð5Þ

With (3) this allows us to identify that

ðUBÞ�T
¼ FðU0B0Þ

�T
,

FðU0B0Þ
�T
ðU0B0Þ

T
¼ ðUBÞ�T

ðU0B0Þ
T
,

F ¼ ðUBÞ�T
ðU0B0Þ

T;

ð6Þ

where U0 and B0 define an undeformed crystal lattice. We can

now relate the quantities involved in the Laue equations (1) to

the strain tensor by considering that the infinitesimal strain

tensor in the sample !-coordinate system is defined as

���! ¼
1
2 ðF

T þ FÞ � I; ð7Þ

where I is the identity tensor. An introduction to elasticity

theory is provided by Ottosen & Ristinmaa (2005). Insertion

of (6) into (7) gives

���! ¼
1
2 ðU0B0ÞðUBÞ�1

þ ðUBÞ�T
ðU0B0Þ

T
� �

� I: ð8Þ

The observable quantity in 3DXRD is the scattering vectors

and a useful formulation must therefore relate ���! to G!,

together with the known quantities U0 and B0. To achieve this

we consider the strain in a single direction, introducing the

unit vector ĵj into (8) as

ĵjT���!ĵj ¼ 1
2 ĵjT ðU0B0ÞðUBÞ�1

þ ðUBÞ�T
ðU0B0Þ

T
� �

ĵj � 1: ð9Þ

The problem is now to select ĵj such that the right-hand side

reduces to an observable quantity. From (2) we may define

G! ¼ X�1Gl ¼ UBGhkl; ð10Þ

and sample the strain parallel to this scattering vector as

ĵj ¼
G!

jjG!jj
¼

UBGhkl

jjG!jj
: ð11Þ

Insertion into (9) now reduces (9) to
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Figure 2
Simplified schematic of analysis steps commonly performed on scanning
3DXRD data. From raw detector data (I), the per-peak centroids (�, �)
and average intensities are retrieved (II). The scattering vectors can then
be computed (III) and input into a peak-grain mapping algorithm (IV).
From the produced maps, per-grain shape reconstruction can take place
(V). Finally, intragranular quantities can be sought (VI).



ĵjT���!ĵj

¼ 1
2

GT
hklðUBÞT

jjG!jj
ðU0B0ÞðUBÞ�1

þ ðUBÞ�T
ðU0B0Þ

T
� � ðUBÞGhkl

jjG!jj
�1

¼
1

2GT
!G!

GT
hklðUBÞTðU0B0ÞGhkl þGT

hklðU0B0Þ
T
ðUBÞGhkl

� �
�1

¼
1

2GT
!G!

GT
!Gð0Þ! þ ðG

ð0Þ
! Þ

TG!

� �
� 1 ¼

GT
!Gð0Þ!

GT
!G!

� 1; ð12Þ

where

Gð0Þ! ¼ X�1G
ð0Þ
l ¼ U0B0Ghkl: ð13Þ

This selection of unit vector ĵj not only guarantees that ���! is

the only unknown in (12) but further spreads the sampling of

strain to all directions defined by the measured set of scat-

tering vectors G!. For high X-ray energies, although not

uniform, this spread is typically good (Lauridsen et al., 2001),

explaining why, in general, strain reconstruction is possible in

3DXRD.

3.2. Tensorial ray transform

So far we have worked with equations (2)–(12) as if scat-

tering occurred from a single point. This is typically the

approximation made in 3DXRD when only grain average

properties are required. For scanning 3DXRD, when pursuing

intragranular quantities, we must consider that scattering

takes place from grain sub-regions, illuminated by the narrow

X-ray beam. In fact, if the scattered intensity is the same from

all points within the grain, the scattering vectors known to us

from the experiment are average quantities over regions, R,

within the grain such that

hG!i ¼
1

V

Z
R

G! dv ¼
1

V

Z
R

UBGhkl dv; ð14Þ

where V is the total volume of R, dv is the differential on R

and h�i indicates volume average. We run now the risk of

invalidating our previous result (12) since the local scattering

vectors G! = G!(x!, y!, z!) are unknown in scanning 3DXRD.

To maintain a useful expression we must further transform

(12) into an equation in hG!i rather than G!. However, since

the strain is nonlinear in G!, direct volume integration of (12)

is not possible. Fortunately though, we may obtain an

approximation by Taylor expansion of (12) at G! ¼ Gð0Þ! to

first order:

ĵjT���!ĵj ’ 1�
GT
!Gð0Þ!

ðGð0Þ! Þ
TGð0Þ!

: ð15Þ

By selecting a uniform reference configuration in space,

integration of (15) now gives, with (14), that

y ¼
1

V

Z
R

ĵjT���!ĵj dv ’ 1�
hG!i

TGð0Þ!

ðGð0Þ! Þ
TGð0Þ!

; ð16Þ

where we introduce the scalar average strain measure

y ¼ yðĵjÞ.

Finally, in any inversion scheme where ���! constitute the free

variables, we must be able to execute the forward model that is

the integral of (16). For this purpose the direction of strain, ĵj,

must be approximated. Using the already introduced

assumption that G! varies weakly over R we can write

ĵj ’
hG!i

jjhG!ijj
: ð17Þ

We note that, equally, the approximation ĵj ’ Gð0Þ! =jjG
ð0Þ
! jj

could have been made.

In conclusion, (16) and (17) relate the measured average

scattering vectors, hG!i, to the underlying strain field,

���!(x!, y!, z!), with the strain tensor being the only involved

unknown quantity.

The approximations made in (16) and (17) will give rise to

an error in the integrated strain value y. The magnitude of this

error will strongly depend on the spatial distribution of

intragranular strain and orientation. To demonstrate that the

approximations made in (16) and (17) are accurate for small

strains and moderate mosaic spreads, we provide an extended

analysis of this error in Appendix A. This discussion also

highlights why, and when, it is possible to reconstruct intra-

granular strain independently of intragranular orientation in

scanning 3DXRD.

3.3. Estimated uncertainty

To finalize the measurement model we introduce an addi-

tive Gaussian error e into (16), representing measurement

uncertainty. Furthermore, to simplify both computation and

further analytical derivations we approximate the volume

integral overR by a corresponding line integral going through

the geometrical centre of this region. Finally, we have the

measurement model

y ¼
1

L

Z
L

ĵjT���!ĵj dl þ e; ð18Þ

where L is the length of the line segment L, dl is the differ-

ential on L and e is the additive normally distributed noise:

e � NðE½e�;C½e; e�Þ; ð19Þ

with expectation value E½e� and covariance C½e; e�.

The measurement noise is assumed to be zero mean

(E½ei� ¼ 0) and independent (C½ei; ej� ¼ 0) with the variance

selected in accordance with previous work (Borbely et al.,

2014; Henningsson et al., 2020),

C½ei; ei� ¼
@y

@r

� ��2

; ð20Þ

where r = r(�) is the radial detector coordinate and the indices

i and j indicate unique measurements. Other estimations of

C½ei; ei� are possible. Importantly, though, the variance should

depend on the scattering angle 2�, as, for a 2D detector with

uniform pixel size, the measurement uncertainty increases

with decreasing scattering angle.
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4. Regression procedure

Equation (18) is a ray transform that contains information on

the average directional strain for a region within the grain.

The problem to reconstruct the full strain tensor field from a

series of such measurements is therefore tomographic in

nature, and the measurements y are highly spatially entangled

as the regions L will intersect in general. A collection of N

measurements,

y ¼ y1 y2 ::: yj ::: yN

� �T
; ð21Þ

could represent the second member of a linear equation

system where (18) is used to form a system matrix and a vector

of unknown strains defined on some finite basis. This has been

described by Henningsson et al. (2020) for a voxel basis, using

a weighted least-squares (WLSQ) approach to retrieve the

strain field. As we will discuss in Section 4.1, in this work we

adapt these ideas to a Gaussian process framework, not

solving for a deterministic strain field but instead calculating

the probability distribution of strain at each spatial coordinate,

revealing a distribution over strain tensor functions.

Before proceeding any further, it is useful to introduce a

vector notation along with some geometrical quantities

related to the integration path L (Fig. 3).

Since ���T = ��� we can uniquely represent the strain tensor

field in sparser format by introducing the column vector

�������ðxÞ ¼ �xxðxÞ �yyðxÞ �zzðxÞ �xyðxÞ �xzðxÞ �yzðxÞ
� �T

:

ð22Þ

To represent the tensor product ĵjT���!ĵj involved in (18) using �������
we seek the corresponding vector �jj such that the equality
�jjT ������� ¼ ĵjT���!ĵj holds true. We find by expansion that

�jj ¼ �2
x �2

y �2
z 2�x�y 2�x�z 2�y�z

� �T
: ð23Þ

Next, denoting the intersection points between the X-ray

beam and the grain boundary by p0, p1, . . . , pM and letting the

Euclidean length of these illuminated regions be labelled Li =

||pi � pi+1||2, we find, for measurement number j, that

yj ¼ ej þ
Xi¼M�1

i¼0

1

Li

ZLi

0

�jjT �������ðpi þ n̂nsÞ ds ¼ ej þMj �������; ð24Þ

where the symbol Mj is shorthand for the integral operator

corresponding to measurement number j, s is a scalar, n̂n is a

unit vector along the X-ray beam and ������� ¼ �������ðpi þ n̂nsÞ is a

function over a compact support in the grain volume.

Considering the full measurement set y defined in (21), we

introduce a compact notation,

y ¼MM�������þ e; ð25Þ

where MM and e are column vectors formed in analogy

with (21).

4.1. Gaussian process regression

A Gaussian process is any stochastic process in which all

subsets of a generated stochastic sequence of measurements

form multivariate normal distributions (Rasmussen, 2003).

The regression procedure associated with a Gaussian process,

known as Gaussian process regression, can be described in

terms of basic statistical theorems and quantities. The central

idea is to exploit the fact that linear operators acting on

normally distributed variables form again normal distribu-

tions. The goal is to arrive at the distribution of the Gaussian

process that, for some spatial function f(x), describes the

probability of finding a value f at coordinate x together with

the covariance of f(x) with other spatial locations f(x0).

In the scanning 3DXRD case, we consider the measurement

series, y, generated by some underlying strain tensor field, �������ðxÞ,
and seek to calculate at each spatial coordinate, x, the prob-

ability distribution p½�������ðxÞjy�, i.e. the probability of finding a

specified strain tensor ������� at x given the measurements y. As

we will show, if we assume a Gaussian process prior and

Gaussian noise, this probability distribution is multivariate

normal, and the covariance of strain at any two points,

C½������� ¼ �������ðxÞ; �������0 ¼ �������ðx0Þ�, together with the strain expectation

value, E½�������ðxÞ�, will be revealed by the regression.

If it is assumed that �������ðxÞ is normally distributed,

�������ðxÞ � N ðE½��������;C½�������; �������0�Þ; ð26Þ

it follows directly that y is multivariate normal,

y � NðE½y�;C½y; y�Þ; ð27Þ

since it is a linear combination of the independent normal

distributions �������ðxÞ and e. Considering then the joint distribu-

tion of �������ðxÞ and y we can calculate

�������

y

� �

� N
I

MM

� �
E½��������;

C½�������; �������0� C½�������; �������0�MMT

MMC½�������; �������0� MMC½�������; �������0�MMT
þ C½e; e�

" # !
;

ð28Þ

where I is an identity operator and we use the fact that y is a

linear transformation of two normally distributed variables
�������ðxÞ and e. The joint probability of (28) now gives us the

sought distribution, p½�������ðxÞjy�, which is again normal. Its

variance and expectation value can be found by writing out

(28) in analytical exponent form, with fixed y, and completing

the exponent square. The closed-form solution can be

obtained as
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Figure 3
A single crystal under elastic deformation illuminated by an X-ray beam.
Scattering takes place along the illuminated region L ¼ L1 þ L2.



E½�������jy� ¼ E½�������� þ C½�������; �������0�MMT
�
MMC½�������; �������0�MMT

þ C½e; e�
	�1

y� E½y�ð Þ;

C½�������; �������0jy� ¼ C½�������; �������0� � C½�������; �������0�MMT
�
MMC½�������; �������0�MMT

þ C½e; e�
	�1
MMC½�������; �������0�:

ð29Þ

Before any approximate or analytical solutions to the involved

transformations of C½�������; �������0� byMM can be given, it remains first

to specify the prior distribution of �������ðxÞ.

4.2. Equilibrium prior

Since the closed-form solution of (29) requires only that
�������ðxÞ is normal, we are free to incorporate prior knowledge on
�������ðxÞ by making a parametrization of �������ðxÞ as linear transfor-

mations of some other underlying normal distributions. Since
�������ðxÞ represents a linear elastic strain field and the scanning

3DXRD experiment is assumed to take place on a sample at

rest, we expect that the accompanying stress field �rr will be in

static equilibrium. This can be expressed as a linear map

�������ðxÞ ¼ H �rrðxÞ; ð30Þ

where H is an anisotropic compliance matrix that is orienta-

tion dependent, H ¼ HðUÞ ’ HðU0Þ. The set of analytical

functions �rrðxÞ that satisfy balance of angular and linear

momentum are known as the Beltrami stress functions. These

may be described as a linear map

�rrðxÞ ¼ BB �UUðxÞ; ð31Þ

where �UUðxÞ is a column vector holding six Beltrami stress

functions, which are required to be twice differentiable, and

BB¼

0
@2

@z2

@2

@y2
0 0 �2

@2

@y@z
@2

@z2
0

@2

@x2
0 �2

@2

@x@y
0

@2

@y2

@2

@x2
0 �2

@2

@x@y
0 0

0 0 �
@2

@x@y
�
@2

@z2

@2

@y@z

@2

@x@z

�
@2

@y@z
0 0

@2

@x@z

@2

@x@y
�
@2

@x2

0 �
@2

@x@z
0

@2

@y@z
�
@2

@y2

@2

@x@y

2
6666666666666666664

3
7777777777777777775

:

ð32Þ

We have then

�������ðxÞ ¼ HBB �UUðxÞ; ð33Þ

and must now make an assumption on the distribution of �UUðxÞ.
Without any further prior knowledge we select a zero-mean

normal distribution with

E½ �UU� ¼

0

0

0

0

0

0

2
6666664

3
7777775
; C½ �UU; �UU0� ¼

k1 0 0 0 0 0

0 k2 0 0 0 0

0 0 k3 0 0 0

0 0 0 k4 0 0

0 0 0 0 k5 0

0 0 0 0 0 k6

2
6666664

3
7777775
;

ð34Þ

where the covariance functions ki ¼ kiðx; x0Þ describe the

spatial correlation of the field. In this work, we have used the

stationary squared-exponential covariance function,

kiðx; x0Þ ¼ �2
i exp

�rTr

2lT
i li

� �
; r ¼ x� x0; li ¼ lix liy liz

� �T
;

ð35Þ

introducing a smoothness assumption into the strain field

reconstruction. The unknown hyperparameters defined by li

and �i are thus in total 6 � 4 = 24 in our case. These variables

will be estimated through an initial optimization process

known as hyperparameter optimization; we will return to how

this is done later. First we highlight that the zero-mean prior

assumption on the Beltrami stress functions, �UUðxÞ, does not

imply that the posterior distribution of strain, �������ðxÞ, will be zero

mean. This is realized upon examination of equation (29),

which shows that a prior mean of E½�������� ¼ 0 does not imply that

the conditional posterior E½�������jy� will be zero. Other selections

for the prior mean are possible; however, when such addi-

tional prior information is unknown, a zero-mean selection is

preferable for simplicity.

In total, these selections impose that (i) the strain field is in

a point-wise static equilibrium and (ii) the strain field has a

local spatial correlation to neighbouring points. The resulting

prior distribution of strain is

������� � Nð0;HBBC½ �UU; �UU0�BTHT
Þ: ð36Þ

4.3. Equilibrium posterior distribution

With the prior information of equilibrium and spatial

correlation now encoded into the strain field we can insert

C½�������; �������0� ¼ HBBC½ �UU; �UU0�BBTHT ð37Þ

into equation (29) to arrive at a final expression in which only

the hyperparameters remain to be estimated. The covariance

between measurements takes on the form

C½y; y� ¼ MMHBBC½ �UU; �UU0�BBTHTMM
T; ð38Þ

which involves, through the mappings MM, a double integral

over the two times partially differentiated squared exponen-

tial in (35). The solution to this double line integral is

intractable, although some work has been done to show that

for lx = ly = lz it can be analytically reduced to a single integral

(Hendriks, Gregg et al., 2019). However, the numerical inte-

gration remains too computationally costly for practical use.

This motivates the use of an approximation scheme on a

reduced basis for which closed-form solutions to all involved

quantities of (29) are again recovered (Jidling et al., 2018).
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4.4. Finite basis approximations

Decomposing (35) onto a Fourier basis,

’ikðxÞ ¼
1

LxLyLz

sin½�xikðxþ LxÞ� sin½�yikðyþ LyÞ�

� sin½�zikðzþ LzÞ�; ð39Þ

where the scalars � and L are the frequencies and phases,

respectively, we find that

kiðx; x0Þ ’
Pk¼m

k¼1

’ikðxÞsik’ikðx
0Þ ¼ uT

i siu
0
i: ð40Þ

si is a diagonal matrix of basis coefficients, sik, which are the

spectral densities of (35). Specifically it is possible to show

(Solin & Särkkä, 2020) that the kth spectral density is

sik ¼ �
2
i ð2�Þ

2=3
lixliyliz exp � 1

2 ðl
2
ix�

2
xik þ l2

iy�
2
yik þ l2

iz�
2
zikÞ

� �
: ð41Þ

With the vector notation

				 ¼

u1

u2

u3

u4

u5

u6

2
6666664

3
7777775
; S ¼

s1 0 0 0 0 0

0 s2 0 0 0 0

0 0 s3 0 0 0

0 0 0 s4 0 0

0 0 0 0 s5 0

0 0 0 0 0 s6

2
6666664

3
7777775
; ð42Þ

where 0 is a matrix of zeros, we find the approximate covar-

iance

C½ �UU; �UU0� ¼ 				TS				0: ð43Þ

Insertion of (43) into (37) now yields

C½�������; �������0� ¼ HBB				TS				0BBTHT: ð44Þ

Introducing the quantities

				� ¼ HBB				T; 				y ¼MM				�; ð45Þ

we finally arrive at the approximate posterior mean and

covariance of strain using (29):

E½�������jy� ¼ E½�������� þ 				�S				
T
y 				yS				T

y þ C½e; e�
� 	�1

y� E½y�ð Þ;

C½�������; �������jy� ¼ 				�S				
T
� � 				�S				

T
y 				yS				T

y þ C½e; e�
� 	�1

				yS				T
� :

ð46Þ

The computational complexity can be further reduced by

algebraically rearranging this equation to avoid forming the

covariance matrices (Rasmussen, 2003), resulting in

E½�������jy� ¼ E½�������� þ 				�
�
				T

yC½e; e��1				y

þ S�1
	�1
				T

yC½e; e��1 y� E½y�ð Þ;

C½�������; �������jy� ¼ 				� 				
T
yC½e; e��1				y þ S�1

� 	�1
				T
� :

ð47Þ

Here, the inverses S�1 and C½e; e��1 can be trivially computed,

as the matrices are diagonal. For m < N, this reduces the

computational complexity toOðNm2Þ fromOðN3Þ required for

the inverse in (29) and (46). A numerically stable and efficient

algorithm for solving these equations using the QR decom-

position is given by Hendriks, Wensrich et al. (2019), together

with analytical expressions for the various integral mappings

MM. We note here that, although the introduced Fourier basis

in (39) is defined over all space, the support of the recon-

structed field in (47) is for all practical purposes that of the

grain volume. This follows from the fact that the mappings

executed through MM are only performed over the grain, as

indicated in (24), and requires that the period of the lowest

frequency basis included is larger than the grain volume.

As m!1 the approximate solution (47) approaches the

exact solution (29) (Solin & Särkkä, 2020). In practice,

however, we must select a finite m, leading to (35) being used

in approximate form. To direct the selection of frequencies

�xik, �yik and �zik in (40) use can be made of (41). In this work,

we have selected the basis frequencies on an equidistant grid

in (�xik, �yik, �zik) space such that the spectral densities were

above a minimum threshold, i.e. we aim to achieve a desired

coverage of the spectral density function. Specifically, we

select

�xik ¼ ��xkigxki; Lx ¼
�

2��xki

; ��xki ¼



lixR
;

�yik ¼ ��ykigyki; Ly ¼
�

2��yki

; ��yki ¼



liyR
;

�zik ¼ ��zkigzki; Lx ¼
�

2��zki

; ��zki ¼



lizR
;

g2
xki þ g2

yki þ g2
zki 	 R2;

ð48Þ

where (gxki, gyki, gzki) are positive integers such that (��xkigxki,

��ykigyki, ��zkigzki) defines equidistant grid points excluding

the origin, and 
 controls the desired coverage of the spectral

density.

To see how 
 controls this coverage, we use equation (48) to

write the spectral density in (41) as a function of 
, giving

sik ¼ �
2
i ð2�Þ

2=3lixliyliz exp �

2

2R2
ðg2

xki þ g2
yki þ g2

zkiÞ

� �
� �2

i ð2�Þ
2=3lixliyliz exp �
2=2

� 	
; ð49Þ

where the inequality holds because the maximum value of

(gxki, gyki, gzki) is R2. Hence, we can see that 
 controls the

minimum spectral density, or alternatively we could view it as

controlling the proportion of the volume under the spectral

density function we wish the basis functions to cover. Taking

this view, 
 = 1 gives �68%, 
 = 2 gives �95% and 
 = 3 gives

�99.7% volume coverage. In this work, we use 
 = 3.5,

corresponding to approximately 0.9996% coverage of the

volume under the spectral density function.

Continuing with this reasoning, we can view R as governing

the resolution with which the basis functions cover the spectral

density. Whilst larger R will result in a better approximation to

the covariance function it also increases the computational

cost and, in general, will have diminishing returns in terms of

error reduction. A suggestion is to increase R, subject to

computational limits, whilst observing a substantial reduction

in residuals or improvement in the out-of-sample log like-

lihood – described in detail in the next section. For both the

simulation and real data experiments in this work we have

used R = 5, which results in a total of m = 38 used basis

functions for each of the six covariance functions, ki(x, x0),
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i = 1, 2, . . . , 6. Increasing R beyond this was found to give

minimal improvement.

To complete the regression scheme, we now discuss the

selection of the hyperparameters lix, liy, liz and �i, which at this

stage are the only unknowns in the formulation.

4.5. Hyperparameter selection

The hyperparameters, lix, liy, liz and �i, for the posterior

conditional distribution can be determined through optimi-

zation (Rasmussen, 2003). Typically, this is done by either

maximizing the log marginal likelihood or using a cross-

validation approach and maximizing the ‘out-of-sample’ log

likelihood, i.e. the likelihood of observing a set of measure-

ments not used in the regression, ~yy. Following the work by

Gregg et al. (2020), which demonstrates that maximizing the

out-of-sample log likelihood yields better results for line

integral measurements, we determine the hyperparameters by

solving

�
 ¼ arg max
�

log p�ð~yyjyÞ ¼ arg max
�

�0:5 log detC½~yy; ~yyjy�

� 0:5 ~yy� E½~yyjy�ð Þ
T
C½~yy; ~yyjy��1 ~yy� E½~yyjy�ð Þ: ð50Þ

where � is a vector holding the hyperparameters introduced

in (35) and log p�ð~yyjyÞ is the out-of-sample log likelihood. By

extension of (47), we have that

E½�~yy~yyjy� ¼ E½~yy� þ 				~yy

�
				T

yC½e; e��1				y

þ S�1
	�1
				T

yC½e; e��1 y� E½y�ð Þ;

C½~yy; ~yyjy� ¼ 				~yy 				
T
yC½e; e��1				y þ S�1

� 	�1
				T

~yy þ C½e; e�:

ð51Þ

Note that it is not essential that a global optimum is found in

this procedure; in fact, in many cases, setting the hyperpara-

meters to some reasonable fixed values will produce excellent

reconstructions. In the case of scanning 3DXRD we have

found that setting the hyperparameters uniformly to the grain

diameter gives reasonable results and can serve as a good

initial guess for optimization.

5. Validation

To validate the presented regression method we have gener-

ated simulated scanning 3DXRD data using a previously

developed algorithm (Henningsson, 2019). This tool has been

used with success in the past (cf. Hektor et al., 2019;

Henningsson et al., 2020) and can provide an understanding of

the limitations and benefits of scanning 3DXRD reconstruc-

tion methods. Briefly, the simulation input is specified as a set

of cubic single-crystal voxels featuring individual strains and

orientations together with an experimental setup. We refer the

reader to Henningsson (2019) for additional details on the

simulation algorithm, with an undocumented implementation

available via https://github.com/FABLE-3DXRD/S3DXRD/.

Strain reconstructions from generated diffraction data were

compared with ground-truth input strain as well as an addi-

tional reconstruction method described by Henningsson et al.

(2020). This reconstruction method, previously referred to as

‘algebraic strain refinement’ (ASR), uses a voxel basis for

strain reconstruction and can, in short, be described as solving

a global WLSQ problem. This least-squares approach oper-

ates from the same average directional strain data as the

presented GP method.

5.1. Single-crystal simulation test case

Diffraction from a tin (Sn) grain subject to a nonuniform

strain tensor field has been simulated for the nonconvex grain

topology depicted in Fig. 4.

The grain was assigned an orientation field by introducing

linear gradients in the three Euler (Bunge notation) angles, ’1,

�, ’2, as

’1 ¼ � ¼ ’2 ¼
�

180
45þ

x

130v
þ

z

24v


 �
; ð52Þ

where v = 5 mm was the used voxel size and the grain origin

was set at the grain centroid in the xy plane and at the bottom

edge of the grain in z (Fig. 4). The maximum grain size in each

dimension x, y and z was 26, 26 and 13 voxels, respectively.

The strain field was defined by a set of Maxwell stress

functions, which are a subset of the more general class of

Beltrami stress functions,

�UU ¼ Aðx; y; zÞ Bðx; y; zÞ Cðx; y; zÞ 0 0 0
� �T

: ð53Þ

To achieve a relatively simple, but not trivial, strain field the

functions A, B and C were selected as a cubic polynomial:

A ¼ B ¼ C ¼ �1ðx� txÞ
3
þ �2ðy� tyÞ

3
þ �3ðz� tzÞ

3

þ �4ðx� txÞðy� tyÞðz� tzÞ: ð54Þ

The stress was converted to strain by the elastic compliance

matrix C, as

�xx

�yy

�zz

�xy

�xz

�yz

2
6666664

3
7777775
¼ C�1

BB �UU ¼ C�1

6�3ðz� tzÞ þ 6�2ðy� tyÞ

6�1ðx� txÞ þ 6�3ðz� tzÞ

6�2ðy� tyÞ þ 6�1ðx� txÞ

�4ðtz � zÞ

�4ðty � yÞ

�4ðtx � xÞ

2
6666664

3
7777775
: ð55Þ
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Figure 4
Grain topology input for diffraction simulation coloured by corre-
sponding input Euler angle field in units of degrees. The top row
represents central cuts through the 3D renderings below, as indicated by
the red lines.



Numerical values of the constants �1, �2, �3, �4, tx, ty and tz are

presented in Table 1.

The elasticity matrix for single-crystal tin was taken from

Darbandi et al. (2013) (Table 2) and converted from Voigt

notation to the used strain vector notation.

Parameters presented in Table 3 were used to define the

experimental setup of the simulation.

The unit cell in Table 4 was used to define a strain-free

lattice state.
The generated diffraction patterns were analysed on a per-

z-slice basis using ImageD11 (Wright, 2005) to compute

scattering vectors and average crystal

orientations for each z slice. The grain

shape was then reconstructed on the

basis of the normalized diffraction peak

intensities using filtered backprojection

(Poulsen & Schmidt, 2003). Next, the

diffraction data were converted to

average directional strains, as described

in Section 3, and input into the WLSQ

and GP reconstruction methods. The

final reconstructed strain tensor fields

are illustrated together with simulation

ground-truth and residual fields in Fig. 5.

The corresponding root-mean-square

errors (RMSEs), mean absolute errors

(MAEs) and maximum absolute errors

for the residual fields are given in Table 5.

Hyperparameters were optimized

using the L-BFGS-B algorithm, as

implemented in SciPy (Jones et al.,

2001), with a maximum of ten line-

search steps per iteration. Gradients

were computed using automatic differ-

entiation as implemented in PyTorch

(Paszke et al., 2019). In the first opti-

mization iteration all hyperparameters

were uniformly set to the grain radius.

The convergence of the optimization is

displayed in Fig. 6. The smoothness

constraints for the WLSQ in the xy

plane were set to 2.5 � 10�4, limiting

the maximum absolute difference in

each strain tensor component between

two neighbouring voxels [further details

are provided by Henningsson et al.

(2020)].

research papers

J. Appl. Cryst. (2021). 54, 1057–1070 Henningsson and Hendriks � Intragranular strain estimation in scanning 3DXRD 1065

Table 1
Strain field parameters for diffraction simulation in units of mm.

�1 �2 �3 �4 tx ty tz

100 100 100 1000 10 10 0

Table 2
Elasticity constants for single-crystal tin in units of GPa converted from
Voigt notation as given by Darbandi et al. (2013).

C11 C22 C33 C44 C55 C66 C12 C13 C23

72.3 72.3 88.4 48.0 44.0 44.0 59.4 35.8 35.8

Table 3
Experimental parameters used in single-grain simulation, corresponding
to the results presented in Fig. 5.

Wavelength 0.22 Å
Sample-to-detector distance 163 mm
Detector pixel size 50 � 50 mm
Detector dimensions 2048 � 2048 pixels
Beam size 5 � 5 mm
! rotation interval [0, 180�]
�! step length 1�

Maximum grain size in x 130 mm
Maximum grain size in y 130 mm
Maximum grain size in z 65 mm

Figure 5
3D rendering of strain reconstructions for WLSQ and GP regression approaches. The top row
defines the simulation ground truth as described in equation (55), with each column featuring a
different strain component. The surface of the voxelated grain is presented, together with a pulled-
out interior spherical cut centred at the grain centroid with a diameter of 50 mm. The corresponding
coordinate systems are depicted in the bottom left of the figure. Three separate colormaps have
been assigned to enhance contrast for the various fields. However, units of strain remain the same
across plots (�10�4). The residual field is defined as the difference between the ground truth and
the reconstructed strain field.

Table 4
Relaxed reference lattice parameters.

a b c �  �

5.81127 Å 5.81127 Å 3.17320 Å 90.0� 90.0� 90.0�



To assess how well the two methods (WSLQ and GP) utilize

data, the MAE and RMSE of the reconstructed strain fields, as

a function of the number of input measurement integrals, has

been investigated. By measurements we here refer to the

integral values, yj, as defined in (24), together with their

associated vectors (p0, ĵj, n̂n). Measurements were permuted

randomly and input into the WLSQ and GP reconstruction in

initial sample sizes of 1, 2, 3, 4 and 5%, after which the sample

size was increased in steps of 5% as indicated by the markers

in Fig. 7. Since the GP hyperparameter optimization is a non-

convex problem, the quality of any found local minima may

vary between runs, and a better local minimum is not guar-

anteed with a larger measurement set owing to the different

topology of the cost function. Thus, in order not to obscure the

convergence rate of the GP method, we have selected to

present results using fixed optimized hyperparameters found

using 10% of the measurements as well as for non-optimized

hyperparameters, set uniformly to the grain diameter. The

resulting MAE and RMSE for the reconstructed residual

fields were computed and averages over the six strain com-

ponents were formed. The performance as a function of input

measurements can be assessed by visual inspection of Fig. 7.

5.2. Embedded tin grain

To further compare the GP and WLSQ reconstruction

methods, analysis of a previously studied columnar tin grain

has been included. This additional analysis further serves to

show that the presented method is computationally feasible

for state-of-the-art scanning 3DXRD data sets. Including

hyperparameter optimization, the GP reconstruction was

performed on a single CPU (Intel i7-8700K CPU @ 3.70 GHz)

in 18 min and 9 s. As mentioned in Section 4.4, the computa-

tional complexity scales as OðNm2Þ, where m is the number of

basis functions and N the number of measurements. The

corresponding runtime using fixed precomputed hyperpara-

meters was 3.5 s. The data for this example from Hektor et al.

(2019) and the input experimental parameters are identical to

those presented in Table 3 except for the beam size, which was

0.25 mm. Similarly, the relaxed lattice state was as defined in

Table 4. In the original experiment, the X-ray beam was

scanned across the xy plane, producing a space-filling map of

measurements. However, owing to time constraints, the data

were collected for every second z layer, as seen in the right-

most column of Fig. 8. The reader is referred to the original

publication (Hektor et al., 2019) for further information on the

experimental setup, sample and preliminary data analysis.

As the GP method uses a nonlocal basis representation of

the strain field, as defined in equation (39), interpolation

between measured slices is an automatic feature of the

method. For the WLSQ method, although some interpolation

scheme could be selected, we have chosen to present the raw

reconstructions. This also highlights the added benefit of the
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Figure 7
Average root-mean-square error (squares) and mean absolute error
(stars) for the simulated grain presented in Figs. 4 and 5 as a function of
used percentage of measurements. The performance of the Gaussian
process regression (red and blue filled lines) is compared with that of the
weighted least squares (black dashed lines). The RMSE and MAE were
computed from the residual fields and averaged over the six recon-
structed strain components to produce a scalar measure per reconstruc-
tion. Each point in the plot corresponds to a full 3D strain reconstruction
using a random subset of the measured data.

Table 5
Root-mean-square errors, mean absolute errors and maximum absolute
errors for the residual fields presented in Fig. 5.

The result of the Gaussian process regression is compared with the weighted
least-squares fit (WLSQ). Values are unitless (strain) and on the same scale
(10�4) as in Fig. 5.

RMSE MAE Maximum absolute error

Strain GP WLSQ GP WLSQ GP WLSQ

�xx 1.322 2.076 1.101 1.737 2.791 7.42
�yy 1.042 1.371 0.846 0.999 3.856 6.094
�zz 0.887 1.489 0.769 1.157 1.914 6.736
�xy 1.122 1.511 0.955 1.172 2.778 6.306
�xz 0.24 1.04 0.198 0.798 1.506 4.85
�yz 0.48 0.958 0.399 0.742 1.34 4.652

Figure 6
Negative cross-validation log likelihood reduction during hyperpara-
meter optimization for the simulated grain presented in Figs. 4 and 5.
Optimization was conducted using the L-BFGS-B algorithm as
implemented in SciPy with a maximum of ten line-search steps per
iteration. Gradients were computed using automatic differentiation as
implemented in PyTorch.



selected basis for the GP method. Hyperparameter optimi-

zation and smoothness constraints for the WLSQ method

were applied and selected as in Section 5.1.

6. Discussion

Comparison of the true and predicted fields in Fig. 5 for the

two methods indicates that the reconstructions captured well

the simulated input strain state. For all strain components in

Table 5, both the RMSE and MAE are of the order of the

expected experimentally limited strain resolution (10�4). We

note, however, that the GP has consistently lower RMSE,

MAE and maximum absolute errors in comparison with the

WLSQ. The enhanced performance is attributed to the joint

effect of the equilibrium prior, optimized correlation kernel

and nonlocal basis selection.

The results of Table 5 indicate that, in general, the strain

tensor z components enjoy more accurate reconstructions

than the xy components. This observation is in line with

previous work (Margulies et al., 2002; Lionheart & Withers,

2015; Henningsson et al., 2020) and is explained by the

nonuniform sampling of strain taking place in scanning

3DXRD. The GP regression quantifies this phenomenon via

the reconstructed standard deviation fields (Fig. 5, bottom

row). Indeed the uncertainty in the predicted mean is elevated

for the xx and yy components, which show similar patterns to

the residual fields.

On the performance of the two methods, Fig. 7 indicates

that fewer measurements are needed for the GP compared

with the WLSQ approach whilst achieving a more accurate

result. Little reduction in the RMSE and MAE is seen for the

GP after about 50% of the measurements have been intro-

duced (about 20% for the optimized GP version). This could

imply that it is possible to retrieve approximations to the full

strain tensor field from reduced scanning 3DXRD data sets.

This could be attractive as scanning 3DXRD typically has

time-consuming measurement sequences. From Fig. 7 it is also

clear that the final errors in reconstruction will be nonzero.

This is so because the error in reconstruction is made up of

both bias and variance. While the variance can be reduced by

adding more measurements, the bias is due to systematic

errors arising from incorrect model assumptions such as the

line integral approximation, the truncated covariance basis

series expansion, the Taylor series expansion related to the

strain measure, the directional approximation of ĵj and

possibly further unknown sources. Since the bias cannot be

removed by adding more measurements, the reconstruction

error will face a lower nonzero bound.

It is evident that the reconstructed fields have maximum

uncertainties at the boundary of the grain, as can be seen from

the cutout spheres of Figs. 5 and 8. The elevated standard

deviation at the grain surface is explained by the tomographic

measurement procedure, which has an increasing measure-

ment density towards the grain centroid. Furthermore, as

measurements do not exist outside of the grain, points lying on

the grain surface will, in some sense, have a reduced number of

points that they are correlated with. In addition to these

effects, the selected line beam approximation may have an

impact on the grain boundary errors. If the full 3D profile of

the beam had been used instead, a higher number of scans that

partially graze the grain boundary could have been included in

the analysis, thus increasing the measurement density at the

boundary. In the current model, if a scan has a geometric

centre that does not intersect the grain, it has no impact on the

reconstruction, even though the full 3D beam may have some

overlap with the grain. The main challenge with using a full 3D

beam profile, rather than the line approximation, is to main-

tain analytical expressions during integration of the partial

derivatives of the basis functions over the illuminated domain.

The predicted strain field of the columnar tin grain of Fig. 8

shows similar patterns for the two regression methods. The

uncertainty is again seen to be reduced on the interior of the

grain, and the posterior standard deviation is of the order of

the experimental strain resolution of 10�4. This validates the

applicability of GP regression on real state-of-the-art scanning

3DXRD synchrotron data.

6.1. Outlook

Two future potential improvements to strain predictions

should be mentioned. Firstly, the selection of covariance

function, although restricted to give a positive definite
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Figure 8
Reconstructed strain field using WLSQ (left column) and the GP method
(middle column) of a columnar tin grain embedded within a polycrystal-
line sample. The rightmost column depicts the estimated uncertainty of
the GP reconstruction. The 3D surface of the voxelated grain is presented
together with a pull-out enlarged interior spherical cut with its centre at
the grain centroid and a radius of 1 mm. Two separate colormaps have
been assigned to enhance contrast for the various fields. However, the
units of strain remain the same across plots (�10�4).



covariance matrix, is not unique; other selections may

outperform the squared-exponential kernel used here.

Secondly, for polycrystalline samples, additional prior knowl-

edge of grain boundary strain could be extracted by consid-

ering the total sample grain map and that tractions must cancel

on the interfaces [i.e. incorporating and extending the work of

Hendriks, Gregg et al. (2019)]. Two challenges with this exist:

(i) the uncertainty in reconstructed grain shapes leading to

uncertainty in the interface normal and (ii) uncertainty in the

per-point grain orientation leading to uncertainty in the grain

compliance. The first of these challenges may be addressed by

using near-field techniques (Viganò et al., 2016) in conjunction

with scanning 3DXRD to achieve higher-resolution grain maps.

7. Conclusions

Intragranular strain estimation from scanning 3DXRD data

using a Gaussian process is shown to provide a new and

effective strain reconstruction method. By selecting a contin-

uous differentiable Fourier basis for the Beltrami stress

functions, a static equilibrium prior can be incorporated into

the reconstruction, guaranteeing that the predicted strain field

will satisfy the balance of both angular and linear momentum.

The regression procedure results in a per-point estimated

mean strain and per-point standard deviations, providing new

means of estimating the per-point uncertainty of the recon-

struction. Furthermore, the proposed method incorporates the

spatial structure of the strain field by making use of a generic

covariance function, optimized by maximizing the out-of-

sample log likelihood. With the introduction of these three

features, the equilibrium prior, the per-point uncertainty

quantification and the optimized spatial smoothness

constraints, the proposed regression method addresses weak-

nesses discussed in previously proposed reconstruction

methods. Specifically, in comparison with a previously

proposed weighted least-squares approach, it is found, from

numerical simulations, that the Gaussian process regression

consistently produces reconstructions with lower root-mean-

square errors, mean absolute errors and maximum absolute

errors across strain components. Moreover, it is shown that the

reconstruction error as a function of the number of available

measurements is reduced for the Gaussian process.

APPENDIX A
Error related to measurement approximations

To demonstrate the accuray of the approximations made in

(15), we investigate the error associated with the fact that both

strain and crystal orientation may vary along the ray path. To

do this we must consider that the strain computed from (15) is

further assigned to planes with approximate normals given by

(17). Thus, there is a twofold error source to capture in the

following analysis, arising partly from the integrated Taylor

series expansion,

y ¼
1

V

Z
L

ĵjT���!ĵj dv ’ 1�
hG!i

TGð0Þ!

ðGð0Þ! Þ
TGð0Þ!

; ð56Þ

and partly from assigning the average strain value, y, to an

incorrect plane normal,

ĵj ’ hG!i=jjhG!ijj; ð57Þ

which in reality is not fixed but warps across the crystal

[ĵj ¼ ĵjðxÞ].
To compute the error in strain we consider first the true

average strain for a single line-integral measurement, ytrue,

existing in a fixed direction, ĵj:

ytrue ¼
1

L

Z
L

ĵj
T���!ĵj ds ¼

1

L
ĵj

T

Z
L

���! ds

0
@

1
Aĵj ¼ ĵj

T
h���!iĵj; ð58Þ

where the average strain tensor h���!i is unknown from the

experiment. We stress that we are interested in the true strain

for a fixed ĵj since this is the normal that the approximation of

(56) will eventually be assigned to. The sought absolute error

now becomes

ey ¼ y� ytrue ¼ 1�
hG!i

TGð0Þ!

ðGð0Þ! Þ
TGð0Þ!

� ĵj
T
h���!iĵj: ð59Þ

For a given set of Miller planes, strain field, Euler angle field,

reference unit cell and integration domain L, equation (59)

can be evaluated. To do so, two integrations must be

performed, yielding individually hG!i and h���!i. In the

following we attempt to characterize (59) for a fixed reference

unit cell (Table 4) while letting the remaining parameters vary

according to a stochastic model described below. The goal is to

study the distribution of the absolute errors as a function of

increasing levels of intragranular strain and mosaicity to

understand the limitations of the proposed measurement

approximations.

We consider a spherical grain of fixed radius R0 = 1.0

centred at the origin and define a random integration domain,

L, as

x ¼ p0 þ sn̂n; s 2 ½0;L�;

p0 ¼ R0

cosða1Þ sinða2Þ

sinða1Þ sinða2Þ

cosða2Þ

2
64

3
75; a1 � Uð0; 2�Þ; a2 � Uð0; �Þ;

n̂n ¼

cosðb1Þ sinðb2Þ

sinðb1Þ sinðb2Þ

cosðb2Þ

2
64

3
75; b1 � Uð0; 2�Þ; b2 � Uð0; �Þ;

ð60Þ

where L is determined by the sphere line intersection, p0 is a

random uniform point on the sphere surface and n̂n is a unit

vector also drawn from a random uniform distribution

denoted Uð�; �Þ. We further define Ghkl as

Ghkl ¼ ½h; k; l�T; h; k; l � Uð�7; 7Þ; ð61Þ

where the distribution has been limited to the interval [�7, 7]

to represent typical scanning 3DXRD data sets. Pseudo-

random strain and orientation fields are introduced by

constructing random samples of superimposed Fourier waves:
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�xxðxÞ ¼
As

f max
0

f0ðxÞ; �yyðxÞ ¼
As

f max
1

f1ðxÞ; �zzðxÞ ¼
As

f max
2

f2ðxÞ;

�xyðxÞ ¼
As

f max
3

f3ðxÞ; �xzðxÞ ¼
As

f max
4

f4ðxÞ; �yzðxÞ ¼
As

f max
5

f5ðxÞ;

’1ðxÞ ¼
Ae

f max
6

f6ðxÞ; �ðxÞ ¼
Ae

f max
7

f7ðxÞ; ’2ðxÞ ¼
Ae

f max
8

f8ðxÞ;

fkðxÞ ¼
Pn¼25

i¼1

ci sin fixðxþ pixÞ
� �

sin fiyðyþ piyÞ
� �

sin fizðzþ pizÞ
� �

;

ci � Uð�1; 1Þ; fix; fiy; fiz � U
10

R0

;
1

2R0

� �
;

pix; piy; piz � Uð�R0;R0Þ; f max
k ¼ arg max

x

jfkðxÞj; xTx<R2
0;

ð62Þ

where the two scale parameters As and Ae regulate the

maximum difference between any two points within the field

and allow for the strain field (scaled by As) and orientation

field (scaled by Ae) to vary on different scales simultaneously.

The necessary normalizing factors f max
k were computed by

sampling the fields on equidistant grids of �1000 points and

selecting the maximum absolute value. Typical fields gener-

ated by the model can be seen in Fig. 9.

Using the above stochastic model we have performed

repetitive sampling of 1000 line integral measurements for

each of 100 grain states while letting As and Ae successively

increase between samples. The results of this analysis are

presented in the histograms of Fig. 10, where each histogram

corresponds to a total of 100 000 data points (100� 1000) and

a fixed maximum field variation (As, Ae). The average strain

h���!i and diffraction vector hG!i involved in (59) were

computed by first-order numerical integration using a total of

20 integration points along each domain L. The reference

orientation matrix, U0, was computed by averaging over

�1000 equally spaced points of the sphere.

The results of Fig. 10 show that the error in (59) increases

with the heterogeneity of both orientation and strain state. For

small strains (	50 � 10�4) and moderate mosaic spreads

(	1�) the largest errors are a few times that of the experi-

mental resolution limit (10�4) and the bulk (>95%) of

measurements are contained within [�10�4] units of strain.

For samples featuring larger mosaicity (>1.0�) and strain

variation (>75 � 10�4) the approximation starts to break

down. At such elevated levels of deformation, however, one

has to first consider if the small-strain approximation made in

(7) is still valid.
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Figure 9
Typical Euler angle (top row) and strain (bottom and middle rows) fields generated by the stochastic model presented in equation (62). The presented
fields exist on a spherical domain for which a central cut slice has been presented above (z = 0). The maximum difference parameters of the field were
Ae = 1.4 and As = 75 � 10�4.



Specifically, for the synthetic data set presented in this

paper (Figs. 4 and 5) we conclude that the input strain and

orientation fields will give rise to a negligible error, ey < 10�4.

Likewise for the tin grain presented in Fig. 8, on the basis of

the observed diffraction peak spread in !, the mosaic spread is

<1.0� and thus ey is negligible.
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Figure 10
Absolute error (59) computed for the stochastic model defined through
equations (60), (61) and (62). For each histogram 1000 random line
integral measurements have been sampled from each of 100 spherical
crystal states, resulting in a total of 100 000 data points per histogram. The
maximum field difference in Euler angles and strain (Ae and As) increases
from bottom to top and left to right, respectively, as indicated by the
figure labels. (Note that the maximum counts of the bottom-left plot have
been clipped in order to facilitate equal axes between subplots while
maintaining good visibility of the histograms.)
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