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The atomic structure of quasicrystals (QCs) is described as a section of a higher-

dimensional structure that consists of a periodic arrangement of occupation

domains (ODs). Determination of the shape of ODs and their partitioning is

crucial in the structural analysis of QCs. However, owing to the complicated

shape of ODs, building the initial structure model requires a great deal of time

and effort. Thus, a computer program for building structure models of QCs is

needed. Presented here is a Python3 package for structure modelling of

icosahedral QCs.

1. Introduction

Quasicrystals (QCs) are long-range-ordered materials that

generate self-similar diffraction patterns related to their scale

incompatible with translational symmetry (Shechtman et al.,

1984; Levine & Steinhardt, 1984). The atomic structure of QCs

can be described as a 3D section of n-dimensional (nD)

periodic structures (n > 3). The nD structure consists of ‘occupa-

tion domains’ (ODs) or atomic surfaces whose geometrical

shapes are defined in the (n � 3)D complementary space

called perpendicular space (E?), perpendicular to the 3D real

space, called parallel space (Ek) (see e.g. Yamamoto, 1996;

Janssen et al., 2007). The ODs form 2D surfaces or 3D solids

for dihedral (n = 5) or icosahedral (n = 6) QCs, respectively.

Structural analysis of QCs can be executed by utilizing the

software package QUASI developed by Yamamoto (2008).

This contains several programs which can be utilized for the

direct method (lodemac) (Takakura et al., 2001), structure

refinement (qcdiff), generation of atomic positions in Ek
(qcstrc), and generation of Fourier and maximum entropy

method (MEM) maps (qcmem) etc. However, a tool for

building the initial structure model in the nD space has been

lacking, which means scientists have to put a great deal of

work into building the initial models. To overcome this diffi-

culty, the PyQCstrc library for the Python3 programming

language was developed, with the aim of providing a tool for

building nD models. In this article, I present the PyQCstrc.ico

package in the library, which is dedicated to QCs with an

icosahedral symmetry.

This article is organized as follows. In Section 2 I briefly

describe the ODs in the 6D models for two 3D quasi-

periodic tilings. In Section 3 I describe the Python package

PyQCstrc.ico, which can be used to build and arrange the ODs

in a 6D icosahedral lattice. In Section 4 an example is given,

and a summary is provided in Section 5.

2. Occupation domains

In the higher-dimensional description of icosahedral quasi-

crystals (iQCs), the 6D model is described by a 6D icosahedral
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lattice which is decorated by 3D ODs embedded in E?. The

6D positional vector x ¼ ðx1; x2; x3; x4; x5; x6Þ can be repre-

sented by using the unit vectors of the 6D icosahedral lattice,

di (i ¼ 1; 2; . . . ; 6) (see Appendix A). Note that the choice of

the unit vectors is arbitrary, and there are several conventions.

The most frequently used are the conventions proposed by

Cahn et al. (1986), Elser (1985) and Yamamoto (1996), and

Yamamoto’s is used in the package. The atomic positions are

obtained from periodically arranged ODs by taking the

intersections with Ek. Thus, the shape of ODs and their

positions in the 6D space must be derived to build the initial

model of the iQCs.

Fig. 1(a) shows the OD that generates the vertices of the 3D

Amman–Kramer–Neri (AKN) tiling (Kramer & Neri, 1984;

Duneau & Katz, 1985; Elser, 1985, 1986; Kalugin et al., 1985).

The OD forms a rhombic triacontahedron (RT), which

corresponds to the projection of the unit cell of the 6D

icosahedral lattice onto E?, and it is centred at either the

origin ð0; 0; 0; 0; 0; 0Þ or the body centre ð1; 1; 1; 1; 1; 1Þ=2, as

shown in Fig. 1(b). Since the site symmetry of these positions is

m�33�55, the RT OD can be generated from its asymmetric unit by

applying the 120 symmetry elements of m�33�55. Here, the

asymmetric unit forms a tetrahedron, and its Cartesian coor-

dinates in Ek and E? are obtained from 6D vectors

ð0; 0; 0; 0; 0; 0Þ, ð1; �11; �11; �11; �11; �11Þ=2, ð1; �11; �11; 1; �11; �11Þ=2 and

ð1; �11; �11; 0; �11; 0Þ=2 by the projection operator (see Appendix

A). The AKN tiling is composed of two building units, obtuse

and acute rhombohedra, shown in Figs. 1(c) and 1(d),

respectively.

To decorate the 3D quasiperiodic tiling with atoms, a new

OD must be introduced and arranged in the 6D icosahedral

lattice. The shape and position of the OD can be derived by

utilizing the basic OD for the 3D quasiperiodic tiling. More

details about the atomic decorations can be found in the

literature (Yamamoto, 1992, 1996; Quiquandon et al., 2014).

For example, the edge centre position of the AKN tiling is

generated by the rhombic icosahedron (RI) shown in Fig. 2(a),

centred at ð1; 0; 0; 0; 0; 0Þ=2. The RI OD is obtained as a

common part of two RT ODs at ð0; 0; 0; 0; 0; 0Þ and

ð1; 0; 0; 0; 0; 0Þ, when they are projected onto E? (Yamamoto,

1992).

The basic OD that is used for a realistic model becomes

more complicated. For example, in the cluster-based model of

primitive iQCs, the atomic clusters are arranged at the 12-fold

packing sites of the AKN tiling (Yamamoto & Hiraga, 1988;

Yamamoto, 1992; Takakura et al., 2007; Quiquandon et al.,

2014). The cluster centre positions are generated by the

truncated RT OD proposed by Henley (1986), shown in

Fig. 2(b), centred at either ð0; 0; 0; 0; 0; 0Þ or ð1; 1; 1; 1; 1; 1Þ=2,

and the relationship between local configurations of the

clusters and the partitioning of the OD can be found in the

literature (Takakura, 2008; Takakura & Strzałka, 2017). The

truncated RT can be generated from its asymmetric unit. The

atomic decoration of the clusters can be obtained by arranging

the basic truncated RT OD in the 6D icosahedral lattice.

When the ODs projected onto E? intersect, in many cases the

common part forms a concave polyhedron. One of the most

difficult parts in building the initial model is related to the

calculation of the common part.

3. Implementation and availability

In order to use QUASI for structural analysis, each OD must

be defined as a set of tetrahedra, and the 6D positional vector

x whose perpendicular components assign each vertex of the

constituent tetrahedra must be known. In the PyQCstrc.ico

package, all vertices of a tetrahedron forming an OD are

defined by 6D coordinates (x1; x2; x3; x4; x5; x6), and the value

of xj (j ¼ 1; 2; . . . ; 6) is expressed as ðk1 þ �k2Þ=k3, where

k1; k2; k3 are integers and � is the golden ratio equal to

ð1þ 51=2
Þ=2.

The Cartesian coordinates in E? are given by ~QQ?X, where
~QQ? is the lower 3� 6 part of the transposed matrix of Q

[equation (2)] and X is a transposed matrix of

ðx1; x2; x3; x4; x5; x6Þ. The resulting Cartesian coordinates are

represented by a list with integer components when the unit is

taken to be að� þ 2Þ�1=2. This representation allows one to

perform numerical computation free from the influence of

rounding error.

The package provides tools commonly used to build the

initial structure of iQCs, which include translation and

symmetry operations in the 6D space, and intersection

operations on ODs in E?. In addition, export and import of

the ODs are supported: the ODs can be exported in VESTA
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Figure 1
6D structure model of the AKN tiling. (a) The rhombic triacontahedron
(RT) OD that generates the vertices of the tiling. (b) A fivefold section of
the 6D structure. Blue bars and black thick lines indicate projection of the
RT ODs and 6D unit cell onto the section, and the horizontal and the
vertical of the figure are parallel to Ek and E?, respectively. Two building
units of the AKN tiling, (c) obtuse and (d) acute rhombohedra.

Figure 2
(a) Rhombic icosahedron OD that generates the edge centre position of
the AKN tiling. (b) A truncated RT OD that generates the 12-fold
packing sites of the AKN tiling. The truncated RT OD in (b) is enlarged
by 1þ �, where � is the golden ratio equal to ð1þ 51=2

Þ=2.



format (.vesta) and XYZ format (.xyz), and these can be

visualized by utilizing VESTA (Momma & Izumi, 2011). The

latter can be imported so that users can recall their ODs in

Python scripts. Moreover, the package supports the QUASI

formats (.pod and .atm) (Yamamoto, 2008), as described in

the supporting information.

In realistic models of iQCs, the ODs may be concave

polyhedra, and their tetrahedralization is not straightforward.

In the package, the intersection operation of such ODs is

performed by considering every pair of two tetrahedra

included in each OD. Because the intersection of two tetra-

hedra forms a convex polyhedron, its tetrahedralization can be

achieved by 3D Delaunay triangulation. Then, the common

part is obtained as the union of the resulting tetrahedra. In the

case where the common part forms a convex polyhedron, such

as the intersection of two convex polyhedra, the above process

can be shortened, and the solution is obtained by 3D

Delaunay triangulation.

The package is distributed in the Python Package Index

(PyPI) software repository (https://pypi.org/project/pyqcstrc/)

and is freely available via pip install pyqcstrc. The

package requires two libraries, numpy (https://numpy.org/)

and scipy (https://www.scipy.org/), and the Cython program-

ming language (https://cython.org/). Moreover, it is recom-

mended that one uses Python3.7 or greater built with the SSL

module, OpenSSL (https://www.openssl.org/). The package

was developed and tested under macOS (10.14), and it was

also tested on other operating systems, including Linux

(Ubuntu20.04, Fedora32 and CentOS8) and Windows 10.

4. Example

In this section, the basic usage of the PyQCstrc.ico package is

described by providing a procedure in a Python script to

obtain the RI OD [Fig. 1(b)]. We start with the asymmetric

unit of the basic RT OD [Fig. 1(a)]. This forms a tetrahedron

whose vertices are assigned 6D coordinates as mentioned

before. As seen below, the jth component of the 6D coordi-

nates (j ¼ 1; 2; . . . ; 6), ðk1 þ �k2Þ=k3, is expressed by utilizing

a list [k1; k2; k3]. The RI OD can be calculated in the following

way:

(i) Creating the asymmetric unit of the basic RT OD:

Alternatively, the asymmetric part predefined in a file

(rt_asymmetric.xyz) provided in the supporting infor-

mation can be loaded as od0:

Here, ’/dir/of/xyz’ indicates a directory where the

rt_asymmetric.xyz file is located.

(ii) Creating the RT OD from its asymmetric unit by

applying the symmetry elements of m�33�55 around the origin:

(iii) Creating the RT OD centred at ð1; 0; 0; 0; 0; 0Þ:

(iv) Intersection operation on od1 and od2:

(v) Export the resulting RI OD (od3) in VESTA and XYZ

formats:

Here, ’/dir/of/work’ indicates a working directory.

(vi) od3 can be imported from the od3.xyz file:

The calculation takes several minutes. To output the

progress on the terminal, users can turn on verbose output by

specifying an argument ‘verbose’ set to be 1 (verbose = 1) or

larger.

Since the RI OD (od3) forms a convex polyhedron, it is

tetrahedralizable by 3D Delaunay triangulation. In this case,

ods.intersection_convex() can be used, instead of

(iv), as follows:

Moreover, the calculation cost can be greatly reduced by

considering the asymmetric unit of the position where the

solution is located. Here, a portion of od1 inside the asym-

metric unit of �55m at ð1; 0; 0; 0; 0; 0Þ=2 is considered, and

obtained as below:

Then, the asymmetric unit of od3 can be obtained by the

following:

In the above expression, the asymmetric unit of �55m is

defined by three vectors w1, w2 and w3. The projection of w1

onto E? is parallel to a fivefold axis given by the projection of

ð1; 0; 0; 0; 0; 0Þ=2, while the projections of w2 and w3 are
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orthogonal to the fivefold axis. They are on different mirror

planes which make an angle of 36�.

5. Summary and perspectives

The PyQCstrc.ico package provides tools commonly used to

build the initial structure models of iQCs in the Python3

programing language. This is particularly crucial for realistic

structure models where the overall shape of ODs is quite

complicated. In addition, the package is useful to check the

closeness conditions of the ODs and to specify atomic pairs

related to phason flips. The latter can be used to compute the

short-range-order diffuse scattering, based on the theory

proposed by Yamamoto (2010a,b).

The PyQCstrc.ico package is part of the PyQCstrc library.

Two other packages dedicated to decagonal and dodecagonal

QCs are scheduled to be included in the future.

APPENDIX A
Coordinate system

The coordinate system used in this study is based on the one

described in the literature (Yamamoto, 1996). The unit vectors

of the 6D icosahedral lattice, di (i ¼ 1; 2; . . . ; 6), are written

using unit vectors in 3D Ek, a1, a2, a3, and 3D E?, a4, a5, a6, as

di ¼
P6

j¼1

Qijaj ð1Þ

with

Qij ¼
a

ð� þ 2Þ1=2

1 � 0 � �1 0

� 0 1 �1 0 �
� 0 �1 �1 0 ��
0 1 �� 0 � 1

�1 � 0 �� �1 0

0 1 � 0 � �1

2
6666664

3
7777775
; ð2Þ

where a is the lattice parameter of the icosahedral lattice.
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