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Grazing-incidence X-ray diffraction (GIXD) is a widely used technique for the

crystallographic characterization of thin films. The identification of a specific

phase or the discovery of an unknown polymorph always requires indexing of

the associated diffraction pattern. However, despite the importance of this

procedure, only a few approaches have been developed so far. Recently, an

advanced mathematical framework for indexing of these specific diffraction

patterns has been developed. Here, the successful implementation of this

framework in the form of an automated indexing software, named GIDInd, is

introduced. GIDInd is based on the assumption of a triclinic unit cell with six

lattice constants and a distinct contact plane parallel to the substrate surface.

Two approaches are chosen: (i) using only diffraction peaks of the GIXD pattern

and (ii) combining the GIXD pattern with a specular diffraction peak. In the

first approach the six unknown lattice parameters have to be determined by a

single fitting procedure, while in the second approach two successive fitting

procedures are used with three unknown parameters each. The output unit cells

are reduced cells according to approved crystallographic conventions. Unit-cell

solutions are additionally numerically optimized. The computational toolkit is

compiled in the form of a MATLAB executable and presented within a user-

friendly graphical user interface. The program is demonstrated by application on

two independent examples of thin organic films.

1. Introduction

The formation of potentially new polymorphs due to the

transition from bulk to thin films is a well know phenomenon

(Jones et al., 2016; Gentili et al., 2019). The presence of a

substrate surface during the crystallization process can induce

crystal structures with new molecular packing motifs.

Frequently, the crystallization at surfaces is associated with a

strong preferred orientation of the crystallites, which exhibit a

well defined crystallographic plane (called the contact or

texture plane) parallel to the substrate surface. In many cases,

no azimuthal (i.e. in-plane) order of the crystallites is observed

owing to the isotropic nature of the substrate surfaces. This

type of crystalline orientation is called uniplanar texture

(Heffelfinger & Burton, 1960) or fibre texture (Roe & Krig-

baum, 1964).

Grazing-incidence X-ray diffraction (GIXD) has become a

sophisticated technique for structural characterization of thin

films. The primary X-ray beam with the wavevector k0 and the

scattered X-ray beam with the wavevector k determine the

scattering vector q by q = k � k0. According to the Laue

equation, diffraction occurs if the scattering vector q is equal

to a reciprocal lattice vector g. The surface sensitivity in a
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GIXD setup is high, making it particularly well suited for

investigations of crystalline properties of thin films. Just as in

single-crystal X-ray diffraction (XRD) and powder X-ray

diffraction, the crystallographic unit cell is obtained by

indexing of the diffraction data. While in case of single-crystal

XRD usually all three components of the scattering vector are

utilized for the indexing procedure (Pan et al., 2012; Sauter et

al., 2004), powder diffraction uses only the length of the

scattering vector (Boultif & Louër, 2004; Coelho, 2003).

GIXD investigations provide two components of the scat-

tering vector: the in-plane component qxy, aligned parallel to

the substrate surface, and the out-of-plane component qz,

perpendicular to the substrate surface. These two components

are connected to the total length of the scattering vector by

q2 � q2
xyz ¼ q2

xy þ q2
z.

A few approaches for processing experimental GIXD data

have been developed (Smilgies & Blasini, 2007; Breiby et al.,

2008; Hailey et al., 2014; Jiang, 2015; Schrode et al., 2019;

Savikhin et al., 2020). Not all of them address the task of

indexing with regard to unit-cell determination and even

fewer consider the contact plane of the crystallites and the

substrate surface as separate parameters necessary to deter-

mine. For this reason, the rotation matrix of the thin-film

crystallites relative to the substrate surface must be considered

(Shmueli, 2006). If the lattice parameters are, however,

unknown, both the lattice constants and the rotation matrix

need to be determined, which is a much more challenging task.

A significant improvement of the issue is the computational

tool Diffraction Pattern Calculator (DPC) (Hailey et al., 2014).

It was the first toolkit that incorporated the determination of

the unit-cell parameters by simultaneous assignment of the

Laue indices. Prior to the unit-cell analysis, several operation

parameters have to be defined by the user. Although the

toolkit integrates many features, the high amount of necessary

input and previous knowledge for indexing could be a

limitation of the DPC.

A recent tool addressing the indexing problem of GIXD

patterns is the MATLAB-based software package GIWAXS-

SIIRkit (Savikhin et al., 2020). Diffraction patterns can be

optionally analysed to generate data sets of qxy and qz. Simi-

larly to our presented algorithm (Simbrunner et al., 2018,

2019), GIWAXS-SIIRkit splits the indexing process into two

parts. In the first part, the qxy data are preliminarily indexed by

tuples of two Laue indices (hk). This is achieved by evaluation

of the in-plane component of the scattering vector. Solutions

obtained that way are used to assign indices to the remaining

peaks. The program cycles through the index permutations

within a range of �8 to 8, forms the difference for every case

and thereby searches for a minimum in �qxy. In the second

indexing step, the out-of-plane components of the scattering

vectors are evaluated. The result of this algorithm is the unit-

cell solution with the lowest total error expressed in Cartesian

distances. This routine is limited to problems where the (001)

plane is the plane parallel to the substrate surface. If a contact

plane with any Miller indices exists, the reduced unit cell can

be linearly transformed to a supercell where the (001) plane is

the new contact plane.

In our previous work, we exploited a combination of GIXD

data together with information acquired by specular X-ray

diffraction. In specular XRD geometry, the angle between the

primary beam and sample surface is the same as the angle

enclosed by the scattered beam and sample surface. The

presence of a specular diffraction peak indicates that a defined

crystallographic plane (contact plane) of the crystallites is

oriented parallel to the substrate. If the contact plane of the

crystallographic unit cell with the substrate surface is consid-

ered an additional deducible quantity, a novel mathematical

treatment for the indexing procedure of the GIXD data is

required. Consequently, additional unknown parameters must

be determined by the algorithm. A comprehensive formalism

that addresses exactly this problem is proposed in recent work

(Simbrunner et al., 2018, 2019, 2020). The general (triclinic)

case as well as systems of higher symmetry have been dealt

with.

In this article a freely available, automatic indexing soft-

ware called GIDInd is presented, in which our algorithm has

been implemented. We have included the option to search for

either a monoclinic or a triclinic unit cell without prior

knowledge of the specular diffraction peak from specular

XRD. However, owing to the amount of computational work

required, this method is much more time consuming and the

inclusion of the specular scan is recommended.

2. Methods

2.1. Indexing formalism

With GIXD measurements, two individual components of

the scattering vector q are accessible. Here, every point in the

two-dimensional reciprocal-space map is described by a tuple

of qxy and qz. These peak positions (or reflections) are the

required input data for the here-proposed formalism as well as

for GIDInd. After appropriate substitution, the potential

lattice constants a, b, c, �, � and � are obtained by solving sets

of linear systems of equations (LSEs) under variation of the

three Laue indices h, k and l. Using the GIXD data only

(without the use of a specular diffraction peak at a defined qz

value and qxy = 0), this approach is a single-step procedure

with every solution yielding one potential set of lattice

constants. Owing to the high number of possible combinations

of the three Laue indices, this can be computationally chal-

lenging, often limited by performance and memory of the

available computer resources.

A specular diffraction peak provides data in a region that is

not accessible with conventional GIXD experiments. This

additional peak at qxy = 0 allows splitting the determination of

the lattice constants into two consecutive parts. The presence

of a specular peak reveals that the orientation of the crystal-

lographic cell on the substrate surface can be expressed by a

contact plane, which is a defined net plane of the crystal

denoted by Miller indices. In this way, it is not necessary to

compute and evaluate an entire set of lattice parameters

for every single combination of integer numbers that consti-

tute the Laue indices of diffraction. It is rather possible to

computer programs

J. Appl. Cryst. (2021). 54, 1256–1267 Manuel Peter Kainz et al. � GIDInd 1257



intervene at an earlier point and to apply sorting and filtering

to the numerical solutions, thereby keeping the computational

effort at a much lower level.

2.1.1. Formalism using a specular diffraction peak. The

indexing formalism used in this first part of the work considers

the contact plane [with Miller indices (uvw)] of the sample

with respect to the substrate surface as a separate set of

integer parameters. The consequence of such a defined crys-

tallographic plane is the (possible) occurrence of a specular

diffraction peak. By systematic variation of the integer

numbers and additional incorporation of the position of a

specular diffraction peak, the above-mentioned separation of

the lattice parameter calculation becomes feasible. For the

comprehensive analytical derivation of the mathematical

framework we refer to earlier work (Simbrunner et al., 2019,

2018). Important for this algorithm is the accessibility of the

individual components of the reciprocal lattice vectors. The

equations for the components are adopted without further

analytic derivation and are summarized in Table 1.

For every given diffraction peak, the Laue condition must

be fulfilled for the total length of the scattering vector with

qxyz = gxyz, and consequently for the components qxy = gxy and

qz = gz. This must also be valid for the specular diffraction

peak with qspec = gspec. We can therefore relate every pair

(qxy, qz) to a point in reciprocal space (gxy, gz), if the Laue

indices and the unit-cell parameters are known. Conversely,

the unit-cell parameters must be derivable for a given set of

Laue indices and for a known point (qxy, qz).

Thus, in the first part of the indexing routine, the Miller

indices of the contact plane, i.e. the integers u and v, as well as

the Laue indices h and k of the experimentally observed

diffraction peaks are assigned by systematically varying the

integer variables and by calculating three lattice parameters a,

b and �. In a subsequent step (i) w of the contact plane, (ii) the

Laue indices l of the diffraction peaks, and (iii) the lattice

constants c, � and � are determined. This is schematically

shown in Fig. 1.

Our algorithm builds upon the following mathematical

expression:

g2
xyg2

spec ¼ z2
a u2g2

xy þ hgspec � ugz

� �2
h i
þ z2

b v2g2
xy þ kgspec � vgz

� �2
h i

� 2zazb cos � uvg2
xy þ hgspec � ugz

� �
kgspec � vgz

� �� �
� hv� kuð Þ

2
z2

az2
b sin2 �; ð1Þ

where gspec is the magnitude of the reciprocal lattice vector

associated with the specular diffraction peak, za ¼ 2�=ða sin �Þ
and zb ¼ 2�=ðb sin �Þ. In equation (1), which is valid for any

contact plane (uvw), the real-space parameters are reduced to

a, b and �. The unknown integers are the Miller indices u and v

and the Laue indices h and k for every observed Bragg peak.

Here, the first indexing step contains the determination of sets

of (u, v, a, b, �) with potential values for (h, k). We will follow

this choice of order throughout this work. Equation (1) is

symmetric and analogous expressions are valid for (u, w, a, c,

�) with (h, l) and (v, w, b, c, �) with (k, l).

Equation (1) facilitates the mathematical analysis, where

the integer variables can be varied and only three real-space

unknowns have to be calculated. Therefore, when indexing

GIXD patterns, the acquisition of a specular diffraction peak

is of considerable help. The unknown real-space parameters

a, b and � can be calculated from the qxy and qz values of

three independent Bragg peak series. This can be achieved

computer programs
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Table 1
Summary of the used equations for total length of the reciprocal lattice vectors gxyz, the magnitude of the reciprocal lattice vector associated with the
specular diffraction peak gspec, and the in-plane component gxy and out-of-plane component gz of the reciprocal lattice vector g using the Laue indices hkl
and the Miller indices (uvw) of the contact plane together with the lattice constants of the direct lattice (a, b, c, �, �, �) and the reciprocal lattice
parameters (a*, b*, c*, �*, �*, �*).

g2
xyz ¼ h2 2�

a sin �

� �2

þ k2 2�

b sin �

� �2

� 2hk
2�

a sin �

� �
2�

b sin �

� �
cos � þ ha� cos�� þ kb� cos�� þ lc�ð Þ

2

g2
xyz ¼ h2a�2 þ k2b�2 þ l2c�2 þ 2hka�b� cos �� þ 2hla�c� cos�� þ 2klb�c� cos��

g2
spec ¼ u2 2�

a sin �

� �2

þ v2 2�

b sin �

� �2

� 2uv
2�

a sin �

� �
2�

b sin �

� �
cos � þ ua� cos�� þ vb� cos�� þ wc�ð Þ

2

g2
xyg2

spec ¼
2�

a sin �

� �2

u2g2
xy þ hgspec � ugz

� �2
h i

þ
2�

b sin �

� �2

v2g2
xy þ kgspec � vgz

� �2
h i

� 2
2�

a sin �

� �
2�

b sin �

� �
cos � uvg2

xy þ hgspec � ugz

� �
kgspec � vgz

� �� �
� hv� kuð Þ

2 2�

a sin �

� �2
2�

b sin �

� �2

sin2 �

gz ¼ hu
2�

a sin �

� �2

þ kv
2�

b sin �

� �2

� hvþ kuð Þ
2�

a sin �

� �
2�

b sin �

� �
cos � þ ua� cos�� þ vb� cos�� þ wc�ð Þ ha� cos�� þ kb� cos�� þ lc�ð Þ

" #
,

u2 2�

a sin �

� �2

þ v2 2�

b sin �

� �2

� 2uv
2�

a sin �

� �
2�

b sin �

� �
cos � þ ua� cos�� þ vb� cos�� þ wc�ð Þ

2

" #1=2

gzgspec ¼ hua�2 þ kvb�2 þ lwc�2 þ hvþ kuð Þa�b� cos �� þ hwþ luð Þa�c� cos�� þ kwþ lvð Þb�c� cos��



analytically by employing appropriate mathematical substi-

tutions to obtain linearly solvable equations (see Appendix A).

Following this procedure, several sub-sets with solutions of

(u, v, a, b, �) are obtained. These are used to subsequently

index the measured components qxy. By computing the vector

components gxy(hi, ki) [cf. equation (1)] and searching for the

smallest absolute differences, tuples of Laue indices can be

assigned to the experimental diffraction peaks. A set of (u, v,

a, b, �) is then sorted and evaluated with respect to its summed

root-mean-square deviation �qxy. This is one of the core tasks

of GIDInd and is elaborated in Section 3. The final solutions

are reduced because of the restrictions imposed by Niggli’s

scalar-product criterion (Niggli, 1928) and by optional user-

selected boundary conditions on a, b and �.

The remaining lattice constants �, � and c together with the

third Miller index w of the contact plane (uvw) can be

acquired in a similar way using the expressions for the out-of-

plane component gz of the reciprocal-lattice vector and for the

specular component gspec from Table 1. More mathematical

details are given in Appendix B.

This algorithm, when applied in a reasonable range for the

Miller indices (uvw) of the contact plane and the Laue indices

hkl of all observed Bragg peaks, allows us to derive numeri-

cally possible sets of parameters in the form of (u, v, w, a, b, c,

�, �, �). Using these sets, the full data (namely every tuple of

qxy and qz) can be indexed and the deviations not only in qxy

but also in qz and especially in the total length qxyz are

evaluable. The here-proposed indexing software is used to

apply these equations in a highly automated manner, thereby

deriving the best-fitting lattice constants for a given set of

Bragg peaks from GIXD experiments.

2.1.2. Formalism without the use of a specular diffraction
peak. In the triclinic case, the following expressions for the

total length of the reciprocal-lattice vector gxyz ¼ ðg
2
xy þ g2

zÞ
1=2

and the out-of-plane component gz (see Table 1) are used:

g2
xyz ¼ h2a�2 þ k2b�2 þ l2c�2 þ 2hka�b� cos ��

þ 2hla�c� cos�� þ 2klb�c� cos��; ð2Þ

where a� ¼ 2�bc sin �=V, b� ¼ 2�ac sin �=V, c� ¼ 2�ab�

sin �=V, cos �� ¼ ðcos� cos � � cos �Þ=ðsin � sin �Þ, cos�� ¼
ðcos � cos � � cos �Þ=ðsin � sin �Þ and cos �� ¼ ðcos� cos� �
cos �Þ=ðsin � sin �Þ are the reciprocal cell parameters and V is

the unit-cell volume, which can be explicitly written as

V ¼ abc 1� cos2 �� cos2 �� cos2 � þ 2 cos � cos � cos �
� �1=2

;

ð3Þ

and

gz ¼ h
u

gspec

a�2 þ
v

gspec

a�b� cos �� þ
w

gspec

a�c� cos ��

 !

þ k
v

gspec

b�2 þ
u

gspec

a�b� cos �� þ
w

gspec

b�c� cos��

 !

þ l
w

gspec

c�2 þ
u

gspec

a�c� cos�� þ
v

gspec

b�c� cos��

 !
: ð4Þ

In a first step, equation (4) is built up as overdetermined LSEs

by choosing the qz of four reflections and varying the Laue

indices hi, ki and li for i = 1–4. The solutions with the smallest

residual error are further processed and expanded by adding

two additional reflections and varying their Laue indices.

Using equations (2) and (4), the resulting LSEs with the

smallest residual errors are considered as tentative solutions.

By continuously adding the qxyz and qz of further reflections

and by varying the associated Laue indices, the over-

determined LSEs are expanded and the best solutions are

determined. Requiring considerable computational work, this

procedure is of course time consuming. Therefore, the Laue

indices of the first six equations, which must be linearly

independent, can only be varied in a small interval. For this

reason, the reflections with the smallest qxyz are chosen first.

Restrictions on the final lattice parameters are imposed by the

Niggli criteria (Niggli, 1928) and by optionally chosen

boundary conditions.

The orientation parameters of the final unit cell are deter-

mined by using equation (4) (see Appendix C).

In the monoclinic lattice, equations (2) and (4) reduce to

g2
xyz ¼ h2a�2 þ k2b�2 þ l2c�2 � 2hla�c� cos � ð5Þ

and
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Figure 1
Process workflow of the indexing algorithm realized with GIDInd. The
markers on the left branch indicate the split processing of the peak
positions (qxy, qz) for derivation of the lattice parameters [a, b, �]
followed by [�, �, c] of the unit cell when a specular diffraction peak is
available. The right branch demonstrates the single fitting procedure
when working without a specular scan.



gz ¼ h
u

gspec

a�2 �
w

gspec

a�c� cos�

 !
þ k

v

gspec

b�2

þ l
w

gspec

c�2 �
u

gspec

a�c� cos �

 !
: ð6Þ

Then, of course, our algorithm results in less computational

work and is less time consuming. Therefore, we offer the

option – in a first attempt – to check if the data are compatible

with a monoclinic system.

2.2. Common final steps

In both implemented algorithms, that using the specular

diffraction peak and that not using the specular diffraction

peak, the final solutions for the lattice constants are optimized

by performing first-order corrections (Simbrunner et al., 2020).

Furthermore, it is checked whether the final unit cells corre-

spond to the reduced cells (Buerger, 1957). Redundant solu-

tions due to the symmetry of the equations are removed.

3. Indexing software: GIDInd

The programmatic implementation of the algorithm is based

on MATLAB and provided as a standalone desktop applica-

tion. The peak positions given in the form of positive tuples of

(qxy, qz) are the required input for the program. A proven and

efficient tool to derive the diffraction peaks from experimental

GIXD data is the software package GIDVis (Schrode et al.,

2019). For GIDInd, the input data have to be provided within

a formatted .xls (or .xlsx) file. Each peak position is listed

in a row with numerical values of qxy in the first column and

the corresponding values for the out-of-plane components qz

in the second column. If applicable, the specular peak must be

included directly in the uploaded file in the row where qxy = 0.

The uploaded file should contain only numeric floating-point

numbers with a dot for decimal separation. If the formatting is

accepted and at least one specular diffraction peak is included,

the data are added to the q map within the graphical user

interface (GUI). Multiple indication icons and status messages

are provided to guide the operator through the indexing

process. If no specular information is available within the list, a

subroutine is enabled addressing this case.

3.1. Indexing using a specular diffraction peak

The indexing procedure and the calculation of the real-

space lattice parameters is split into two consecutive parts if

the specular peak is utilized (see Section 2.1.1). The internal

architecture of the first part, namely derivation of a, b and �
upon successive assignment of the Laue indices h and k to qxy

data, is outlined in Fig. 2. For setting up the LSEs [equation

(12), Appendix A], ‘start values’ are specified by the routine.

These are linearly independent sets of three Bragg peaks from

the provided reciprocal-space map. That has a direct impact

on the input file containing the Bragg peaks: for indexing

GIXD data with GIDInd using a specular diffraction peak, at

least four independent peaks, with one line having the entry

qxy = 0, are required. The approach elaborated in Appendix D

has been shown to be successful in checking the (in)depen-

dence. After these initialization steps, the matrices for the

LSEs are constructed. For every combination of integers (u, v,

h, k) in a specified range, a quadratic array is set up. The pre-

adjusted limit for permuting the Miller indices is �2. The

option to restrict the solutions to a (001) contact plane or to

any other desired combination of fixed (uvw) is also provided

to the operator. The default limit for h and k is �3, but this is

adjustable if required. This choice is reasonable, as the ‘start

sets’ to compute a, b and � are generated using the lowest q

values first, and the Laue indices are typically the lowest in this

region. This assumption is in agreement with other reported

programs addressing the indexing problem of GIXD patterns

(Savikhin et al., 2020; Hailey et al., 2014). The evaluation of

every LSE is based on MATLAB’s symbolic matrix left divi-

sion for every matrix with a determinant unequal to zero. The

substitutions given in Appendix A are applied to derive the

sub-sets with solutions of (u, v, a, b, �). For machines with

available multicore processors, these calculations are executed

in parallel computing algorithms using parallelized loops.

Crystallographic restrictions, formulated as Niggli criteria

(Niggli, 1928), as well as user-defined limitations to the lattice

constants allow a first confinement of the possible solutions at

this point. Non-real or negative numerical results are elimi-

nated and only solutions with 60 � � � 120	 (Hahn, 2005) are

considered for the subsequent indexing procedure. Addi-

tionally, the lattice constants a and b are restricted to the range

computer programs
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Figure 2
Process diagram describing the determination of the lattice parameters
[a, b, �] using the diffraction peaks (qxy, qz) and the specular peak qspec.
After comparison with calculated values for the component of the
reciprocal-lattice vector gxy(hk), the whole branch results in sub-sets
containing the three lattice parameters, preliminarily assigned pairs of
Laue indices h and k, two Miller indices u and v, and an RMSD for the set
expressed as �qxy.



between 3 and 60 Å. Adjustment of an upper limit at
30 Å is

recommended, to keep computational effort low.

During this part of the routine, every experimental peak

position gets preliminarily equipped with four potential pairs

of h and k. (An unambiguous assignment of the Laue indices is

not possible at this point owing to symmetry considerations of

the equations provided.) The lower and upper limits are set to

�6 by default and adjustable to a maximum of �8. This

program parameter can be differentiated from the maximum

cap for h and k for solving the LSEs, as not only the lowest

values out of the q map are considered now, but all input

diffraction peaks.

For a given sub-set of (u, v, a, b, �), the program computes

gxy(hk) for every single combination of hk. The four tuples of

hk yielding the smallest absolute differences �qxy(hk) are

assigned to a chosen value of qxy. This is done for each of the N

input Bragg peaks and the ‘quality’ of the set is derived by

computing the summed root-mean-square deviations (RMSD)

with

RMSDj u;v;a;b;�ð Þ ¼
1

N

PN
n¼1

�qxyn

� �1=2

¼
1

N

PN
n¼1

gxyn
� qxyn

� �2

� 	1=2

: ð7Þ

This algorithm applied to all possible sub-sets will result in two

outputs: (i) a list of diffraction peaks with assigned pairs of

potential Laue tuples and (ii) the corresponding list of partial

solutions (u, v, a, b, �). This serves as input for the second part

of the indexing routine. As demonstrated in Fig. 3, the deri-

vation of the remaining parameters follows a similar process

architecture. In a first step, ‘start values’ out of the qz data are

selected. For generation of the LSEs [equation (22), Appendix

B], the three lowest values which are not multiples of each

other are considered. The limit for variation of the Laue index

l is a program parameter and thus adjustable by the user. By

default, l is varied in the range between �6 and +6 and

adjustable to a maximum of �8. If not specifically defined

through a GUI input, the cap of w is internally adopted to the

maximal occurring value of u and v.

The program generates one LSE for every possible

numerical combination. The number of systems to be solved is

therefore directly dependent on the range of the indices and

on how many previously acquired solutions (sub-sets) are

included in the second round. This can also be controlled from

the GUI. The so-obtained LSEs can again be solved using

MATLAB’s matrix left division function, which returns the

least-squares solution to each overdetermined system of

equations. The norm of the residuals is used as a sorting

quantity at this point. Using the previously defined substitu-

tions (see Appendix B), the three remaining cell parameters

are deduced for each system. The routine presents the

resulting sets in the form of (u, v, w, a, b, c, �, �, �) together

with the list of peak positions and the tentatively assigned

tuples of h and k. Again, the (purely numerical) output of

lattice constants can be gradually confined and reduced by the

application of user restrictions and by continuous inquiries

regarding the fulfillment of Niggli’s criteria. Only those sets

passing these tests will continue to be considered for full

indexing in the second part.

During the first indexing step, every Bragg peak is equipped

only with preliminarily assigned pairs of Laue indices h and k.

At this point of the indexing routine, the third Laue index l

remains to be determined for every single reflection. This

could be done by again varying integer numbers in a certain

range and evaluating every single possible combination

regarding the overall deviation of the diffraction pattern.

However, the equations from Table 1 allow the value for l to

be determined analytically, as all other formerly unknown

parameters are now available. This option is preferred to

minimize computational time and enhance the overall

performance of the program. For a fixed set of (u, v, w, a, b, c,

�, �, �), the value of l is acquired for each reflection and each

combination of hi, ki where i = 1–4. It is subsequently rounded

to the next integer number. By applying exactly the same

equations again, every value for gz(hkl) and gxyz(hkl) can be

computed. The program searches for the smallest absolute

differences �qz(hkl) and �qxyz(hkl) for every combination.

This time, the triplet hkl with the smallest deviation in gxyz is

assigned to the reflection and settled as the final set of Laue

indices. As already introduced in equation (7), the ‘quality’ of

the as-derived individual solutions is again assessed using the

summed root-mean-square deviation.

With all Laue indices derived for all provided Bragg peaks,

each single set of lattice parameters undergoes a numerical

optimization routine based on first-order corrections

(Simbrunner et al., 2020). This subroutine computes correction
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Figure 3
Process diagram containing the branch for derivation of the preliminary
lattice constants with the associated RMSDs �qxy , �qz and �qxyz before
reduction and optimization is applied. In addition to the first step, the out-
of-plane component gz(hkl) and the total length of the reciprocal-lattice
vector gxyz(hkl) are used for assignment of the Laue indices h, k and l.



terms for the six lattice constants a, b, c, �, � and � in order to

minimize the summed RMSDs in the component qz and in the

total length qxyz of the scattering vectors. Even though the

received solutions face minimal numerical errors with regard

to the experimental diffraction pattern, these unit-cell solu-

tions are not necessarily unique and superlattices can appear.

Each solution is therefore checked to see if it corresponds to

the reduced cell (the unit cell based on the three shortest non-

coplanar lattice vectors) and, if not, adjusted accordingly. If

possible, similar and reoccurring results are combined by

comparison of their Laue indices. Those exhibiting the smal-

lest errors are presented in an ascending order to the user

through the GUI of GIDInd. The results are provided to the

operator in the form of numbered lists with the six lattice

parameters a, b, c, �, � and �, the three Miller indices of the

contact plane u, v and w, the volume V of the cell, and the four

summed errors in qxy, qz, qxyz and qspec. Using the GUI, the

simulated diffraction patterns for every solution can be

calculated to be compared with the experimental input data.

The GIDInd interface offers options to generate compiled

output files (.xlsx format) with all information of a specific

solution and with all Laue indices for the corresponding Bragg

peaks. The basic functionality of the GUI will be demon-

strated with two samples in Section 4. For a detailed expla-

nation we refer the reader to the user’s manual, available with

the links provided in Section 5.

3.2. Indexing without using a specular diffraction peak

If no specular peak is included, a subprogram is enabled.

The interface of the subroutine offers several adjustments for

the indexing procedure. These possible adjustments are of

particular interest in this case, as the computation time and the

use of memory are the liming factors when working without a

specular diffraction peak. In particular, the possibility to

restrict the potential Laue indices is crucial in order to make

the derivation of solutions possible. The cap of the Laue

indices h and k for building the LSEs is �1 and �2, respec-

tively. The third index l is varied between �2 and +2. The

subprogram is able to assign integers in the range between �6

and +6 upon subsequent indexing. An additional computa-

tional reduction of effort when deriving a solution with this

routine is the possible choice between a monoclinic cell and a

triclinic cell. As already implied by the indexing formalism in

Section 2.1.2, the assumption of a monoclinic unit cell facil-

itates the mathematical treatment. Using the triclinic

approach, the six lattice constants a, b, c, �, � and � are

derived simultaneously. The minimum number of peak posi-

tions is therefore also raised to six. In addition, these peaks

must be linearly independent, which is not necessarily the case

when deriving data from GIXD patterns. In the monoclinic

approach, only four independent peak positions have to be

provided. Note that the indexing routine without incorpora-

tion of the specular scan has no automation for checking the

(in)dependence of the Bragg peaks. The use of the subroutine

is demonstrated in Section 4.1.

4. Application examples

In addition to the calculation of lattice parameters, different,

although related, tools are provided when working with

GIDInd. The main window consists of five sub-windows

(panels): ‘Data Points and Representation Panel’, ‘Add

Crystal Panel’, ‘Indexing Panel’, ‘Error Panel’ and ‘Results

Panel’. For indexing without using a specular diffraction peak,

a subprogram is opened for controlling the indexing proce-

dure. The functionality of the indexing program is demon-

strated here on two different thin-film samples. In both cases,

the peak positions were extracted from GIXD maps using the

GIXD analysis tool GIDVis (Schrode et al., 2019).

4.1. Pentacenequinone on highly oriented pyrolytic graphite

6,13-Pentacenequinone (PQ) is an example of an organic

semiconductor material with the chemical formula C22H12O2.

GIXD data of a PQ thin-film sample, grown on highly oriented

pyrolytic graphite, are chosen to demonstrate the applicability

of GIDInd. A specular diffraction peak is provided at qz =

1.9460 Å�1. In total, a set with 74 Bragg reflections is

provided, of which 30 peak positions are taken for the calcu-

lation of the lattice parameters. Upon indexing of this data set,

the program is applied with initial settings only, to emphasize

the fast and easy-to-use approach.

The data are uploaded via the ‘Data Points and Repre-

sentation Panel’ and, as the formatting is accepted and the

specular diffraction peak is included within the set, the routine

adds the peak positions to the ‘Data representation’ graph

right away. A screenshot of the panel is shown in Fig. 4(a).

Black markers are used to indicate (uploaded) experimental

peaks and diffraction patterns simulated with the derived unit-

cell parameters are printed with red cross markers. The GUI

guides the operator through the indexing procedure via

dialogue windows, indication icons and continually updated

process bars. After successful execution of the first indexing

part, the user gets possible results presented within a panel at

the bottom of the GUI. The routine allows sorting of the

obtained sets of (u, v, a, b, �) either according to their summed

RMSDs (�qxy) or by the areas of the parallelograms formed

through a, b and �. Both options can be useful; however, a

general recommendation for sorting the sub-sets cannot be

given. It is usually expedient to search for the smallest cells

with a reasonable deviation. A rough indication for a good

match is �qxy’ 0.01 Å�1 and below, but this error varies from

sample to sample and depends also on the quality of the

provided diffraction data. Using the indexing routine several

times will certainly help the user to develop intuition about

deviation values yielding the highest matching quality. For the

presented example of PQ, the sets are sorted by ascending

parallelogram areas, as the smallest appearing areas also

exhibit the least deviations in qxy. A possible strategy for the

second indexing part is monitoring the quality of the derived

unit-cell solutions using the ‘Error map’, shown in the

screenshot in Fig. 4(b). The user can stop the program

manually when the summed RMSD in the total length of the

scattering vector (�qxyz) converges to a minimum. As long as
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1262 Manuel Peter Kainz et al. � GIDInd J. Appl. Cryst. (2021). 54, 1256–1267



the operator does not intervene, the program continues

processing the earlier derived sub-sets. A defined range for the

sub-sets that should be considered can be specified via the

GUI. We emphasize again that the mathematical solutions are

not unique. Various unit-cell solutions may be able to repro-

duce a matching diffraction pattern.

Here, the program is ended after nine different sets of (u, v,

a, b, �) are processed, as the error converged to a minimum

value of �qxyz = 0.0015 Å�1. The unit-cell solution exhibiting

the least deviations with �qxy = 0.0010 Å�1 and �qz =

0.0022 Å�1 is given explicitly with a = 5.056, b = 8.076, c =

8.871 Å, � = 91.54, � = 93.03, � = 94.14	 and a volume of V =

360.8 Å3. The derived Miller indices of the contact plane are

(uvw) = (102). This solution agrees with the recently reported

new polymorph of the PQ crystal (Simbrunner et al., 2018)

within the expected range of uncertainty.

The same GIXD data are used for verifying the indexing

algorithm without incorporating the specular diffraction peak.

When uploading a file without a specular peak listed, the

subroutine ‘Indexing without specular scan’ is unlocked. A

screenshot of the control panel is shown in Fig. 5(a). The

number of available and independent peaks is not always

sufficient for the triclinic approach (at least six independent

Bragg reflections are required). Therefore, the user can

choose between the cell types ‘monoclinic’ and ‘triclinic’. As in

the case where the specular peak is used, the caps for the Laue

indices can be set separately. Restrictions on the real-space

lattice constants and the volume are also provided to filter the

output solutions. Once this sub-routine starts, it processes the

input in a single fitting procedure to derive sets of (a, b, c, �, �,

�). The results, if available, are embedded in the GUI and can

then be compared graphically or exported as mentioned
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Figure 5
(a) ‘Options’ panel of the sub-routine ‘Indexing without specular scan’.
(b) ‘Data Points and Representation Panel’ showing the simulated
diffraction pattern (red) of a unit-cell solution derived with 74 input peak
positions (black) without specular peak.

Figure 4
Selected screenshots of the graphical user interface of GIDInd after
indexing. (a) ‘Data Points and Representation Panel’ with a selection of
30 peak positions for indexing of the PQ data set (plotted in black). The
pattern printed in red represents the simulated diffraction pattern using
the best solution with respect to the error in qxyz. (b) Cut-out section of
the interface containing the ‘Add Crystal Panel’, the ‘Error Panel’ and the
main control panel labelled ‘Indexing’.



above. With the here-provided 74 reflections the following

unit cell results: a = 5.053, b = 8.076, c = 8.8671 Å, �= 91.55, �=

93.08, � = 94.15	, V = 360.0 Å3 with �qxyz = 0.0028 Å�1, �qxy =

0.0028 Å�1 and �qz = 0.0017 Å�1. Within the range of

uncertainty, this is the same result as derived above. The

corresponding simulated diffraction pattern is shown in

Fig. 5(b). With this framework, a distinct contact plane cannot

be specified with integer Miller indices. The rotation angles  
and � to calculate the rotation matrix (as described in

Appendix C) are stored in the generated output file. Although

the results appear to be the same in the case of PQ, we report

significant drawbacks in high memory occupation and time

consumption if the routine is used without a specular

diffraction peak. However, this application can be of advan-

tage for the case that no specular scan is available.

4.2. Acetylsalicylic acid on thermally oxidized Si(100)

If the initial settings (as used earlier for PQ) do not lead to

sufficient solutions, a different approach for the derivation of

the unit-cell parameters can be helpful. For demonstration,

GIXD data of an acetylsalicylic acid (ASS) thin film on Si(100)

are evaluated. We derived ten diffraction peaks from the

reciprocal-space map and, additionally, a specular diffraction

peak is used for the indexing procedure with GIDInd. First, a

run with initial settings is performed to find the tendencies

according to which the lattice parameters converge and to

define reasonable ranges of the errors. After this survey run,

the edge lengths of the unit cell a, b and c and especially the

volume show a clear trend towards particular values. We

therefore use the ‘Indexing settings’ tab of GIDInd to restrict

certain lattice parameters for the solution sets, as shown in

Fig. 6(a). The screenshot of the ‘Error panel’ in Fig. 6(b) was

taken during the survey run and shows a population of solu-

tions around �qxyz = 0.005 Å�1 and below. With the applied

restrictions, we can immediately identify a unit cell which

generates a matching, and therefore promising, diffraction

pattern [Fig. 6(c)]. The corresponding unit-cell solution is

shown and highlighted in Fig. 6(d) and explicitly given with the

parameters a = 6.594, b = 11.378, c = 11.418 Å, � = 95.29, � =

90.28 and � = 90.07	. The volume of the cell is V = 852.98 Å3,

the total-length deviation is �qxyz = 0.0043 and we find the

plane (uvw) = (020) to be parallel to the substrate. The solu-

tion found here agrees with the known polymorph of ASS at

ambient temperature (Wheatley, 1964; Kim et al., 1985). Note

again that Niggli’s criteria are implemented and the output

solutions are reduced cells. The order of listing the parameters

can therefore deviate from that stated in the literature. The
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Figure 6
Selection of screenshots of the GIDInd interface. (a) ‘Indexing settings’ panel showing the restrictions on the potential lattice constants a, b and � and on
the volume of the crystallographic cell. (b) ‘Error panel’ monitoring the deviation in qxyz during execution of the indexing routine. (c) Input peak
positions (black) of an ASS thin film together with the simulated diffraction peaks (red) calculated with the solution highlighted in the ‘Result Panel’ in
(d).



equivalence of the obtained solutions can easily be proven

using known symmetry relations (Simbrunner et al., 2018).

With the possibility of restricting the parameters, the user

can specifically scan regions and use potential initial guesses if

available. In addition to restricting the parameters, the Miller

indices can be set to pre-defined values. In some cases, it can

be useful to first search for solutions that exhibit a (001) lattice

plane. This can give a first impression of the possible solutions

and, overall, help to save time when indexing the GIXD data

with GIDInd.

Application of the indexing routine and the accompanying

memory usage did not lead to any computational restrictions

for the investigated samples. If the program parameters are

kept in the ranges as demonstrated, the program should not

face any programmatic problems. Nevertheless, no claim is

made to completeness. Neither should the impression arise

that the program has no limitations or bottlenecks, nor that

the obtained solutions are unambiguous.

5. Availability

The program is provided in the form of an executable file

(.exe) and as a MATLAB application (.mlapp file), written

and tested in MATLAB version R2019b, Update 5, on

Windows OS. It is released under the terms of the GNU

General Public License, either version 3 of the licence or any

later version. The software can be used as a standalone

executable file (MATLAB Runtime required) and as a

.mlapp file (valid MATLAB licence required) together with

the functions provided in the zip-compiled folder, available on

the web sites stated below. The executable can be used right

away with the MATLAB Runtime installed, which can be

downloaded from The Mathworks Inc. (https://mathworks.

com/products/compiler/matlab-runtime.html) free of charge.

For individual adaptions and potential further development,

all source codes are provided. To access the program, codes

and further instructions, visit https://www.if.tugraz.at/amd/

GIDInd/ and https://github.com/m-kainz/GIDInd. More

program details, further tutorials, and additional help

regarding operation and use of GIDInd can be found in a

separate documentation file, available on the web sites.

APPENDIX A
Mathematical procedure for analytically determining
the cell parameters a, b and c

For analytically determining the unit-cell parameters a, b and

�, it is convenient to introduce the parameters Z2
a, Z2

b and X�

with the substitutional relations

Z2
a ¼ z2

a 1� v2z2
b sin2 �=g2

spec

� �
; ð8Þ

Z2
b ¼ z2

b 1� u2z2
a sin2 �=g2

spec

� �
; ð9Þ

X� ¼ zazb cos � � uvzazb sin2 �=g2
spec

� �
: ð10Þ

Note that Z2
a and Z2

b are always positive. Using these substi-

tutions, equation (1) can be linearized and rewritten as

1 ¼ Z2
a

1

g2
xy

h� u
gz

gspec

 !2

þ
u2

g2
spec

" #

þ Z2
b

1

g2
xy

k� v
gz

gspec

 !2

þ
v2

g2
spec

" #

� 2X�

1

g2
xy

h� u
gz

gspec

 !
k� v

gz

gspec

 !
þ

uv

g2
spec

" #
: ð11Þ

The parameters Z2
a, Z2

b and X� can be determined from three

independent Bragg peak series by solving the following LSE:

f11 h1ð Þ f12 k1ð Þ f13 h1; k1ð Þ

f21 h2ð Þ f22 k2ð Þ f23 h2; k2ð Þ

f31 h3ð Þ f32 k3ð Þ f33 h3; k3ð Þ

2
4

3
5 Z2

a

Z2
b

X�

0
@

1
A ¼ 1

1

1

0
@

1
A; ð12Þ

where

fi1 hið Þ ¼
1

g2
xyi

hi � u
gzi

gspec

 !2

þ
u2

g2
spec

; ð13Þ

fi2 kið Þ ¼
1

g2
xyi

ki � v
gzi

gspec

 !2

þ
v2

g2
spec

; ð14Þ

fi3 hi; kið Þ ¼ �2
1

g2
xyi

hi � u
gzi

gspec

 !
ki � v

gzi

gspec

 !
þ

uv

g2
spec

" #
;

ð15Þ

and i = 1, 2 and 3. For obtaining a, b and � from equations (8)–

(10) the following identity is helpful:

� ¼ z2
az2

b

sin2 �

g2
spec

¼
Z2

aZ2
b � X2

�

g2
spec � u2Z2

a þ v2Z2
b � 2uvX�

� � : ð16Þ

From equations (8)–(10) and (16), the following expressions

can be derived:

za ¼ Z2
a þ v2�

� �1=2
; ð17Þ

zb ¼ Z2
b þ u2�

� �1=2
ð18Þ

and

cos � ¼
X� þ uv�

zazb

: ð19Þ

APPENDIX B
Mathematical procedure for analytically determining
the cell parameters c, a and b

For setting up the LSE, the expressions for gz and gspec in

Table 1 can be transformed to:
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hia
� cos�� þ kib

� cos�� þ lic
�

¼
gzi

gspec � hiuz2
b � kivz2

b þ ðhivþ kuÞzazb cos �

ðg2
spec � u2z2

a � v2z2
a þ 2uvzazb cos �Þ1=2

:¼ gz;Ti
:

ð20Þ

for three linearly independent peaks with indices i = 1, 2 and 3,

and

ua� cos�� þ vb� cos �� þ wc

¼ g2
spec � u2z2

a � v2z2
a þ 2uvzazb cos �

� �1=2
:¼ gspec;T: ð21Þ

Then, it is again possible to build an LSE of the form

u

h1

v

k1

w

l1
h2 k2 l2

h3 k3 l3

0
B@

1
CA �

�
	

0
@

1
A ¼

gspec;T

gz;T1
gz;T2

gz;T3

0
B@

1
CA: ð22Þ

Under variation of the Miller index w and the Laue indices l1,

l2 and l3, the terms for gspec,T and gz,Ti
have to be computed for

every previously derived set of (u, v, a, b, �). These over-

determined systems are solvable for �, � and 	. The parts

containing the unknown reciprocal lattice constants a�, b�, c�,

�� and �� are fully replaced by � ¼ ½�2�=ða sin �Þ�
,
� ¼ ½�2�=ðb sin �Þ�� and 	 ¼ 2�=ðc sin �Þ, 
 ¼ ðcos� �
cos� cos �Þ=ðsin � sin �Þ,� ¼ ðcos �� cos� cos �Þ=ðsin � sin �Þ,
and sin � ¼ sin �=ðsin2 � þ 
2 þ �2 þ 2
� cos �Þ1=2 (Truger et

al., 2016). Then, the remaining lattice parameters can be

calculated by using the following expressions:

cos� ¼
�þ 
 cos �

sin2� þ 
2 þ �2 þ 2
� cos �
� �1=2

; ð23Þ

cos� ¼

þ � cos �

sin2� þ 
2 þ �2 þ 2
� cos �
� �1=2

ð24Þ

and

c ¼
2�

	 sin �
: ð25Þ

APPENDIX C
Determining the parameters of the rotation matrix

The orientation parameters of the final unit cell are deter-

mined by using equation (4), which can be alternatively

written as gz ¼ ha�z þ kb�z þ lc�z :

a�2 a�b� cos �� a�c� cos��

a�b� cos �� b�2 b�c� cos ��

a�c� cos �� b�c� cos �� c�2

0
@

1
A uq

vq

wq

0
@

1
A ¼ a�z

b�z
c�z

0
@

1
A;
ð26Þ

where uq ¼ u=gspec, vq ¼ v=gspec and wq ¼ w=gspec. By building

the ratios of these factors, the Miller indices of the contact

plane may be found.

The rotation matrix R can be expressed as

R  ;�ð Þ¼

cos2  cos sin � sin sin �
þ cos � sin2  � 1� cos �ð Þ

cos sin sin2  cos sin �
� 1� cos �ð Þ þ cos � cos2  

sin sin � � cos sin � cos �

2
666666664

3
777777775
;

ð27Þ

where  and � are the rotation angles. Then the following

relations are valid (Simbrunner et al., 2018):

cos ¼
ðuq=aÞ cos � � vq=b

uq=a
� �2

þ vq=b
� �2

� 2ðuq=aÞðvq=bÞ cos �
h i1=2

; ð28Þ

sin ¼
uq=a

uq=a
� �2

þ vq=b
� �2

� 2ðuq=aÞðvq=bÞ cos �
h i1=2

; ð29Þ

cos � ¼ ðuqa� cos �� þ vqb� cos �� þ wqc�Þ
�
u2

qz2
a þ v2

qz2
b � 2uqvqzazb cos �

þ uqa� cos�� þ vqb� cos �� þ wqc�
� �2�1=2

: ð30Þ

For �, the following relations can also be derived (Simbrunner

et al., 2021):

cos � ¼ tan �a cot 

¼ tan �a cot � �
vq

uq

a

b

1

sin �

� �
if uq 6¼ 0; ð31Þ

where

cos �a ¼
1

1� 2�uq=a
� �2

h i1=2

�
ðuq=aÞ cos � � ðvq=bÞ

uq=a
� �2

þ vq=b
� �2

� 2ðuq=aÞðvq=bÞ cos �
h i1=2

; ð32Þ

and

cos � ¼ tan �b cot � �  ð Þ

¼ tan �b cot � �
uq

vq

b

a

1

sin �

� �
if vq 6¼ 0; ð33Þ

where

cos �b ¼
1

1� 2�vq=b
� �2

h i1=2

�
ðuq=aÞ � ðvq=bÞ cos �

uq=a
� �2

þ vq=b
� �2

� 2ðuq=aÞðvq=bÞ cos �
h i1=2

: ð34Þ

If uq = vq = 0, the contact plane is (001) (unrotated system).
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APPENDIX D
Determining the start values for the linear systems of
equations

To assess whether or not numerical values are multiples of one

another, the following algorithm is used: For various pairs out

of N, the total number of input Bragg peaks, the quotient of

two different points qxyi
and qxyk

is computed, where qxyi
> qxyk

and i; k 2 ð1;NÞ. If the absolute difference between the

quotient and its nearest integer neighbour is below a certain

numerical limit (e.g. �c = 0.1), the two values are considered as

linearly dependent. A pair qxyi
and qxyk

where

qxyi

qxyk

�
qxyi

qxyk

�����
�����

�����
�����>�c ð35Þ

are considered to be numerically independent and a triplet of

such independent values is referred to here as a ‘start set’. The

routine switches through a specified number of qxy values,

permutes the lines in every possible way and thus creates a

series of different sets. Initially, these sets are chosen inde-

pendently from any user-defined numerical limit. The number

of points included, however, can be adopted via the user

interface. If there is at least one possible, independent

combination of three Bragg peaks, it can be found with the

algorithm.
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