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A peak-finding algorithm for serial crystallography (SX) data analysis based on

the principle of ‘robust statistics’ has been developed. Methods which are

statistically robust are generally more insensitive to any departures from model

assumptions and are particularly effective when analysing mixtures of

probability distributions. For example, these methods enable the discretization

of data into a group comprising inliers (i.e. the background noise) and another

group comprising outliers (i.e. Bragg peaks). Our robust statistics algorithm has

two key advantages, which are demonstrated through testing using multiple SX

data sets. First, it is relatively insensitive to the exact value of the input

parameters and hence requires minimal optimization. This is critical for the

algorithm to be able to run unsupervised, allowing for automated selection or

‘vetoing’ of SX diffraction data. Secondly, the processing of individual

diffraction patterns can be easily parallelized. This means that it can analyse

data from multiple detector modules simultaneously, making it ideally suited to

real-time data processing. These characteristics mean that the robust peak finder

(RPF) algorithm will be particularly beneficial for the new class of MHz X-ray

free-electron laser sources, which generate large amounts of data in a short

period of time.

1. Introduction

X-ray crystallography is one of the most important tools in

structural biology, responsible for over 80% of the biomol-

ecular structures solved today and deposited in the Protein

Data Bank (Berman et al., 2003). The first hard X-ray free-

electron lasers (XFELs) capable of high-resolution serial

femtosecond crystallography (SFX) measurements only came

online in 2009 (Chapman et al., 2011). The recent new meth-

odological development of serial crystallography (SX) has

brought new capabilities for obtaining time-resolved and static

structures of macromolecules, potentially outrunning radia-

tion damage and without the need for cryogenic cooling. First

demonstrated at XFEL facilities, serial crystallography

involves the collection of single-snapshot diffraction patterns

from individual crystals, at rates that are only limited by the

frequency of the X-ray pulses or the frame rate of detectors.

Many of the new XFEL facilities which began operation

within the past few years have data acquisition rates far higher
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than those achieved with the first generation of XFELs. We

are now in an era of ultra-high-throughput experiments that

can track the evolution of macromolecular systems as they

undergo reactions or responses to various perturbations (Mills

et al., 2020). Serial crystallography experiments performed at

facilities such as the European XFEL (EuXFEL) generate

massive data sets that can be as large as 1 petabyte (1015 bytes)

per experiment (Wiedorn et al., 2018). The rapid generation of

this amount of data necessitates the development of suitable

facilities to be able to manage it. This includes appropriate

data storage, networking and data analysis platforms. In order

to address these issues there is an urgent need to develop

efficient and robust solutions for processing and analysing

data. The goal is to be able to filter data sets, by rejecting data

that are unusable or do not contain any useful information,

whilst preserving all images which contain any signal produced

by interaction of the beam with the sample. This need has

motivated the current effort to develop a robust and efficient

method for detecting Bragg peaks which can then be deployed

to reduce the size of the data set obtained during SX experi-

ments.

The serial crystallography method comprises many steps

(Darmanin et al., 2016). The sample is delivered via fixed

target holders or as a continuous stream of liquid to the region

of interaction with the X-ray beam (Schlichting, 2015;

Berntsen et al., 2019). Diffraction frames are recorded for

every individual X-ray pulse or repetition cycle of the

detector, regardless of whether a crystal is actually within the

X-ray beam or not. If the X-ray beam interacts with a crystal,

the recorded diffraction pattern may contain discrete Bragg

peaks formed via the crystal. Otherwise, the Bragg peaks are

absent and only the diffuse signal produced via interaction

with the jet stream is detected. This scattering usually gives

rise to a diffuse pattern that is often treated as a background

that is independent of the crystal diffraction (Chapman et al.,

2017; Hajdu, 2017). By identifying and discriminating those

detector frames that contain Bragg peaks (known as ‘hits’),

and removing any frames which only contain background

scatter, the volume of data can usually be significantly

reduced; this process is known as ‘hit finding’. This task of

identifying hits is accomplished by programs that determine

the presence and locations of individual Bragg peaks, collec-

tively referred to as ‘peak finders’. The identification of indi-

vidual Bragg peaks from 2D diffraction data is referred to as

‘peak finding’ (Schlichting, 2015).

One approach to reducing the size of the data set is to avoid

storing any data frames that are not hits. This involves real-

time monitoring of the experiment in order to determine when

a particular frame of data should be read from the detector

and moved to more permanent storage. Successful peak

finders for online monitoring systems, such as OnDA (Mariani

et al., 2016), CASS (Foucar et al., 2012), CCTBX (Grosse-

Kunstleve et al., 2002), Hummingbird (Daurer et al., 2016) (for

single-particle imaging), and Linac Coherent Light Source

(LCLS) AMI and Psocake (Thayer et al., 2017) (a graphical

user interface for finding Bragg peaks), use peak-finding

algorithms to provide live feedback about the data quality and

number of hits to the experimental team. This information is

then used to optimize the measurements and determine the

viability of the sample. Even though peak-finding methods

have been used successfully previously, parameters often need

to be optimized during the experiment before they can work

effectively. This limits their reliability and effectiveness in the

context of online data processing, and has motivated the

development of a more robust approach which is the subject of

this paper. Parameter optimization of peak-finding algorithms

frequently involves multiple attempts leading to duplicate sets

of analysed data which require even larger data storage. This

also leads to a significant waste of experimental beam time and

hence negatively impacts the costs of running the facility.

Parameter optimization is also time consuming, which then

limits the ability of these algorithms to provide real-time

feedback and often leads to uncertainty over whether the best

parameters have actually been selected. The development of a

more robust approach to peak finding would allow for a

common set of parameters to be employed throughout the

experiment and between different samples. It would lower the

barrier to entry for non-expert users of SFX and allow the

beamline to enact a ‘veto’ system to dramatically reduce the

final data volume. In this paper, we report on our recent

development of a new approach to robust hit finding and

evaluate its performance using an explicit mathematical

foundation for peak selection. Our algorithm employs a robust

statistical framework, so we refer to it henceforth as the robust

peaking finder (RPF) algorithm.

The structure of the paper is as follows. In Sections 2 and 3,

we review current peak-finder methods to provide a context

for the present work. In Section 4, the methodology of the

proposed robust peak finder is introduced. The algorithm is

applied to a number of different data sets collected under

different experimental conditions to check its performance;

the results are reported in Section 5. The reliability and

accuracy of the robust peak-finding algorithm is then assessed

with respect to data reduction and compared with the current

state of the art. We conclude with a discussion of the benefits

of using the algorithm in terms of online SX data monitoring.

2. Background

Most of the current methods used to perform peak finding and

data reduction in serial crystallography are heuristic methods.

An example is reported by Li & Zatsepin (2018), who uses a

simple global threshold to separate the background signal

from the Bragg peaks. This approach is straightforward but its

effectiveness is often highly dependent on the choice of input

parameters. In this paper we propose a peak-finding method

that does not depend on the global threshold in order to

differentiate the Bragg peak intensities.

Among the current suite of hit-finding algorithms there are

those that use statistical methods to find a threshold that

separates Bragg peaks from the background (Barty et al., 2014;

Parkhurst et al., 2016; Hadian-Jazi et al., 2017). With these

algorithms it is typically assumed that a geometric model (e.g.

a single scalar value or a four-parameter model plane in three

dimensions, normally a linear ramp of intensity values fitted to
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a 2D array) can be used to represent the intensity values of

pixels belonging to the background (referred to here as

inliers) in the immediate vicinity of a peak. This model is then

used to separate the background from Bragg peaks (which we

term ‘outliers’ since they are excluded from the model of the

background). The accurate estimation of model parameters is

key to the success of these methods as any error in the

assumed model for the background prevents the successful

separation of inliers and outliers. As such, the model para-

meters should be calculated on the basis of a characterization

of the inliers, avoiding any dependence on the distribution of

outliers. However, the challenge is that the inliers are initially

unknown. For example, in a given diffraction pattern, it is not

known prior to analysis where the Bragg peaks will be located

as this is highly dependent on the crystal packing and the

crystal orientation relative to the X-ray beam. An essential

requirement is thus that the statistics used to define the model

need to be robust with respect to the presence of outliers

(Bragg peaks).

Different statistical approaches have varying degrees of

robustness with respect to outliers depending on their asso-

ciated probability distribution (Huber, 2009). For example,

some statistical measures may depend on the number of Bragg

peaks or their intensities. Consider a set of intensity values X =

{xi} of N pixels of a diffraction pattern distributed according to

a Poisson probability density function. There are three

common statistics models for the background: the sample

mean, �X ¼ ð1=NÞ
PN

i¼1 xi; the sample variance, �2
X ¼ ð1=NÞ �PN

i¼1ðxi � �XÞ
2; and the median, medfXg ¼ fxI½bðN�1Þ=2c� þ

xI½bN=2c�g=2 (where I is the set of indices that sorts X and b:c is

the floor). Upon manually increasing one of the values in X

towards infinity (to make it an outlier mimicking a Bragg

peak), the variance increases the most. The average increases

as well but not as rapidly, whilst the median does not change.

The median is referred to as a robust statistic since it disre-

gards the one outlier, whilst the average or variance are

conventionally called non-robust statistics (Huber, 2009).

Therefore the benefit of using a robust statistical method is

that it results in a model that fits the background irrespective

of the number and intensities of Bragg peaks.

There are a number of different software packages available

for SX data analysis. One of the most commonly used is called

Cheetah (Barty et al., 2014). The hit-finding algorithm peak-

finder8 (PF8) from Cheetah is frequently employed in other

hit-finding software such as OnDA (Mariani et al., 2016) and

CrystFEL (White et al., 2012, 2016). PF8 uses non-robust

statistics along with careful algorithmic outlier removal to

detect the location of Bragg peaks. PF8 is similar to adaptive

MeanShift (Comaniciu & Meer, 2002; Comaniciu et al., 2001),

which is an expectation-maximization algorithm that itera-

tively updates the model prior to the detection of outliers.

PF8 starts by modelling the pixel intensities on one reso-

lution ring around the centre of the diffraction pattern (with

the set of intensities of all pixels denoted by X), using a single

scalar value which is the average, �X, and a scale which defines

the Gaussian noise (�X). The method used to analyse this data

subset is a fit-and-remove outlier deletion algorithm that

segments outliers from inliers. We define a signal-to-noise

ratio (SNR) to quantify the quality of segmentation of outliers

and inliers. There are many possible definitions for the SNR;

here we propose to use the statistical separability (Wilkinson

et al., 1988; Hadian-Jazi et al., 2015). We define the SNR of the

segmentation of the distributions of inliers and outliers in

terms of a common measure of the statistical separability of

two distributions, given by ð�B � � 6BÞ=ð�B þ � 6BÞ, where inliers

are denoted by set B and outliers by set 6B and B [ 6B ¼ X .

Here �B and � 6B are the sample means of the distributions of

the pixels of inliers and outliers, respectively, and �B and � 6B
the corresponding standard deviations of those distributions.

The SNR is used to measure the quality of every peak. PF8

also uses this definition for SNR, which requires the correct

estimation of �B and �B – a crucial task in order to ensure its

successful implementation.

Given a minimum acceptable SNR �, the fit-and-remove

algorithm in PF8 works as follows: A threshold is defined as

T = �X + ��X. Those pixels above the threshold are removed

from X, �X and �X are recalculated, and the threshold is

updated accordingly. The algorithm repeats this process five

times. This process produces a threshold for each resolution

shell. This approach assumes that the background has no

azimuthal dependence, e.g. has been corrected for polariza-

tion. The calculation of the threshold uses intensities of all of

the pixels (X) which includes both inliers and outliers.

Afterwards, the algorithm estimates the average and the

standard deviation of local background pixels. The SNR is also

calculated in the presence of outliers which were not identified

earlier and hence the process is not robust. This means that the

final SNR is compared with the initial SNR before removing

outlier pixels from X. PF8 calculates an SNR for each Bragg

peak and reports the location and intensity of those above the

set SNR threshold, �.

Another robust background modelling method was

included as part of the DIALS analysis software package

(Parkhurst et al., 2016). The mathematical approach used to

develop that method is similar to PF8 in terms of model fitting.

However, it uses a Huber estimator (Huber, 2009) to analyse

fitting errors normalized by the standard deviation of the data

tuned to capture 95% of inliers. This is in contrast to PF8

which simply removes those points that have values more than

a few standard deviations of the mean of the distribution. We

argue that the result of fitting without excluding outliers in

estimating the background model parameters depends on the

number of outliers and how they are spread above the

minimum acceptable threshold. By contrast, the RPF algo-

rithm, discussed in Section 4, uses an optimization technique

that models the density of inliers and uses it to define the

minimum acceptable threshold independent of the density of

outliers, making it a robust model.

3. Peak finding

Some conditions in serial crystallography can make modelling

with non-robust methods particularly challenging. One is

when a diffraction pattern includes a large number of Bragg

peaks, which means that the non-robust statistics approaches
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(such as the fit-and-remove method described above) have to

deal with many outliers. This problem becomes more apparent

in dealing with detectors with an increasingly high pixel

density, which requires the method to re-bin the data and/or

analyse the background within small regions of the image. For

example, when two Bragg peaks, each covering six pixels, are

located within a window of size 16 � 16 pixels and their

centres are just eight pixels apart diagonally, the model fitting

method needs to be able to cope with ð6þ 6Þ=ð16� 16Þ ¼

4.7% outliers within that window. One solution would be to

simply increase the size of the window. However, this reduces

the speed of the algorithm and fails when dealing with large

numbers of Bragg peaks. In Fig. 2 below, we show that the

probability of correctly detecting a Bragg peak with a non-

robust method such as PF8 dramatically decreases when the

percentage of outliers is around 5%, in contrast to our RPF

model which stays consistent without changing any para-

meters.

Non-robust approaches to peak finding can fail when the

intensities of Bragg peaks are very low, close to the level of the

background. This situation is particularly common at higher

resolutions where Bragg peaks are not easily distinguishable

from the shot noise. Nonlinear noise or unusual detector

response characteristics can also reduce the SNR of Bragg

peaks calculated using non-robust methods and can artificially

raise the threshold for the background, causing weak peaks to

be ignored.

The peak finder presented in this paper, based on the

principles of robust statistics, disregards the density of outliers

when constructing a model for the inliers. In Section 5, we

show that the proposed peak finder is able to reliably detect a

larger proportion of weaker peaks, leading to more accurate

indexing at higher resolution. The details of the proposed

method are described in Section 4. However, in order to

highlight the drawbacks of non-robust methods and show how

robust methods can improve the performance of peak finding

in the above situations, we present some

examples of analysing simulated data

sets. These data sets consisted of an

experimental background but simulated

Bragg reflections whereby we could

arbitrarily set the SNR.

In the first example, we used images

obtained from an SX experiment data

set performed using the SPB/SFX

instrument (Mancuso et al., 2019). The

liquid sample (lysozyme crystals

suspended in a buffer) was delivered

using a 3D-printed gas dynamic virtual

nozzle (GDVN) (Knoška et al., 2020).

More details about the experiment and

the data set are given in Section 5.2. We

manually chose images that did not

include any Bragg peaks and then

added a number of simulated peaks to

them. The intensity of these peaks was

chosen to be close to the threshold set

by the minimum acceptable SNR of � =

6. This threshold value was chosen to

match the typical width of Bragg peaks

that are measured during SFX experi-

ments using the AGIPD detector at the

EuXFEL, which normally vary between

1 to 6 pixels in width. Since initially

there are no Bragg peaks in these

patterns, we used the mean of the data

as the background model value and the

standard deviation as the noise scale,

this determines the threshold used for

the simulation.

The number of outliers (peaks) and

their values were the input for the

simulation. The inlier cut-off thresholds

calculated with robust and non-robust

statistics approaches are reported and

research papers

J. Appl. Cryst. (2021). 54, 1360–1378 Marjan Hadian-Jazi et al. � SX data reduction 1363

Figure 1
The outliers are included in the histogram (frequency versus calibrated intensity) to show the cut-off
threshold of the robust and non-robust algorithms and contrast how each approach models the
background. In this example, to compare robust and non-robust methods (see text), PF8 misses
some of the weaker Bragg peaks because of its sensitivity to the presence of outliers in estimating
the background model.

Figure 2
Probability of correctly identifying Bragg peaks as a function of the density of Bragg peaks in the
diffraction pattern (‘percentage of outliers’). As the number of Bragg peaks increases the
performance of the PF8 algorithm decreases. This is compensated for as the spread in Bragg peak
intensities (higher w) increases, i.e. for the same percentage of outliers, a higher w leads to an
improvement in the probability of correctly identifying Bragg peaks. The RPF model (blue line) is
consistent in its detection irrespective of outlier positioning.



shown in Fig. 1. The histogram in Fig. 1 has two distinct

distributions: to the left is the intensity of background pixels

and to the right is a uniformly distributed set of synthetic

Bragg peak pixel intensities. The SNR of these peaks was set

to be between 6 and 6 + w. In Fig. 1, w = 2 and 2% of data are

outliers. Because the non-robust statis-

tics approach (PF8) includes outliers

when calculating the noise scale for the

background intensities, its performance

is impacted when detecting weak

reflections. Consequently PF8 could not

calculate the true mean, artificially

raising the cut-off threshold and causing

the algorithm to miss some of the

weaker peaks.

The success of PF8 is dependent on

the density of outliers. We evaluated

this by varying the percentage of pixels

belonging to Bragg peaks and by chan-

ging the value of w. We repeated these

tests 10 000 times; the average of the

percentage of correctly labelled outliers

is shown in Fig. 2. In this figure, the predicted spot positions

identified using RPF and PF8 are cross-checked using the

known simulated peak positions. These were then classified as

‘correctly identified’ peaks. As can be seen the probability of

missing Bragg peaks with PF8 increases as the percentage of
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Figure 3
Histogram of pixel intensities with added synthetic Bragg peaks. The true model of the data and cut-
off threshold (yellow) is shown along with median estimation and median cut-off (red) and the
proposed RPF model estimation and the proposed RPF cut-off threshold (green). In this simulation
the median misses some of the Bragg peaks which are located on the left hand side of the threshold
(red) owing to the presence of many outliers.

Figure 4
An example of geometric model fitting for a noisy data set including 400 inliers representing the background intensities and four outliers (Bragg peak
intensities) that are arranged in close proximity to one another and close to the acceptable threshold. (a) The diffraction data, with the x–y axes
representing the position of pixels on the 2D detector and the abscissa representing the calibrated pixel intensities. (b) The background is modelled using
a non-robust statistics approach (PF8). This results in the loss of outliers (Bragg peaks) which are highlighted in red. (c) Using robust statistics allows for
modelling the background without including the outliers. In this case all of the Bragg peaks are detected.



outliers increases (i.e. at higher Bragg peak densities).

However, this also depends on how the values of outliers are

distributed. If there are a large number of Bragg peaks with

intensity values close to the cut-off threshold then the prob-

ability that PF8 will miss the weaker peaks increases. This

most often occurs within the higher-resolution shells where

the Bragg peak intensities are normally weakest with an SNR

only just above the background.

The improvement made to the model parameter estimation

using established robust statistics (e.g. the median model) can

also be tested using a similar approach to the one above. As

can be seen in Fig. 3, the median model, when there is a high

density of Bragg peaks in a particular region, results in a less

accurate estimate of the true average of the background

density and results in some Bragg peaks being missed. Even

though the median approach is a robust estimate based on the

inliers, we observe that increasing the number of outliers still

affects the median value. An extreme scenario is when 49% of

data are outliers. In such a case the median is calculated using

inliers that are the furthest from the true average.

In the current approaches to peak finding mentioned above,

the local background intensity of a Bragg peak is modelled

with a one-parameter model. However, since the average

intensity of pixels is a function of resolution, a model with

more degrees of freedom is needed to capture this change in

pixel intensities on different resolution rings. In this paper we

propose to model the local background intensities with a four-

parameter plane that can tilt according to the background

gradient. We will describe the details of the plane fitting

method in Section 4. To show the effect of using robust

methods, we consider the example of fitting a four-parameter

plane to the background intensities shown in Fig. 4. This

example uses a simulated noisy data set and contains outliers

(Bragg peaks) having values close to the tail of the noise

distribution. Fig. 4 shows the results of using both robust and

non-robust methods and demonstrates that robust methods

are more reliable for detecting subtle differences between

inliers and outliers.

Fig. 5 presents an example of a diffraction pattern taken at

the EuXFEL along with the Bragg peaks found by both the

RPF and PF8 methods. RPF was able to detect more Bragg

peaks than the PF8 program in this pattern. Fig. 5(b) shows an

example of Bragg peaks detected with RPF and missed using

PF8. Fig. 5(c) illustrates the local background intensities

estimated with a tilted four-parameter plane using robust

methods (RPF). Figs. 5(d) and 5(e) show the estimated SNR

for each pixel surrounding the same Bragg peak using a robust

and a non-robust method, respectively. These two figures show

that the estimated SNR for the Bragg peak is 6.3 using the

robust method and 5.8 using the non-robust method.

4. Methodology

4.1. Robust model fitting

In order to treat the background using robust statistics, the

background noise is modelled using a Gaussian probability

density function (PDF) in the presence of outliers that are

independent and identically uniformly distributed.

We make use of two methods in statistical analysis: (i) fast

least kth order statistics (FLkOS) (Bab-Hadiashar &

Hoseinnezhad, 2008), an optimization method that finds the

best fit for the model (for example as shown by the green

plane in Fig. 4), and (ii) modified selective statistical estimator

research papers

J. Appl. Cryst. (2021). 54, 1360–1378 Marjan Hadian-Jazi et al. � SX data reduction 1365

Figure 5
Analysis of a representative diffraction image from the EuXFEL data set. (a) A diffraction pattern chosen from the EuXFEL data set with peaks
identified using RPF (yellow markers) and PF8 (red markers). (b) A Bragg peak and its local background detected with RPF and missed by PF8. (c) The
local background intensities estimated with a tilted four-parameter plane using the RPF method. (d) SNR for a single Bragg peak isolated from the
image in (a), as indicated by the arrow, estimated using a robust method (RPF) and (e) SNR for the same Bragg peak isolated in (d) but estimated using
the non-robust method (PF8).



(MSSE) (Bab-Hadiashar & Suter, 1999), a noise scale esti-

mator that gives the standard deviation of the Gaussian

model. The model fitted using FLkOS and the scale estimated

by MSSE are used to define the threshold to separate outliers

from inliers [for example as shown by blue plane in Fig. 4(c)].

These methods are described briefly below.

4.1.1. Fast least kth order statistics. FLkOS is an optimi-

zation method that minimizes the L1 norm (the largest value

of any set of scalar values) of model fitting errors of the inliers

(Bab-Hadiashar & Hoseinnezhad, 2008). The method takes

the minimum number of inliers as the input, denoted by k, and

finds the best parameters for the model. With respect to peak

finding for serial crystallography, as mentioned previously, the

background pixels are classified as inliers (B) whilst the Bragg

peak pixels are classified as outliers ( 6B). In this case, the goal

is to robustly fit a plane to the background data.

Given that only a portion of the data can be used to robustly

find the parameters of the model, the optimization method is

designed to seek an optimum subset of data. Among all

possible subsets of X denoted by e here (e 2 X), some may

have lower fitting errors according to a particular cost func-

tion. The least kth order statistics (LkOS) cost function

(Tennakoon et al., 2016) is used for the model fitting to the

subset of data e. Given a subset e, the parameters of the model

�e are obtained by fitting the model to data points in e

according to the linear regression method (Huber, 2009). The

linear regression method minimizes
P

e r2
j;�e

, where r2
j;�e

is the

squared algebraic distance of the jth data point in e from the

model with parameters �e. Afterwards, the squared fitting

errors, denoted by r2
i for the ith pixel, are calculated for all

data points in X with respect to �e. The pixels in X are sorted

according to their errors in ascending order by indices denoted

by I, i.e. {ri} (ri � rj if Ii � Ij). The LkOS cost function is

defined as

Cð�eÞ ¼
Pk

j¼k�p

r2
Ij;�e
; ð1Þ

where r2
Ij;�e

is the jth sorted squared fitting error with respect to

the model with parameters �e. This cost function sums the

squares of fitting errors of p data points which, after sorting,

are ordered by k � p to k indices. The values of p and k are

fixed and pre-defined as discussed shortly.

To seek the optimum subset of data, the FLkOS optimiza-

tion algorithm is incorporated to minimize this cost function.

The optimization is initialized with a set of model parameters

�e . The squared fitting errors, r2
i are calculated for all data

points with respect to �e and sorted in ascending order (sorting

indices are denoted by I). The strategy of FLkOS embeds the

calculation of derivatives of the cost function in sampling a

new subset from sorted residuals, e ¼ xIk�p
; . . . ; xIk

, which is

the set of furthest p inliers to the current model. Subsequently,

the model parameters are updated by linear regression carried

out on the new sampled subset. FLkOS runs these steps

iteratively until convergence of the cost function C(�e)

[equation (1)] or until a pre-defined threshold is reached after

a set number of iterations (Bab-Hadiashar & Hoseinnezhad,

2008). Here, p is the sample size, which we have taken to be � +

4 [adapted from the article by Purkait et al. (2017)], where � is

the number of parameters of the model (in the case of fitting a

scalar value or a horizontal plane, � = 1, and in the case of

fitting a tilted plane, � = 4).

The success of the above optimization algorithm depends

on the input parameter k (Sadri et al., 2018). It should be

below the possible number of outliers in any window around

Bragg peaks. In the case of crystallography, we assume that at

least half of the data points belong to inliers. k has a lower

bound as it cannot be less than the number of parameters in

the model. However, a larger k allows for a more accurate

linear regression (Hoseinnezhad et al., 2010). We conserva-

tively assume a value of k = 0.5N here, where N is the number

of data points in X. Since half of the closest set of residuals are

all inliers, this ensures the convergence of the algorithm. As

such, the RPF method will function at least as well as the

median method which can start to be inaccurate as the number

of outliers increases.

4.1.2. Modified selective statistical estimator. Given the

final optimized model parameters, MSSE (Bab-Hadiashar &

Suter, 1999) is an approach often used for separating outliers

from inliers. First, the fitting errors of all data points, r2
i , are

calculated and sorted (denoted by r2
Ii

after sorting). The MSSE

method then finds the final set of all inliers. After sorting, all

data points ordered after the k̂kth data point are outliers if

r2
I

k̂k
>�2ð

P
r2

I
1;...;k̂k
Þ=k̂k� �. In other words, the outliers have

fitting errors that are larger than � times the standard devia-

tion of the inliers. The parameter � is taken to be between 2

and 4 in the statistics literature (Huber, 2009). This is based on

the fact that 95 to 99.9% of a Gaussian probability density

distribution lies within 2 to 4 times its scale. The sensitivity of

the proposed method to this parameter is further discussed in

Section 5.4. This allows segmentation of inliers according to

their density, regardless of the density of outliers, which is one

of the improvements of the RPF approach over PF8.

4.1.3. Peak finding. Peak finding involves the analysis of

data points which comprise the pixel intensity values of the

detector. The goal is to model the local background intensities

of a Bragg peak by fitting a plane. The number of pixels

comprising the local background is fixed and defined as will be

discussed in this section. The algorithms in PF8 and our

previous work (Hadian-Jazi et al., 2017) model the background

using a single-parameter horizontal plane, assuming a constant

background intensity. This results in an inaccurate estimate of

the background mean, where the image has a noticeable non-

zero gradient. For example, this is most apparent in regions

closest to the water ring, where the background has a strong

gradient. The RPF method described here improves on this by

providing the possibility of fitting a tilted plane to the back-

ground independently of the presence of outliers (Bragg

peaks), i.e. following the principles of robust statistics.

A further improvement of the RPF method is that in the

presence of a large number of outliers (e.g. Bragg peaks or

particularly noisy pixels) it is possible that the median is far

from the mode of the noise distribution, as can be seen in Fig. 3

(the median is only considered to be a robust statistic when a
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significant majority of the data points are inliers). Statistics

such as the median are less useful when a greater number of

outliers are present, as the median in turn becomes more

separated from the mode of the probability density function.

The robust statistics approach proposed here is not affected by

the number of outliers.

After estimating �e (four parameters of the plane), the

estimated �e is used to define the SNR for a given pixel xi. In

our method, similar to PF8, pixels with SNR above a given

minimum acceptable threshold are assumed to be Bragg

peaks.

4.2. Robust peak finder

Fig. 6 is a flow chart of the RPF algorithm. Briefly, the

algorithm proceeds as follows: First,

the algorithm takes as its input the

diffraction pattern or a region of it; for

the RPF approach the geometry of the

detector (in terms of relative position

of panels with respect to one another

or to the beam, termed the ‘geometry

file’) does not have any influence on

the results. This is an important

difference between the RPF and PF8

algorithms and is possible because

modelling of the background is

performed locally within a window

around candidate Bragg peaks using a

tilted plane. Two main input para-

meters, the minimum acceptable SNR

and the maximum number of pixels of

a Bragg peak, are required. The latter

is used to define the size of the window

around candidate peaks in order to

model the background.

Using a shifting window over the

whole image with a step size of one

window width, the algorithm starts

searching for candidate peaks at the

corner of the image. Initially, the

threshold for the background intensity

is zero. At each position of this shifting

window, it finds a pixel that (a) has not

been analysed before, (b) is above the

background threshold for this window

and (c) is a local maximum with

respect to all other pixels contained

within the window. The background of

local pixels surrounding this candidate

peak is modelled by fitting a tilted

plane with four parameters �B using

FLkOS and a noise scale �B using

MSSE. The threshold T = �B + ��B

which separates outliers (candidate

Bragg peak) from inliers (the back-

ground pixels) is then calculated. If the

intensity of the candidate pixel is above this threshold, all the

pixels which are adjacent to it and are also above the threshold

will be classified as belonging to the Bragg peak. After the

peak pixels have been assigned, the SNR for the peak is

calculated using ½
P

i2peakðxi � �B;iÞ�=�B, where xi are the

values of pixels belonging to the Bragg peak. If the peak SNR

is above the minimum acceptable SNR (�), the peak infor-

mation is stored in the output peak list.

After a candidate peak has been analysed, the candidate

pixels that have been visited before are flagged and the

threshold of the background for the current window is

updated to T. The algorithm searches for more Bragg peaks by

looking for the next Bragg peak candidate. If there are no

more candidate peaks, the window is shifted across the image

with a step size equal to the window’s width. In each new
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Figure 6
Flow chart illustrating the steps of the RPF algorithm.



window, initially no pixel is flagged as no pixel is yet visited

and the threshold T is set to zero. The above procedure is

repeated until there are no more windows for analysis.

4.3. RPF implementation

Many problems in the data analysis pipeline can be reduced

to outlier detection when the inliers are modelled by a

Gaussian probability density function. For the present work

we have developed a software library called the robust

Gaussian fitting library (RGFlib), based on the above

methods. This software library forms the basis for the RPF

algorithm in this paper. Issued under the GNU licence, the

developed library is publicly available for the wider commu-

nity (Sadri & Hadian-Jazi, 2020b) and applications.

We have implemented the RPF method in two different

software packages which use the RGFlib library. The first is a

standalone version of RPF. To use the RPF standalone

implementation, we have added a Python wrapper and a set of

scripts that are accessible to general users. This implementa-

tion can be found in the publicly available Git repository

(Sadri & Hadian-Jazi, 2020a). All basic functions in RGFlib

come in two forms, serial or parallel processing, using the

built-in multiprocessing available in the Python programming

language. This will dramatically speed up data reduction when

using computing clusters. The standalone implementation of

RPF requires the input to be in HDF5 format. Existing

programs such as cdf2hdf5 can be used to convert other file

formats to HDF5.

The second program incorporates the RPF method into

CrystFEL, one of the most commonly used software packages

for performing SFX data analysis. In order to use this exten-

sion, in CrystFEL, the option --peakfinder = robust-

peakfinder must be selected (https://gitlab.desy.de/

alireza.sadri/crystfel).

4.3.1. Input parameters. The RPF input parameters include

the minimum and maximum number of pixels in a peak (the

default parameters are set to 1 and 25, respectively) and the

minimum acceptable SNR (the default is 6.0). The maximum

threshold for the background mean (default is +1), the

maximum number of Bragg peaks in a frame (the default is

1024) and the bad pixel mask are additional inputs for the

program. One important input is the threshold for the dark

field, which must be set to the standard deviation of the

detector pixels without any photons incident upon the

detector. This input is used to determine reliable values for the

background model parameters as described in Section 5.5. The

parameters of the algorithm are easy to tune and in practice

we have found that the only parameter that may benefit from

tuning is the SNR threshold value, which we recommend is set

to 6.0 for data reduction; this is the value used for the tests in

Section 5. It is possible to also set the resolution limits for the

peak finder but this step is not essential. The RPF program can

be configured to return a mask showing the positions of

detected Bragg peaks.

PF8 requires additional information regarding the geometry

of the detector in order to accurately position each of the

modules with respect to one another. Consequently, the

algorithm is unable to analyse data from the individual

modules in parallel. Our modification of PF8 incorporating the

RPF algorithm currently does not remove this limitation.

Generally, to detect weak Bragg peaks in diffraction images,

it is common practice to reduce and optimize the minimum

acceptable SNR threshold, �. During our tests, we did not

observe any significant benefit to reducing the SNR threshold

value in terms of the overall accuracy. Therefore, we recom-

mend using the default SNR threshold value. In Section 5.4,

we discuss the sensitivity of RPF to the changes in the SNR in

more detail.

4.3.2. Scalability. The usual method for parallelization of

SX data analysis is by running a peak finder over a set of

complete diffraction patterns using multiple processors in

parallel. The offline software program that we have prepared

for the use of the RPF method can analyse a stack of images

from a single module and report peak lists for each module

individually. This is particularly useful for fast detectors such

as AGIPD (Allahgholi et al., 2019), which saves image data

module wise.

An online monitoring software can potentially avoid

transferring the raw data from modules into memory if the

frame is not a hit, but using radial information imposes a

limitation on such approaches. To analyse the intensity of

pixels on the same radius from the centre of the image, the

large set of images from all modules must be loaded into a

single memory in one computational node. This requires a

huge amount of memory, which is very expensive, and the

transmission is time consuming. However, the advantage of

RPF is that, by using hardware such as field programmable

gate array (FPGAs) or GPUs directly connected to a detector,

analysing each module independently is possible and can

potentially make the process very fast. In this scenario, a

processing core could be assigned to each module and only

when the total number of Bragg peaks over all modules is

above a given threshold (a hit) is the set of images transmitted

over the network into storage units.

For peak-finding methods using radial information and for

detectors with multiple separate modules, inclusion of addi-

tional detector geometry information about the relative

position of modules with respect to each other and to the

beam is necessary. Such methods are sensitive to the accuracy

of the estimated position and orientation of modules. During

offline processing, this sensitivity is dealt with by refining the

detector’s geometry description using the data collected after

the experiment. This refinement can be challenging for online

monitoring. RPF does not require any radial information,

which allows analysis of modules individually in parallel. This

scalability is a promising feature for RPF, particularly for

detectors with a large number of modules.

5. Proof of concept (algorithm testing)

In this section, we present an evaluation of the performance of

the RPF algorithm on a selection of data sets: (1) CXIDB

entry 32, (2) EuXFEL commissioning test and (3) Petra III
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p11 data set. Table 1 provides an overview of the three data

sets including the data collection parameters and their unit

cells. In summary, these data sets were specifically chosen to

test (i) the sensitivity in identifying peaks which are located

very close to one another (CXIDB 32 data set), (ii) the

compatibility of the RPF algorithm with the AGIPD detector

(EuXFEL commissioning data set) and (iii) its accuracy in

identification of weak Bragg peaks having low SNR (Petra III

p11 data set).

We used an analysis pipeline that comprised multiple stages.

The first step was to correct the data according to the cali-

bration constants of the detector. Afterwards, the calibrated

data were passed to the peak finder to reduce the data set to

only useful frames (i.e. those containing crystal hits) and

generate data sets that included data and metadata only for

these hits. We evaluated the peak-finding method in Cheetah

(PF8) (Barty et al., 2014) and the RPF approach. To confirm

that the RPF algorithm identified ‘true’ Bragg peaks and not

random peaks that may be present in the background, the

RPF peak list was run through the standard crystallography

indexing programs that are incorporated within CrystFEL

(White et al., 2012). The difference in the number of peaks

identified before and after indexing provides an indication of

the level of accuracy of the peak-finding algorithms. An

important consideration is the fraction of ‘noisy’ pixels that

the RPF and PF8 algorithms incorrectly assign as ‘real’ peaks.

One way to compare the respective performance of the two

algorithms for distinguishing actual Bragg peaks from noise is

to look at the indexing rates for the two algorithms using a

common data set. Table 2 summarizes the results for the three

data sets. In the case of the Petra III data set, RPF assigned

55 748 hits, which resulted in 26 346 frames being indexed

(47.26%). For the same data set the PF8 algorithm assigned a

much larger number of hits (453 231). However, only 23 864

were indexed (5.26%), indicating that a much larger propor-

tion of ‘hits’ are actually just noise when using the PF8 algo-

rithm. Therefore, the much higher indexing fraction achieved

using the RPF versus PF8 algorithm indicates that the former

is more robust with respect to noisy data containing weak

Bragg peaks.

CrystFEL version 0.9.1 is used in our analysis. At this point

the self-consistency statistics CC�, Rsplit and CC1/2 were

generated, and these results are reported and compared for

each analysis test. The overall figures of merit are discussed,

and we also provide figures for the high-resolution data. These

three parameters are figures of merit in crystallography and

indicators of data quality. They are defined as follows: CC1/2 is

a linear correlation coefficient between intensity estimates

from half data sets and is helpful in determining the resolution

cut-off for the data set (Karplus & Diederichs, 2015). CC�
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Table 1
An overview of the three data sets used for testing the performance of RPF.

CXIDB32 data set information: Zhou et al. (2016). EuXFEL data set information: Kirkwood et al. (2021). Petra II p11 data set: Oberthuer et al. (2016).

Data set name Sample Injection Beamline Detector
Space
group a, b, c (Å) �, 	, 
 (�)

Photon
energy (keV)

Detector
distance (cm)

CXIDB32 Rhodopsin–
arestin complex

LCP CXI, LCLS CSPAD P21P21P21 109.2, 109.2, 452.6 90, 90, 90 9.5 10

EuXFEL
commissioning

Lysozyme GDVN SPB/SFX,
EuXFEL

AGIPD P43P21P2 79.20, 79.20, 37.80 90, 90, 90 9.3 11.96

Petra III p11 Dioxygenase Kapton
tape drive

p11, Petra III PILATUS P21P21P2 111.51, 154.84, 101.95 90, 90, 90 12 25.2

Table 2
Overview of the results for the three different data sets, CXIDB32, EuXFEL commissioning and Petra III p11.

Two peak-finding algorithms were tested, RPF and PF8. CrystFEL was used to generate the statistics in the table. Values for Rsplit, CC�, CC1/2 and I/�(I) are the
overall values reported. Values for the high-resolution shell are given in parentheses.

No. of
hits

Hit
fraction (%)

Indexed
frames

Indexing
fraction (%) CC1/2 Rsplit (%) CC� I/�( I )

Resolution
range (Å) Redundancy

Data set: CXIDB32
RPF 58 695 1.45 54 359 92.61 0.9498 56.06 0.9870 2.81 (0.17) 12.93–3.03 (3.14-3.03) 1470.1 (16.4)
PF8 22 462 0.55 21 875 97.39 0.9127 60.51 0.9769 2.51 (0.09) 12.08–3.01 (3.12-3.01) 1019.4 (7.2)
PF8 on RPF output –† –† 36 369 61.96 0.9052 68.71 0.9748 2.68 (0.14) 12.28–3.01 (3.14-3.01) 1208.4 (12.4)

Data set: EuXFEL commissioning
RPF 2 127 935 37.69 1 742 777 81.90 0.9986 4.52 0.9997 21.04 7.03–1.51 (1.60-1.51) 26545.6 (30.0)
PF8 3 422 532 60.63 1 257 048 36.73 0.9986 4.49 0.9997 19.89 (0.05) 7.08–1.51 (1.63-1.51) 28210.6 (24.9)
PF8 on RPF output –† –† 1 663 851 78.19 0.9986 4.50 0.9996 20.81 (0.22) 7.05–1.51 (1.60-1.51) 22743.1 (20.8)

Data set: Petra III p11
RPF 55 748 12.30 26 346 47.26 0.9740 26.99 0.9934 4.25 (0.36) 23.67–2.85 (2.87-2.85) 64.9 (5.1)
PF8 453 231 100 23,864 5.26 0.9643 30.62 0.9909 3.76 (0.08) 24.40–2.85 (2.86-2.85) 47.3 (2.7)
PF8 on RPF output –† –† 21 526 38.61 0.9643 30.62 0.9909 3.74 (0.13) 24.40–2.85 (2.86-2.85) 51.2 (3.6)

† All of the hits found by RPF were fed into PF8 with the hit threshold set to zero.



provides a cross-validation-independent indication of over-

fitting and is calculated as CC� ¼ ½2CC1=2=ð1þ CC1=2Þ�
1=2

(Karplus & Diederichs, 2015). Rsplit or the self-consistency R

factor is an unweighted sum of intensities for merged data

(Karplus & Diederichs, 2015). Rsplit is equivalent to Rpim,

which is an adaptation of the Rmerged for conventional crys-

tallography data collection.

In order to directly compare each data set, the raw data

were treated identically in each case. The same bad pixel mask

was used for both the RPF and PF8 peak finders. The

previously published bad pixel mask was used for the

CXIDB32 and Petra III data sets. For the EuXFEL data set a

recently developed bad pixel mask algorithm was used (Sadri

et al., 2021). By applying an identical bad pixel mask, irre-

spective of the specific hit-finding algorithm used (RPF or

PF8), any bias due to the application of the mask was avoided.

The bad pixel masks for each detector are designed to include

a border at the edge of the detector panels to mask out

spurious pixels within this region. The input parameters for

indexing/merging were also fixed as this allows us to study the

effect of changing the peak-finding method only.

Whilst the RPF approach is able to achieve reasonable

peak-finding results as a standalone program, one of the main

purposes of developing this method is online data reduction.

Our solution to data reduction is to either ignore or delete

frames of data which do not contain any Bragg diffraction data

by applying the RPF approach. In contrast to PF8, the goal of

RPF is to adopt a largely unsupervised approach to rapidly

determine whether or not a given detector frame contains

data. To verify that RPF can be used for data reduction, we

compared the performance of PF8 (with optimized parameters

set) before and after data reduction by RPF. Three analysis

tests were conducted; their results are presented here for each

data set. The tests can be summarized as follows:

(1) Run PF8 to obtain results.

(2) Run RPF to obtain results.

(3) Run RPF for initial hit finding followed by running PF8

on the hits stored by RPF. This allows further offline optimi-

zation to see if we can achieve better

results.

We performed the above tasks on the

CXIDB32, EuXFEL commissioning

and Petra III p11 data sets. The size of

the shifting window for the AGIPD,

PILATUS and CSPAD detectors was

set to 16 � 16, 32 � 32 and 32 � 32

pixels, respectively, based on the

number of pixels defined per Bragg

peak for the individual data sets. The

size of the shifting window is adjusted

depending on the expected maximum

size of a Bragg peak and their relative

distance from one another (determined

by the size of the unit cell) and is limited

to 	5 Bragg peaks per window area.

The default value for this parameter in

RPF is set to 16 � 16, based on the fact

that the default value for the maximum

number of pixels in a given peak is set to

25 pixels.

In order to provide further insight

into whether RPF is able to more

accurately identify Bragg reflections in

the three data sets tested, we analysed

the level of background fluctuation in

the images (Fig. 7). Figs. 7(a), 7(c) and

7(e) present the temporal average of

diffraction patterns for each of the three

data sets, CXIDB32, EuXFEL commis-

sioning and Petra III, respectively.

These figures were generated by aver-

aging all of the diffraction patterns

associated with each data set with the

Bragg peaks excluded. Figs. 7(b), 7(d)

and 7( f) shows a 1D plot generated

from the radial-background images in
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Figure 7
Background analysis for three tested data sets. Temporal average diffraction pattern and radial
averaging of the background for data set (a), (b) CXIDB 32 (c), (d) EuXFEL commissioning and
(e), ( f ) Petra III. These figures are generated with diffraction patterns with Bragg peaks omitted.



Figs. 7(a), 7(c) and 7(e), respectively. The shaded areas in

these figures represent three standard deviations of the

intensity from the radial average of the background. The

EuXFEL data set shows a very high level of background

variation (
500) compared with other two data sets, while

Petra III had the lowest background variation between images

(
10), in spite of having an overall high background signal

due to Kapton. The peaks in Figs. 7(b), 7(d) and 7( f) show the

solvent ring present in the data. Table 2 summarizes the results

for the three data sets.

5.1. CXIDB32 data set

In this section we present the results of applying the RPF

algorithm to the data set of Zhou et al. (2016). This data set

was collected at the LCLS CXI beamline, on the rhodopsin–

arrestin complex. The detector used was the CSPAD (Herr-

mann et al., 2013). The raw data are publicly available and

accessible via the CXI Data Bank (Maia, 2012) (CXIDB32;

https://doi.org/10.11577/1241101). The data set was chosen

because it has a relatively large unit cell, resulting in closely

spaced Bragg peaks, and a low-angle lipid cubic phase (LCP)

background scatter. These characteristics make the data set

challenging for peak-finding algorithms. Therefore, this data

set was chosen to help assess the reliability of our RPF algo-

rithm in correctly identifying peaks. We compared the RPF

results with the PF8 peak-finding results. Zhou et al. (2016)

analysed the structure by sorting the data into three batches.

Of these batches, two were deemed of sufficient quality for

structural analysis. For this analysis the acceptable SNR for

RPF was left at the default value (� = 6); for PF8 an SNR

threshold value of six was chosen to match that used in the

published results. In this experiment, the minimum number of

Bragg peaks in a diffraction pattern classified as a hit was set

to 35. Indexing was performed using the indexamajig program

– part of the CrystFEL package. The parameters used were

based on the relevant published indexed data parameters

(Zhou et al., 2016). Briefly, the following parameters were

set: the indexing used mosflm-cell-nolatt, mosflm-

latt-nocell, dirax, asdf, xds-cell-latt, xgandalf

and -tolerance= 5,5,5,1.5 -int-radius=2,2,3.

The partialator command within CrystFEL was used for

merging the data with the following parameters: -y mmm,

-no-logs, -iterations=1, -model=unity, -max-adu=

14000, -min-measurements=3. These parameters were

kept fixed in order to test the PF8 and RPF results.

Out of a total of 4 046 425 data frames, PF8 detected 22 462

frames which were classified as hits. This gives an overall hit

fraction of 0.55%, which is identical to what has been reported

(Zhou et al., 2016). The RPF algorithm detected 58 695 frames

which resulted in an increase in the total hit fraction to 1.45%.

After application of the peak-finding algorithms, the hits were

indexed using CrystFEL (White et al., 2012). The number of

indexed frames for PF8 and RPF were 21 875 and 54 359,

respectively (with an indexing fraction of 97.39 and 92.61%).

For the third test PF8 was run on the hits found by RPF

(58 695 frames) and the results indexed (using the new peak

lists generated by PF8). CrystFEL indexed 36 369 frames from

the PF8 peak lists, resulting in an indexing fraction of 61.96%

[using the same indexing routines and parameters as Zhou et

al. (2016)]. Table 2 summarizes the results for this data set.

This means that if RPF was initially used for data reduction

and the results used as an input for PF8 with optimized

parameters, PF8 would achieve similar results to those

obtained assuming the data had not been reduced. In this

analysis, the number of frames indexed by PF8 using the raw

data (21 875 indexed frames) was less than when the RPF

algorithm was used for the initial hit finding followed by

application of PF8 for refinement of peak detection (36 369

indexed frames). In other words, PF8 found fewer peaks in the

patterns so there were fewer patterns for the indexer to use to

find indexing solutions. We conclude that RPF is able to
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Figure 8
Comparison of the (a) Rsplit and CC� and (b) SNR and CC1/2 values as a function of resolution (Å) for the CXIDB32 data set. Three tests were performed
comparing RPF, PF8 and RPF + PF8 peak-finding algorithms.



generate a more complete list of indexable patterns than PF8,

and RPF can reliably retain useful crystallographic data whilst

achieving a significant level of data reduction.

Fig. 8(a) shows a comparison of CC� and Rsplit for the three

test cases and Fig. 8(b) presents the comparison of CC1/2 and

SNR.

The results show that the RPF algorithm is able to detect

more hits from the raw data set which can also be indexed and

thus increases the indexing fraction.

5.2. EuXFEL commissioning data set

In this section we present the results of testing the RPF

algorithm using an EuXFEL commissioning data set gener-

ated from lysozyme crystals (Kirkwood et al., 2021). The data

set was collected at the SPB/SFX instrument (Mancuso et al.,

2019) in March 2020. The beam was delivered with a mean

photon energy of 9.3 K eV, 1.1 MHz repetition rate pulses and

352 pulses per train. The AGIPD-1M detector (Allahgholi et

al., 2019) was used and located about 129 mm downstream of

the sample. The EuXFEL lysozyme commissioning data set

was used as a model system to test if RPF is suitable for online

data reduction at the SPB/SFX beamline using the AGIPD

detector. The data set includes a number of runs with different

settings. We focused on three specific runs (95, 96 and 97)

which contain 	5.7 million diffraction patterns.

For this analysis the threshold SNR was set to the default

value of � = 6 for both the RPF and PF8 algorithms. The

minimum number of Bragg peaks in a diffraction pattern to be

identified as a hit was set to 20. Indexing was performed using

the indexamajig program – part of the CrystFEL package. The

following parameters were used: -int-radius=2,4,7

using the default indexing methods (mosflm-cell-

nolatt, mosflm-latt-nocell, dirax, asdf, xds-

cell-latt, xgandalf). The partialator program was used

within CrystFEL to merge the data with the following

parameters: -y 4/mmm, -min-res=3, -push-res=1.0,

-no-logs, -iterations=3, -model=unity. These

parameters were kept fixed in order to test the PF8 and RPF

results.

Of the 5 645 342 frames collected in the three runs, PF8

classified 3 422 532 frames as hits, giving a hit fraction of

60.63%, whilst the RPF algorithm detected 2 127 935 frames,

giving a hit fraction of 37.69%. The indexing fraction for PF8

was 36.73% and for RPF it was 81.90% (1 257 048 and

1 742 777 indexed frames, respectively). The output of RPF

was run again through PF8 and, from 2 127 935 hits found by

RPF, 1 663 851 frames were indexed with CrystFEL (using the

PF8 peak lists) with an indexing fraction of 78.19%. Table 2

summarizes these results. One key point to consider from the

statistics is that, in this data set, data reduction using the RPF

algorithm was found to be more effective and accurate in

reducing the data set. Although PF8 found more hits than

RPF these were not all indexed and did not end up being used

in the analysis. The RPF algorithm resulted in more indexed

patterns than PF8, which is a key metric. The final results of

RPF (CC� and Rsplit) are very similar to although slightly

better than those for PF8, indicating that RPF has not lost any

useful information during the data reduction process, as

indicated in Fig. 9.

5.3. Petra III p11 data set

The third data set tested was collected at the Petra III p11

beamline (Burkhardt et al., 2016) on dioxygenase using a

12 keV incident photon energy. The detector used for this

experiment was a PILATUS 6M (Broennimann et al., 2006),

which was located approximately 250 mm downstream of the

sample. More information on the experimental setup is given

by Beyerlein et al. (2017). However, the dioxygenase data set

is unpublished. The unit cell and PF8 optimization parameters

were sourced from Oberthuer et al. (2016). The raw data set is

in the CBF format, which is supported in the latest version of
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Figure 9
Comparison of the (a) Rsplit and CC� and (b) SNR and CC1/2 values as a function of resolution (Å) for the EuXFEL lysozyme commissioning data set.
Three tests were performed comparing RPF, PF8 and RPF + PF8 peak-finding algorithms.



CrystFEL v9.1 and is automatically converted to HDF5 for hit

finding. The dioxygenase Kapton tape drive data set was

chosen to test the reliability of the peak-finding algorithms.

This data set proved to be challenging to analyse for PF8

(Oberthuer et al., 2016). The optimal PF8 parameters for this

data set had an SNR set to 4 in order to identify all of the

Bragg peak positions in the data, which is comparatively low.

However, increasing the SNR threshold above this did not

provide adequate results in terms of the number of Bragg

peaks identified. An SNR threshold of 4 resulted in a 100% hit

rate using PF8 with no images excluded from the data set.

Owing to the poor SNR, this data set is ideal to test the

accuracy and sensitivity of the RPF algorithm in correctly

assigning weakly diffracting Bragg peaks. For this analysis the

acceptable SNR for the RPF algorithm was left at the default

value (� = 6) and for PF8 it was set to four, as the Bragg peaks

were very weak in this data set. In this experiment, the

minimum number of Bragg peaks required to be detected in a

diffraction pattern in order to be identified as a hit was set to

five for both programs. Indexing was performed by index-

amajig within the CrystFEL package. The following para-

meters were used based on published results (Beyerlein et al.,

2017): for indexing methods mosflm-cell-nolatt,

mosflm-latt-nocell, dirax, asdf, xds-cell-latt

and xgandalf were chosen with -int-radius=2,3,4.

The partialator program was used within CrystFEL to merge

the data with the following parameters: -y mmm, -model=

unity, -iterations=3, -push-res=1. These parameters

were kept fixed in order to test the PF8 and RPF results.

From 453 231 frames collected for this experiment, PF8

detected 453 231 hits, giving a hit fraction of 100% whilst the

RPF algorithm detected 55 748 frames, reducing the hit frac-

tion to 12.30%.

The indexing fraction for PF8 was 5.26%, compared with

47.26% for RPF (23 864 and 26 346 indexed frames, respec-

tively). This result shows that whilst the RPF algorithm iden-

tified fewer ‘hits’ it found a far higher number of ‘quality’ hits,

indicating that the RPF approach is a reliable, robust method

for reducing data. We also ran PF8 on the output of the RPF

algorithm and indexed the results from the 55 748 hits found

by RPF. CrystFEL indexed 21 526 frames using the PF8 peak

lists, resulting in an increased indexing fraction of 38.61%

compared with the original PF8 hit finding but still a reduced

indexing fraction compared with the RPF results. Table 2

summarizes the results of analysing this data set along with the

results for the other two data sets. Fig. 10 presents a

comparison of CC�, Rsplit, CC1/2 and SNR for this analysis,

indicating similar trends for both algorithms. The accuracy of

RPF in detecting peaks within regions of high background

noise (such as within the solvent ring) is a result of how the

local background is modelled using a four-parameter fitting of

a tilt plane. This represents a significant advantage for crys-

tallographic data, for example, collected in strongly scattering

delivery media (Fig. 4).

Fig. 11 shows the peakogram plots which represents the

highest pixel value for each reflection over the resolution

range of the data. These plots were generated for the three

different data sets using CrystFEL peakogram-stream for both

the RPF and PF8 methods. Figs. 11(a), 11(d) and 11(g) show

the EuXFEL commissioning data set, CXIDB32 data and

Petra III data peak-finding results for RPF, while Figs. 11(b),

11(e) and 11(h) are the corresponding results using the PF8

algorithm. The plots identify that the Petra III data set has

lower reflection intensities than the other two data sets,

confirming the poor SNR in the data, while the EuXFEL data

have the highest resolution. However, the intensities and

number of peaks for each peak-finding algorithm appear

similar. But, if we extract the peaks only detected by RPF and

not PF8 [Figs. 11(c), 11( f) and 11(i)], a clear difference

between the two algorithms is observed. Figs. 11(c), 11( f) and

11(i) were generated by normalizing the histogram from

Figs. 11(a), 11(b), 11(d), 11(e), 11(g) and 11(h), respectively,

and then differentiating them. RPF was able to identify more

peaks at low resolution in the EuXFEL data set, while in the
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Figure 10
Comparison of the (a) Rsplit and CC� and (b) SNR and CC1/2 values as a function of resolution (Å) for the Petra III p11 beamline data set. Three tests
were performed comparing RPF, PF8 and RPF + PF8 peak-finding algorithms.



other two data sets RPF identifies peaks throughout the whole

resolution range.

RPF involves a two-stage process of hit finding. The first

step performs eight iterations of sorting of pixels within a local

area. The computational complexity of this process is linear

with respect to the number of pixels in that area. This is

because, during sorting, RPF does not sort elements within

each partition but rather finds two percentiles of the data and

every element in between the two percentiles. The second

stage, the scale estimation, involves a full sorting of the

elements. These two operations are performed for every

candidate Bragg peak. In contrast, PF8 performs five itera-

tions of averaging and calculating the standard deviation over

all pixels as a function of radial distance from the centre of the

image. This means that the computational complexity of PF8

increases with the size of the image and its speed consequently

decreases for detectors with larger pixel numbers.

The current implementation of RPF works offline and the

results reported here are obtained via offline analysis

performed on a high-performance computing cluster (DESY

Maxwell). To run the method in ‘real time’ online, a computer

(CPU, GPU, FPGA) needs to read the data from each indi-

vidual module of the detector. To provide an analysis of the

potential speed increase that RPF is capable of compared with

PF8, a histogram of the number of diffraction patterns versus

processing time per frame for 200 000 randomly selected

diffraction patterns from the EuXFEL commissioning data set

was generated (Fig. 12). This demonstrates that the RPF

algorithm yields a factor of three increase in the hit-finding

speed compared with PF8 whilst working offline. Fig. 12 is

generated using a single node with 80 cores (Intel, E5-2698 v4

@ 2.20 GHz, memory 512 GB) from the UPEX partition in the

Maxwell computing cluster. The online analysis speed is still to

be confirmed, but since the RPF algorithm can be run on
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Figure 11
Peakogram histograms showing the highest pixel value for each reflection versus resolution for (a) the CXIDB 32 data set, RPF results, (b) the CXIDB
32 data set, PF8 results, (c) the difference of normalized histograms of (a) and (b), (d) the EuXFEL commissioning data set, RPF results, (e) the EuXFEL
commissioning data set, PF8 results, ( f ) the difference of normalized histograms of (d) and (e), (g) the Petra III p11 data set, RPF results, (h) the Petra III
p11 data set, PF8 results, and (i) the difference of normalized histograms of (g) and (h). The histograms were generated using CrystFEL peakogram-
stream (White et al., 2012).



multiple detector modules in parallel, the relative difference in

speed is expected to be even greater.

5.4. Sensitivity analysis

In order to compare the sensitivity of the two methods with

the input parameters, we chose a small subset of the European

XFEL commissioning data set, used in Section 5.2, for a

sensitivity analysis and varied the input parameters for the two

peak-finder methods to observe their behaviour.

In this test we varied the minimum acceptable SNR para-

meter, �, for the two peak finders and report on the results.

The minimum acceptable SNR threshold was chosen assuming

no maximum resolution limit. The purpose is to find the

regions of � where performance is optimum for each method

and, more importantly, to judge the reliability of the methods

and their sensitivity to the input parameters. This is as

opposed to comparing the absolute values for performance of

the methods as the input parameters are treated differently in

these algorithms. This test was performed on a single sequence

(number 5) of run 96 of the specified data set. This subset

comprises 90 000 X-ray diffraction patterns collected from

lysozyme crystals. The results of this study are shown in Figs. 13

and 14. In Fig. 13, the number of hits and indexed patterns

with the two methods is shown. Fig. 14 shows the self-consis-

tency statistics for the evaluation of each method at four

different resolutions. The resolutions were randomly selected

as 3.6, 2.47, 2.08 and 1.86 Å. The aim of the test is to evaluate

the sensitivity of each method with respect to the input

parameter. All of the four figures of merit CC�, Rsplit, CC1/2

and SNR were stable at all of the resolution points tested for

RPF when the input parameter minimum acceptable SNR was

varied between 4 and 20. Therefore, the RPF performance was

less sensitive to the change in SNR parameter. On the other

hand, the PF8 performance was very sensitive to the minimum

acceptable SNR parameter, showing a large variation in the

four figures of merit when the minimum acceptable SNR

parameter was varied between 4 and 20. PF8 is highly tunable,

and from this analysis, it seems to give the best results when

the minimum acceptable SNR threshold is set to 6.3 for this

data set. On the other hand, the RPF algorithm is less sensitive

to this input parameter, which makes it suitable and more

robust for high-throughput unsupervised data analysis.

5.5. Pre-calculation of global threshold

Most peak finders have an input parameter for a global

threshold for intensity of Bragg peaks. For example, PF8 has

an input parameter called ‘threshold’ that allows the user to

enter a global value below which Bragg peaks are discarded.

Currently, the RPF algorithm does not support such an input.

Rather, it pre-calculates this value during a calibration step by

using the standard deviation of the detector dark field, �D, and

the ADU value (analogue-to-digital units) for a single photon,

�. When the estimated background for a Bragg peak is �B <

��D, the average �B is dominated by the noise of the detector.

Such an estimate is not informative enough and, unless the

Bragg peak is very bright, it is rejected. Instead of using the

threshold to reject Bragg peaks, RPF uses it to disregard the

estimation of the SNR when the background average is too

low. The pixel intensity must be above T = ��D + �(��D�)1/2.

In the robust statistics literature, typically 2 < � < 4. In order to

detect the weaker Bragg peaks in diffraction data sets ideally

the global threshold should be kept as low as possible.

Therefore, the default value for the global threshold was set to

� = 2 (the minimum value recommended in the literature).

Knowing that for a Bragg peak the intensity must be above T =

�B + ��B, and that in an ideal situation we have �2
B ¼ �B, the

region of acceptable values for Bragg peaks is shown in Fig. 15.

For the AGIPD-1M high-gain memory cell number 1, we

calculated � = 73.5 and �D = 9.1 (it is expected that �D = �/6 to

separate two Gaussians of zero and one photon by 6�D), which

gives T = 3.25�. This value is used as the example threshold in

Fig. 15 to show the region of acceptable intensities for Bragg

peaks.

For photon-integrating detectors such as AGIPD-1M, �D

can be calculated. For photon-counting detectors (e.g.
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Figure 13
Number of hits and indexable patterns as a function of the minimum
acceptable SNR threshold. The number of hits and indexable patterns
decrease for both methods with increasing minimum acceptable SNR. In
this case, the number of indexable patterns is more stable for RPF than
for PF8.

Figure 12
Histogram showing the speed of the two peak-finder algorithms, RPF
(blue) and PF8 (orange). Two hundred thousand diffraction images were
selected randomly from the EuXFEL commissioning data set and both
RPF and PF8 were used to classify images as ‘hits’. The speed with which
these algorithms carried out this task is demonstrated by plotting the
number of diffraction patterns versus the processing time per frame. The
histogram is generated using a single node with 80 cores (INTEL, E5-
2698 v4 @ 2.20 GHz, memory 512 GB) from the UPEX partition in the
Maxwell computing cluster.



PILATUS 6M) a digital signal is returned, giving the number

of photon events counted within the counting time. Photon

events are usually detected when the current in the sensor

exceeds half the maximum expected for a given photon

energy. In such detectors, calculation of �D is not possible

from the output, and we propose �D = 1/6 as above.

6. Conclusion

In this paper we have introduced an algorithm, termed the

‘robust peak finder’, for outlier detection to identify crystal

diffraction patterns in serial crystallography experiments. The

algorithm is based on robust statistical methods. We have

described a framework with application to serial crystal-

lography data analysis, which is a particularly data intensive

field. This algorithm uses robust statistical methods to reduce

the number of input parameters and avoid the need for a

priori knowledge of the experiment. We have shown that the

RPF method is effective and extracted a greater number of

Bragg peaks from a series of test data sets than previous

approaches using the default settings. The results of the data

analysis using this method appear reasonable and did not

necessitate any fine tuning of the input parameters.

Inevitably, one spends more time optimizing parameters for

one’s own algorithm, and optimized parameters for one data

set may or may not work for some other data set from a dif-

ferent beamline, different detector, different sample delivery,

different crystal quality etc. A parameter-free peak finder may
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Figure 15
Examples of pre-calculated global thresholds for Bragg peaks using the
relation between the average (�B) and variance (�2

B) of the Poisson
distribution, employed to model the background. The blue region shows
the acceptable intensity values for Bragg peak pixels for T = 3.25� and � =
6. The axis values are normalized by �.

Figure 14
Comparison of the performance of RPF and PF8 methods for (a) CC�, (b) Rsplit, (c) CC1/2 and (d) SNR as a function of the minimum acceptable SNR
threshold for four different resolutions. The performance of RPF for all four resolutions in all figures is less sensitive to change in the minimum
acceptable SNR threshold. However, the PF8 performance is very sensitive to the change of minimum acceptable SNR threshold.



never perform quite as well as one optimized by hand for a

particular data set, but it may be more useful if it eliminates

the need for a time-consuming manual optimization.

We compared the proposed algorithm with the existing

state-of-the-art algorithm for different data sets collected

under different experimental conditions and found a signifi-

cant increase in performance in terms of processing time and

hit-finding accuracy. This development is important for two

reasons. Firstly, it allows for data reduction to be conducted in

real time with confidence, meaning the data can be reduced

before they are written to file. Secondly, the simplicity of the

algorithm makes it more accessible for the general user

community, as it requires much less specialist domain knowl-

edge about hit-finding parameters due to the reduction in

tunable parameters. We provide a software library containing

an implementation of this algorithm which can be easily

integrated into any data analysis pipeline and an imple-

mentation in the popular crystallographic software libraries

CrystFEL and Cheetah. This work represents a significant step

towards fast automatic data processing for serial crystal-

lography experiments performed at high-repetition-rate X-ray

sources.
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