
computer programs

J. Appl. Cryst. (2021). 54, 1857–1866 https://doi.org/10.1107/S1600576721009262 1857

Received 26 February 2021

Accepted 6 September 2021

Edited by G. J. McIntyre, Australian Nuclear

Science and Technology Organisation, Lucas

Heights, Australia

Keywords: X-ray reflectometry; neutron

reflectometry; fitting software.

Supporting information: this article has

supporting information at journals.iucr.org/j

anaklasis: a compact software package for model-
based analysis of specular neutron and X-ray
reflectometry data sets

Alexandros Koutsioubas*
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anaklasis constitutes a set of open-source Python scripts that facilitate a range of

specular neutron and X-ray reflectivity calculations, involving the generation of

theoretical curves and the comparison/fitting of interfacial model reflectivity

against experimental data sets. The primary focus of the software is twofold: on

one hand to offer a more natural framework for model definition, requiring

minimum coding literacy, and on the other hand to include advanced analysis

methods that have been proposed in recent work. Particular attention is given to

the ability to co-refine reflectivity data and to the estimation of model-

parameter uncertainty and covariance using bootstrap analysis and Markov

chain Monte Carlo sampling. The compactness and simplicity of model

definition together with the streamlined analysis do not present a steep learning

curve for the user, an aspect that may accelerate the generation of reproducible,

easily readable and statistically accurate reports in future neutron and X-ray

reflectivity related literature.

1. Introduction

Specular neutron and X-ray reflectometry (NR and XRR) are

established experimental techniques for the investigation of

the structure of interfaces at the sub-nanometre scale (Penfold

& Thomas, 1990; Daillant & Gibaud, 2008; Born & Wolf, 2019;

Heavens, 1955). XRR and NR experiments are performed by

shining collimated X-ray or neutron beams at interfaces and

by registering the specularly reflected radiation intensity (R)

as a function of momentum transfer (Q ¼ 4� sin �=�, where �
is the incidence angle and � is the wavelength of the incident

radiation). Owing to the relatively short wavelengths of X-rays

and cold neutrons, the presence of nanometre-scale films at

interfaces gives rise to interference effects that modulate the

observed reflectivity. In this sense the experimentally

measured reflectivity R(Q) can be related to the nanometre-

scale features of an interface.

Depending on the nature of the used radiation, calculation

of R(Q) for a given scattering length density (sld) profile

(where sld is defined as the number-density-weighted nano-

metre-scale average of the scattering lengths of the layer’s

atomic constituents) is routinely performed using the Schrö-

dinger or Helmholtz equations (derived from Maxwell’s

equations) and by applying appropriate boundary conditions

of wavefunction continuity and momentum conservation or of

tangential electric and magnetic field component continuity,

respectively, at layer boundaries. However, for the solution of

the inverse problem [i.e. recovering the sld profile from R(Q)],

complications arise mainly because only the amplitudes of

reflected electromagnetic waves or neutron wavefunctions are
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measured during an experiment, thus leading to the loss of

phase information (the phase problem).

Several different ‘model-independent’ approaches for the

reconstruction of interfacial structure from reflectivity

measurements have been reported, based either on experi-

mental (Majkrzak & Berk, 1998; Majkrzak et al., 2003, 2000)

or on numerical/stochastic methods (Pedersen, 1992; Hohage

et al., 2008; Kunz et al., 1993; Zhou & Chen, 1993; Koutsioubas,

2019). However, the vast majority of investigations in the

literature rely traditionally on model-dependent refinements,

where the interface is modelled as a stratified medium

(succession of slabs) with prior knowledge about the system

being embodied in the bounds and relations between the sld,

thickness and roughness of each slab. Driven by that, several

software packages have been developed addressing the needs

of refining interfacial-model parameters with respect to

experimental data, with some of them specifically adapted to

different experimental scenarios, like polarized neutron data,

contrast-variation data sets and NR/XRR co-refinement. (For

a fairly complete and historic list of developed reflectivity

software the reader is referred to https://www.reflectometry.

org/information/software/.)

Notably, a subset of these programs has found widespread

use by the scientific community working with NR and XRR.

Among these, GenX (Björck & Andersson, 2007) is a Python

graphical user interface (GUI) and script-based program that

permits the execution of elaborate refinements by the expert

user. Additionally, with GenX the use of differential evolution

minimization has been introduced to reflectivity software. The

Motofit (Nelson, 2006), RasCAL (Hughes, 2019) and Aurore

(Gerelli, 2016) programs mainly address the case of co-

refining multiple solvent-contrast data from solid/liquid and

air/liquid interfaces. Finally, refnx (Nelson & Prescott, 2019)

and Refl1D (Kienzle et al., 2011) are powerful packages that

have introduced the use of Markov chain Monte Carlo

(MCMC) sampling for investigating parameter uncertainty

and covariance.

An important aspect of reflectivity analysis software is the

adopted way of defining the interfacial model, i.e. sld, thick-

ness and roughness of the layers, and their relation with other

defined parameters. GUI-based spreadsheet-like input of

parameters for each layer offers simplicity but tends to be

restrictive for the definition of elaborate layer models. On the

other hand, script-based model definition, while being in

principle flexible, may be complicated for the new user since it

requires writing package and computer language specific code

(classes, functions etc.) for the definition of layer structures

and constraints between parameters. Additionally, the model

definition has to address issues related to the way that co-

refinement of data from contrast-variation series or different

neutron-beam polarizations is handled.

In the present article we introduce a new software package

under the name anaklasis [�� �������	& (anaklasis) in ancient

Greek means reflection], where we combine an intuitive

hierarchical list-based type of input with the flexibility typi-

cally found in script-based software, in a way that requires

minimal coding literacy from the user. (Essentially, the only

coding skill that is required concerns the definition and basic

manipulation of lists in Python.) The main novelty is the

ability to define layer features (sld, thickness, roughness etc.)

directly as symbolic mathematical expressions involving

parameters. This aspect also extends to the definition of

constraints between parameters in the form of inequalities.

The resulting compact model definition simplifies reporting

data-refinement workflows in publications and creates a more

natural framework for new model definition, which usually

represents the main time bottleneck in analysing reflectivity

data. The above-mentioned characteristics of the package do

not come at the expense of advanced features such as the

ability to handle mixed-area models, co-refine data, or esti-

mate model-parameter uncertainty and covariance.

anaklasis includes the following key features:

(1) Compact and flexible model definition, based on the

creation of Python lists that contain layer data as numerical

values and/or as SymPy (Meurer et al., 2017) symbolic

expressions that involve parameters.

(2) Co-refinement of data (non-spin-flip polarized neutron

data sets, contrast-variation data sets) through the use of

‘multi-parameters’.

(3) Straightforward constraint definitions involving

expressions between model parameters.

(4) Use of the robust differential evolution SciPy (Virtanen

et al., 2020) minimizer.

(5) Effortless estimation of parameter uncertainty and

covariance through MCMC or bootstrap statistics.

(6) Easily readable output and ready-to-publish graphical

output.

(7) Open-source code under the GPL v3 licence that may be

installed on all major platforms (Windows/macOS/Linux).

In the following sections we outline the interfacial model

definitions and the methods used for reflectivity calculations,

data refinement and statistical analysis. Then, through a set of

representative examples, we validate the abilities of the soft-

ware package and showcase that it may address the vast

majority of refinement scenarios encountered when analysing

NR and XRR data.

2. Methods

anaklasis is written in Python 3 with Fortran 90 extensions for

the computationally intensive reflectivity calculations.1 These

are performed using the Abelès matrix method (Heavens,

1955), where layer roughness is taken into account using the

Névot–Croce approximation (Névot & Croce, 1980). The

ref submodule contains three callable functions, ref.

calculate for generating theoretical reflectivity curves,

ref.compare for comparison of experimental data with

theoretical curves and ref.fit for refinement of experimental

data against a defined model. Execution of the program takes

place by defining the interfacial model and instrumental

computer programs
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1 The validity of reflectivity calculations performed by the package is checked
periodically using the Open Reflectivity Standards Organization (ORSO;
https://www.reflectometry.org) validation tests (https://github.com/reflectivity/
analysis).



parameters as lists in a simple Python script and by passing

them as arguments to the desired function.

2.1. Model definition

Stratified-layer interfacial system definition is accomplished

by the creation of a hierarchical list structure. In order to

cover the general case where no single laterally uniform

structure is present at the interface,2 the system is defined as a

list that may contain multiple models (patches) with an asso-

ciated surface coverage that contribute incoherently to the

calculated reflectivity. Note that in practice, in most cases, a

single patch with a surface coverage equal to unity needs to be

defined. Each model is a list containing an arbitrary number of

layers (slabs). In turn, layers are also represented as lists

composed of six elements, i.e. real/imaginary part of the sld,

thickness, roughness, solvent volume fraction3 and description

(see SI0 in the supporting information for a pictorial repre-

sentation).

The elements of the layer list (except for the description)

can be either numerical values4 or SymPy mathematical

expressions. SymPy is a versatile package for symbolic

computation which, besides basic algebra, permits the

construction of expressions containing sums, derivatives and

integrals and/or a variety of functions like trigonometric,

logarithmic and exponential. Expressions may include the

layer number [from 0-fronting to (N + 1)-backing medium]

and an arbitrary set of user-defined global parameters, whose

values and descriptions are inserted in a separate list. Model

definition is accompanied by information related to the

instrumental parameters. These include 
Q/Q resolution,

incoherent background and a scale factor in the case of non-

normalized reflectivity.5 As will be shown in the coming

sections, this mode of input coupled with symbolic mathe-

matics provides enough flexibility for defining rather complex

models.

2.2. Data-refinement-related definitions

For experimental-data refinement with ref.fit, model

definition is the same as when we perform theoretical reflec-

tivity calculations with the ref.calculate and ref.

compare functions. However, we additionally need to specify

which of the defined parameters are fixed and which are free

to vary within specified bounds. For this purpose, two

numerical values are specified for each global parameter,

which represent either the min/max bound of a uniform

distribution or the mean and standard deviation in the case of

a normally distributed parameter. An identical min/max value

or a zero standard deviation signifies a fixed parameter.

In order to treat the case of co-refinement of an arbitrary

number of M input curves (NR and/or XRR) with the same

model, on top of global parameters we also introduce multi-

parameters, i.e. parameters that may adopt a different value or

set of bounds for each input curve. Their definition is similar to

global parameters, the difference being that M min/max or

mean/standard deviation pairs have to be specified, each one

corresponding to an input experimental curve. Multi-

parameters together with global parameters can be used in the

symbolic expressions inserted in the layer list.

As well as the definition of expected values for specific

parameters, prior knowledge about the system under study

might require application of constraints that need to be

expressed as inequalities involving defined global and multi-

parameters. anaklasis supports straightforward definition of

such constraints as SymPy expressions. Application of these

concepts will be the matter of many of the examples in the

next section.

2.3. Types of experimental data sets

In most cases, reflectivity data are stored in a two-, three- or

four-column format corresponding to Q, R(Q), 
R(Q) and 
Q.

Depending on the type of instrument, experimental error


R(Q) and/or resolution information 
Q might be missing or

considered as unreliable (common for XRR). When experi-

mental error information is missing, a refinement can be

performed without parameter uncertainty estimation. On the

other hand, if 
Q (full width at half-maximum of a Gaussian

approximation to the instrument resolution function) is not

present, meaning that point-wise smearing using Gaussian

convolution cannot be performed, the user may define a

constant 
Q/Q that is applied to the entire Q range.

anaklasis supports the input of two-, three- or four-column

ASCII data containing footprint-corrected reflectivity data

with Q and 
Q in units of Å�1 or nm�1. In future versions of

the program we intend to support the file format that will be

defined by ORSO.

2.4. Minimization and parameter uncertainty estimation

Depending on the type of data input [i.e. availability of


R(Q)] and on user choice for fitting on the linear [R(Q)] or

logarithmic [log10R(Q)] scale, during data refinement the

following figure of merit (FOM) gets minimized with respect

to the set of free parameters �:

(a) R(Q) with errors:

FOM1 ¼
XM

i¼1

wi

pi

Xpi

j¼1

½Rexp;iðQjÞ � RiðQj; �Þ�
2


R2
i;j

( )
: ð1Þ

(b) log10R(Q) with errors:

FOM2 ¼
XM

i¼1

wi

pi

Xpi

j¼1

½log10 Rexp;iðQjÞ � log10 RiðQ; �Þ�
2

f
Ri;j=½lnð10ÞRexp;iðQjÞ�g
2

 !
:

ð2Þ
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2 Here we refer to interfaces composed of different layer structures with
lateral dimensions much larger than the coherence length of the reflected
beam.
3 This applies in cases where a liquid is used as the fronting or backing
medium.
4 All used units are in Å for length and Å�2 for sld.
5 Although in anaklasis a scale factor is provided as a parameter that may be
varied in data refinements, it is in general suggested to avoid the use of ill-
normalized data in model refinements, since they may lead to a biased
structural model.



[The expression in the denominator inside the sum comes

from error propagation theory, where 
(log10 R)2 = [
R/

R ln(10)]2.]

(c) R(Q) no errors (with 1/R weighting):

FOM3 ¼
XM

i¼1

wi

pi

Xpi

j¼1

½Rexp;iðQjÞ � RiðQj; �Þ�
2

RiðQjÞ
2

( )
: ð3Þ

(d) log10R(Q) no errors:

FOM4 ¼
XM

i¼1

wi

pi

Xpi

j¼1

½log10 Rexp;iðQjÞ � log10 RiðQj; �Þ�
2

( )
:

ð4Þ

Here, wi is the fit weight of the input curve i, and the

subscript j runs over the number of points (pi) of each data set.

Minimization is performed using the differential evolution

algorithm (Storn & Price, 1997) available in SciPy (Virtanen et

al., 2020), which has proven to be a robust minimizer for

reflectivity data (Björck & Andersson, 2007) that avoids local

minima. After a successful minimization and if the experi-

mental error dR(Q) is available, there are three ways of esti-

mating the uncertainty of the model’s parameters:

(1) The fastest method, although sometimes prone to

numerical instabilities, is through a numerical estimation

(numdifftools package; D’Errico, 2006), near the FOM

minimum, of the diagonal elements Hkk of the Hessian matrix,

which are the second-order partial derivatives of the reduced-

�2 ( ~��2) with respect to each free parameter. Then the standard

deviation of the kth parameter is given by (Gerelli, 2016)


�k ¼
2

Hkk½ ~��
2ð�Þ�

� �1=2

; ð5Þ

where

~��2ð�Þ ¼
XM

i¼1

wi

pi � j�j

Xpi

j¼1

½Rexp;iðQjÞ � RiðQj; �Þ�
2


R2
i;j

( )
ð6Þ

and |�| is the number of free parameters.

(2) The second and quite computationally demanding

option, originally implemented in the program Aurore

(Gerelli, 2016), is based on the bootstrap method, where each

experimental curve is replicated K times (K = 1000 in

anaklasis) by replacing each [R(Q), 
R(Q)] data point with

[R(Q) + 
rand, 
R(Q)], where 
rand is a random number

belonging to a normal distribution with a mean equal to zero

and standard deviation equal to 
R(Q). Then by repeating

independently the minimization for all K generated data sets,

we calculate both the mean and standard deviation of each

free parameter.

(3) The last and probably most efficient method is based on

a Bayesian MCMC sampling of the system that examines the

posterior probability of free parameters, which is proportional

to the product of the prior probability and the likelihood.

MCMC was initially implemented for reflectivity analysis in

Refl1D (Kienzle et al., 2011), but here we closely follow the

methodology proposed in refnx (Nelson & Prescott, 2019).

MCMC sampling in anaklasis is performed using emcee

(Foreman-Mackey et al., 2013) and by assuming that the

measurement uncertainties 
R(Q) are normally distributed.

Automatically, an initial run generating a 500-sample chain

(i.e. sets of parameters compatible with data and prior infor-

mation) is used for estimating the ‘integrated autocorrelation

time’ (�). The estimate is used for discarding 10� samples and

for performing an actual production run for at least 60�
samples.

Note that both bootstrap and MCMC methods, except for

uncertainty estimation, give us the ability to draw a correlation

corner plot of all free parameters, where we may visually

identify correlations between free parameters and any prob-

able distribution multimodality or asymmetry close to

imposed parameter bounds that may indicate a required

revision of the initially considered bound.

computer programs
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Figure 1
Python code for XRR calculations of an Fe/Au film pair at the Si/air
interface.

Figure 2
XRR and sld/solvent volume fraction profiles for the Fe/Au film pair
on Si.



3. Reflectivity calculation and refinement
examples

In order to familiarize readers with aspects of

interfacial system definition in anaklasis, in this

section we present two examples of reflectivity

calculations. Then we move to data-refinement

examples that represent frequently encoun-

tered cases in NR and XRR research.

3.1. Two simple layers

Let us consider the relatively simple case of

an XRR experiment at the air/solid (Si) inter-

face, with the presence of two thin layers, a

40 Å Fe and a 60 Å Au film. We also assume a

roughness for all layers equal to 3 Å. The

instrumental resolution 
Q/Q and background

have typical values for synchrotron XRR. The

Python code for calculating the reflectivity of

such a model is presented in Fig. 1.

The code with its brief comments is almost

self-explanatory in this simple case of a single

model (patch) interface, where we just fill layer

lists with the numerical values of each para-

meter as done in GUI-based programs. By

definition, the roughness value of layer i refers

to the actual roughness between layers i and i +

1. Note that the fronting and backing media

have infinite thickness, and in the scripts we use

the convention of inserting a zero value

(although using any other numerical value will

not influence the calculations). The corre-

sponding graphical output (Fig. 2) includes the

theoretical reflectivity in R(Q) and R(Q)Q4

representation and the sld and solvent volume

fraction profiles. In the current example and

since no liquid media are present, the solvent

volume fraction profile is not relevant. Note

that if experimental data are available, and we

want to compare the theoretical reflectivity and

access the �2, we just need to specify the input data file and call

the ref.compare function at the end of the script (see the

related example for a supported lipid bilayer in the supporting

information SI1).

3.2. Nanoparticle islands on a substrate

We now pass to a more elaborate example. We consider an

NR measurement at a solid (Si)/liquid (D2O) interface that is

70% covered by millimetre-sized islands (patches) of close-

packed polystyrene (PS) spherical nanoparticles having a

diameter D = 150 Å. Because the island lateral size is orders of

magnitude larger than the typical coherence length of a

neutron reflectometer, the total reflectivity is given by the

weighted sum of contributions from the two models, i.e. Si/

D2O and Si/PS/D2O. Model definition for Si/D2O is straight-

forward, but for the Si/PS/D2O system we need an expression

for the volume fraction of the nanoparticles normal to the

computer programs
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Figure 3
Python code for NR calculations of PS nanoparticle islands at the Si/D2O interface.

Figure 4
NR and sld/solvent volume fraction profiles for PS nanoparticle islands at
the Si/D2O interface. Full lines represent Si/D2O and dashed lines Si/
nanoparticles/D2O profiles.



substrate. For spherical nanoparticles of diameter D on a

substrate, the volume fraction is given by (z) = (4A/D2)(Dz�

z2), where A is the volume fraction in the middle of the layer

and for close packing A ’ 0.91. So for the volume fraction of

the solvent (D2O) in the nanoparticle layer we arrive at the

expression

1� ðzÞ ¼ 1�
4A

D2
Dz� z2
� �

: ð7Þ

By slicing the nanoparticle layer into 100 slabs of D/100

thickness, we construct the model as described in the

commented code in Fig. 3. The corresponding output is plotted

in Fig. 4.

We define the nanoparticle layer with a for loop as a

succession of 100 1.5 Å-thick slices, while we use an algebraic

expression for the solvent volume fraction [equation (7)] that

includes two defined parameters (p0!A, p1!

D) and the integer number n of each slice. This

type of model building is particularly useful

when we work with multilayers, where we can

stack multiple layer structures using a for

loop. Related examples concerning a phos-

pholipid multilayer and a bimodal polymer

brush can be found in the supporting informa-

tion [SI2 and SI3; additional related literature:

Anastassopoulos et al. (2013)].

Our calculation did not include possible

polydispersity of the nanoparticles. If we want

to take this into consideration then in anaklasis

we just need to modify equation (7) and use an

additional parameter describing nanoparticle

polydispersity. Assuming that the nanoparticle

diameter is distributed normally with a stan-

dard deviation �D, we may rewrite the expres-

sion for the solvent volume fraction in the

nanoparticle layer as

1� ðzÞ ’

ZDþ3�D

D�3�D

f ðxÞmin 1�
4A

x2
xz� z2
� �

; 1

� �
dx;

ð8Þ

where

f ðxÞ ¼
1

�D 2�ð Þ1=2
exp �

1

2

x�D

�D

� 	2
" #

: ð9Þ

The code and related output for polydisperse

nanoparticles following equation (8) can be

found in the supporting information (SI4).

3.3. Polymer brush refinement

Some of the concepts of model building

introduced in the last example will also be used

here for the refinement of experimental NR

data from a PS (Mw = 70 K) polymer brush at

the quartz/d-toluene interface that have been

acquired (Hiotelis et al., 2008) at the now-

decommissioned EROS time-of-flight reflectometer at the

Laboratoire Léon Brillouin (Saclay). End-grafted linear

polymer chains (brushes) due to a balance between entropic

and steric interactions are expected from mean-field theory

(Milner et al., 1988) to form extended layers having a volume

fraction profile of the form (z) = (0) � Czn. At sufficiently

high grafting densities the exponent n is equal to 2 (parabolic

profile). Setting the maximum brush-layer extension as L, and

since (L) = 0, we may rewrite the above expression as (z) =

(0)[1 � (z/L)n].

Using the same line of thought as in the previous example

we may approximate the brush layer by a number of ‘thin’

slices having a solvent volume fraction

1� ðzÞ ¼ 1� ð0Þ 1� z=Lð Þ
n

½ �: ð10Þ

computer programs
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Figure 5
Python code for NR data refinement from a PS brush at the quartz/d-toluene interface.



Given that we want to fit the relevant experimental data, we

define a set of global parameters that are left free to vary.

These are the volume fraction at z = 0 [(0)], the brush length

(L), the exponent (n) and the thickness of a thin H2O layer

that is present at the interface. The parameters (0), L and n

appear in the expression defining the solvent volume fraction

profile of each brush layer slab. We assume that all of the

parameters have a flat prior probability (uniform) to vary

within the specified bounds, except for the thickness of the

few-ångström-thick water layer that is defined as a normally

distributed parameter given by its mean value and standard

deviation. The corresponding code is given in Fig. 5.

The data refinement gives a water-layer thickness

3.9 � 0.1 Å, (0) = 0.10 � 0.01, L = 480 � 2.7 Å and n =

1.85 � 0.05. Using MCMC sampling (or bootstrap) except for

parameter uncertainty estimation, together with the fitted

curves and sld/solvent profiles we also plot the corresponding

1� confidence intervals (Fig. 6). Additionally, we obtain a

corner plot of the free parameters that is informative about

covariances or multi-modalities. In the present case (Fig. 7)

the slight stretch in the 2D projections of the posterior

probability distribution of parameter pairs suggests a

moderate covariance between parameters.

3.4. Refinement of lipid bilayer in three-solvent contrasts

A type of NR data refinement that is encountered quite

frequently concerns the concurrent fitting of reflectivity curves

from solvent-contrast-variation series, a method that permits

an overall reduction of modelling ambiguity (Fragneto et al.,

1995; Braun et al., 2017; Wacklin, 2010). Supported phospho-

lipid membranes at the solid/liquid interface represent an

archetypical system that can be studied in this way, where the

same structural model is used for fitting multiple curves and

only the solvent contrast is varied. Here let us consider a

three-contrast data set [D2O, Si-matched water (SMW) and

H2O] of a dimyristoylphosphatidylcholine (DMPC) supported

bilayer at the Si/water interface acquired on the Platypus

neutron reflectometer (ANSTO) (James et al., 2006) and

distributed as an example with the package refnx (Nelson &

Prescott, 2019).

We model the interface using a six-layer model as SiO2/thin

water layer/inner lipid heads/inner lipid tails/outer lipid tails/

outer lipid heads, where solvent may partially penetrate into

each lipid layer. Given that the surface area per molecule

(Apm) is the same for both lipid leaflets, the sld (not accounting

for water penetration) and solvent volume fraction solv of

each of the four lipid layers are given by

sldi ¼
bi

Apmti

; ð11Þ

solvi
¼ 1�

Vi

Apmti

; ð12Þ

where t is the layer thickness and b and V are the corre-

sponding scattering length and molecular volume, respec-

tively.

In the supporting information (SI5) we present the

commented code listing containing the lipid-bilayer model

based on equations (11) and (12), where we additionally apply

a set of constraints so that the solvent volume fraction always

stays larger than zero during parameter refinement. This is

accomplished by populating the constraint list with expres-

sions of the type 1 � Vi /(Apm ti) > 0. Special mention needs to

computer programs
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Figure 7
Corner plot of the free parameters during the PS brush NR data
refinement. The panels on the diagonal show the 1D histogram for each
model parameter obtained by marginalizing over the other parameters,
with a blue line to indicate the mean value. The off-diagonal panels show
2D projections of the posterior probability distributions for each pair of
parameters.

Figure 6
Fitted NR data and sld/solvent volume fraction profiles for a PS brush at
the quartz/d-toluene interface.



be made of how the solvent sld is handled for each input curve.

We define a multi-parameter of the form shown in Fig. 8,

where three min/max bound pairs, one for each contrast, are

inserted. The use of the multi-parameter in expressions is the

same as for global parameters, the only difference being that

the bounds are specific for each input curve. Here we have

chosen to use different min/max bound values for all three

contrasts. This leaves the solvent sld as a free parameter,

accounting for an imperfect solvent exchange during the

measurement procedure.

The bilayer parameters (area per lipid, inner head thickness,

outer head thickness, tail thickness, roughness) together with

thin water layer thickness, solvent sld, background and scale of

each curve add up in total to 16 free parameters. The data fit

(Fig. 9) results in parameter values well within expectations

from previous literature. The corner plot of free parameters

(supporting information SI5) reveals a relatively strong

correlation between tail thickness and area per lipid, as also

found by Nelson & Prescott (2019)

In the supporting information (SI6) we include an even

more characteristic example of contrast manipulation in NR,

based on measurements acquired by Hollinshead et al. (2009)

and thoroughly reanalysed by McCluskey et al. (2019, 2020),

where for a distearoylphosphatidylcholine (DSPC) lipid

monolayer at the air/water interface the contrasts of both the

water and lipids are varied systematically. We co-refine seven

different curves with a single structural model, highlighting the

use of multi-parameters.

3.5. Polarized neutron reflectivity refinement

Multi-parameters in anaklasis also find a very convenient

use in the case of another major application of NR, i.e. the

study of magnetic thin films by non-spin-flip polarized NR

(PNR) (Majkrzak et al., 2006). For saturated magnetic thin

films, the system is birefringent because the sld depends on the

neutron polarization with respect to the magnetization. So in

co-refinement of PNR data, a multi-parameter can be defined

for setting the magnetic sld contribution depending on beam

polarization. One such refinement of PNR (0.5 T applied

magnetic field) from an Fe–Ni alloy/Au layer at the Si/D2O

interface acquired on the MARIA reflectometer (MLZ)

(Mattauch et al., 2018) is shown in Fig. 10.

One may even combine in such a co-refinement both PNR

and XRR data of the same sample, as described in an addi-

tional example in the supporting information (SI8).

4. Discussion

The initial motivation for developing anaklasis came from the

observation that a usual bottleneck in the analysis of reflec-

tivity results by users of neutron and X-ray facilities is related

to the relative difficulty in implementing custom interfacial

models in existing reflectivity software. When the system

under study is simple and may be approximated by a succes-

sion of a few uniform layers, the use of GUI-based programs

provides a convenient way of fitting experimental results.

However, when an interfacial model that is based on intuition

or previous knowledge about the system needs to incorporate

analytical expressions and constraints between model para-

meters, GUI programs tend to be restrictive. Although there

computer programs
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Figure 8
Python code for defining the multi-parameter list used in three-contrast
NR phospholipid bilayer refinement.

Figure 9
Co-refined NR data and sld/solvent volume fraction profiles for a
supported DMPC bilayer at the Si/water interface. The reflectivity curves
are systematically shifted on the vertical axis for clarity. Black, blue and
green points correspond to D2O, SMW and H2O solvent contrasts.

Figure 10
Co-refined PNR data for an Fe–Ni (�400 Å)/Au (�100 Å) film pair at the
Si/water interface. The Python code for the fit of the data can be found in
the supporting information (SI7). The reflectivity curves are system-
atically shifted on the vertical axis for clarity.



exist powerful reflectivity analysis packages (Nelson &

Prescott, 2019; Kienzle et al., 2011) where complicated models

can be defined by writing package-specific code, we argue that

anaklasis provides an alternative and more direct means of

elaborate model definition, since functional dependences and

inequality constraints between model parameters can be

expressed in near natural mathematical language.

The adopted scheme of entering values or expressions into a

Python list requires minimal coding literacy and produces a

very compact representation of reflectivity data analysis. In

principle, someone reading a script could deduce most details

of calculations or refinements given the information on how

global and multi-parameters work in anaklasis. On the other

hand the use of SymPy expressions describing layer para-

meters and constraints, together with basic Python list

manipulation, permits the definition of a very broad range of

interfacial models, as showed by the given examples. Here we

note that the only general use case that is not currently

covered by anaklasis concerns spin-flip polarized reflectivity,

and interested users are encouraged to use packages like

GenX (Björck & Andersson, 2007) that explicitly treat such

systems.

Experimental data input is flexible in terms of reflectivity

data coming from different types of instruments (neutron or

X-ray reflectometers, reporting or not experimental error and

resolution). The option to weight the contribution of different

curves in co-refinements or to use different figures of merit is

offered as a way to remedy any detected bias towards high or

low Q in the resulting fits. After model building and reaching

an acceptable fit of the experimental data with the differential

evolution minimizer, the user is provided with the option to

proceed to an MCMC sampling or bootstrap analysis,

obtaining a realisitic estimate of parameter uncertainty and

possible covariance. The program output in the form of log

files contains layer-by-layer detailed information, while

graphical output as seen in previous sections summarizes the

resulting sld profiles and the overall agreement between the

model’s theoretical reflectivity and the experimental data. All

functions return results in the form of multi-key dictionaries,

so that scripts for batch calculations or result post-processing

can be written. Furthermore, anaklasis can be incorporated

into Jupyter notebooks (Kluyver et al., 2016), aiding the

production of elegant reports.

Future addition of features to the package will not break

compatibility of already written scripts. For example, addition

of a new type of bootstrap analysis based on the assumption of

Poissonian statistics for 
R(Q) will be added as an additional

keyword option for the argument method, thus not affecting

past-developed refinement scripts. Envisioned capabilities for

calculating reflectivity curves from molecular dynamics

trajectories (Koutsioubas, 2016) will come in the form of new

sub-modules. Additionally for the sake of reproducibility, a

test script is provided for the core reflectivity calculations of

the package so that all future versions may be tested before

release.

While the incorporation of symbolic expressions in the

interfacial system definition provides a more direct and

natural framework for users, it also comes with relative

performance penalties that accumulate as the number of

defined layers and complexity of mathematical expressions

increase. Although in the current version of anaklasis reflec-

tivity calculations are not vectorized as in other packages

(Nelson & Prescott, 2019; Kienzle et al., 2011), the use of

Fortran 90 extensions for the core reflectivity calculations and

the fact that differential evolution and MCMC use all the

available CPU cores (on a POSIX-compliant system, Linux/

macOS) provide adequate speed of calculations during data

refinements. Indicatively, the refinement of the three-solvent-

contrast lipid bilayer data presented above, together with the

MCMC sampling for the estimation of parameter uncertainty,

takes less than 8 min on a four-core (eight-thread) modern

mobile CPU running Linux. On the same machine, the

presented full refinement of polymer brush data takes about

90 s, and bootstrap analysis close to 45 min.

Installation of the program requires the NumPy package

(Harris et al., 2020) and the presence of a Fortran compiler like

gfortran. Since installation of a Fortran compiler on Windows

might pose difficulties, a package with pre-compiled exten-

sions is also provided for Windows 10. (The current version of

the package also provides a slower pure Python calculation

engine, thus not requiring an installed Fortran compiler.) All

other required packages are handled automatically by the

installation script. The program output includes a list of all

packages used during calculations, together with their

versions. anaklasis is released under the GPL v3 licence and all

other dependencies are released under open-source licences.

The source code, documentation and example library (exam-

ples are provided in the form of both scripts and annotated

Jupyter notebooks) of the project are held in GitHub (https://

github.com/alexandros-koutsioumpas/anaklasis) and users are

encouraged to contribute interfacial models and refinement

scripts that can be integrated into the examples library. Finally,

an option to run anaklasis Jupyter notebooks in the cloud

through the Binder (https://mybinder.org) project is offered,

thus allowing users to perform analysis of reflectivity data

using a web browser and without installing the software

locally.

5. Conclusions

anaklasis is a new open-source tool for the analysis of XRR

and NR data with a simple and compact interfacial model-

definition method, providing advanced features for data

refinement, including MCMC and bootstrap analysis. Its

smooth learning curve may both accelerate treatment of data

and aid in the reportability and reusability of published

reflectivity results.
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