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aJülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, Forschungszentrum Jülich GmbH, 85748
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Iron oxide nanoparticles find a wide variety of applications, including targeted

drug delivery and hyperthermia in advanced cancer treatment methods. An

important property of these particles is their maximum net magnetization, which

has been repeatedly reported to be drastically lower than the bulk reference

value. Previous studies have shown that planar lattice defects known as

antiphase boundaries (APBs) have an important influence on the particle

magnetization. The influence of APBs on the atomic spin structure of

nanoparticles with the �-Fe2O3 composition is examined via Monte Carlo

simulations, explicitly considering dipole–dipole interactions between the

magnetic moments that have previously only been approximated. For a single

APB passing through the particle centre, a reduction in the magnetization of

3.9% (for 9 nm particles) to 7.9% (for 5 nm particles) is found in saturation

fields of 1.5 T compared with a particle without this defect. Additionally, on the

basis of Debye scattering equation simulations, the influence of APBs on X-ray

powder diffraction patterns is shown. The Fourier transform of the APB peak

profile is developed to be used in a whole powder pattern modelling approach to

determine the presence of APBs and quantify them by fits to powder diffraction

patterns. This is demonstrated on experimental data, where it could be shown

that the number of APBs is related to the observed reduction in magnetization.

1. Introduction

The increasing number of existing and potential applications

for superparamagnetic iron oxide nanoparticles (SPIONs) has

sparked considerable interest from both a technological and a

scientific point of view. For example, seals and adaptive

dampers make use of ferrofluids containing SPIONs (Bailey,

1983; Raj et al., 1995; Sun, 2002). Due to their biocompatibility,

SPIONs are also used in the field of medicine for tissue repair

(Bock et al., 2010; Pareta et al., 2008; Tran & Webster, 2009)

and targeted drug delivery (Dobson, 2006; Veiseh et al., 2010;

Sun et al., 2008), as contrast agents for magnetic imaging

(Josephson et al., 1999; Semelka & Helmberger, 2001; Corot et

al., 2006; Jun et al., 2008; Laurent et al., 2008; Sun et al., 2008;

Ma et al., 2015) and magnetic particle imaging (Gleich &

Weizenecker, 2005), and in cancer treatment by magnetic

hyperthermia (Johannsen et al., 2005; Hergt et al., 2006;

Gonzales-Weimuller et al., 2009; Krishnan, 2010; Kumar &

Mohammad, 2011; Laurent et al., 2011; Deatsch & Evans,

2014). The structural and magnetic properties of SPIONs have

been subject to extensive research, for example on the origin

of the reduction of the saturation magnetization in �-Fe2O3

and Fe3O4 nanoparticles depending on the particle size
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(Nedelkoski et al., 2017; Sharifi Dehsari et al., 2018; Disch et

al., 2012; Nemati et al., 2018; Herlitschke et al., 2016;

Wetterskog et al., 2013; Andersen et al., 2021). The origin of

this reduction appears to be a combination of several effects,

such as spin canting near defects (Disch et al., 2012;

Herlitschke et al., 2016), surface spin canting and the presence

of antiphase boundaries (APBs) (Nedelkoski et al., 2017;

Köhler et al., 2021). The last have a strong influence on the

magnetic properties of iron oxide nanoparticles (Köhler et al.,

2021) and are the subject of this study.

Antiphase boundaries are interfaces in a crystalline struc-

ture that separate domains of the same ordered phase which

are displaced relative to each other (Kikuchi & Cahn, 1979;

Allen & Cahn, 1979). They occur especially in metallic systems

with disorder–order transitions, e.g. the extensively studied

alloy Cu3Au (Wilson, 1943; Fisher & Marcinkowski, 1961;

Wilson & Zsoldos, 1966; Warren, 1990; Scardi & Leoni, 2005).

APBs in Fe3O4 thin films have also been the subject of

numerous investigations (Hibma et al., 1999; Eerenstein et al.,

2001; Eerenstein, Palstra, Hibma & Celotto, 2002; Eerenstein,

Palstra, Saxena & Hibma, 2002; Luysberg et al., 2009; Gilks et

al., 2013). Recent work has shown that APBs are stable in iron

oxide nanoparticles and are, to a large extent, responsible for

specific magnetic properties (Wetterskog et al., 2013;

Nedelkoski et al., 2017; Köhler et al., 2021). APBs in iron oxide

nanoparticles are assumed to originate from oxidation

processes during the synthesis of these particles, where the

initial FeO transforms into Fe3O4 and �-Fe2O3. As observed

from dark-field transmission electron microscopy, the

nucleation of the spinel phase Fe3O4 occurs at multiple spots

in the particle. When the various subdomains eventually meet

with continuing oxidation of the particle, the respective

structures of the domains might be shifted, resulting in an

APB. Upon further oxidation Fe3O4 is transformed into the

structurally very similar �-Fe2O3, while the previously created

APBs persist (Wetterskog et al., 2013).

First-principles calculations showed that stable APBs form

on the {110} planes of Fe3O4 thin films (McKenna et al., 2014).

The two most stable configurations are crystal translations

of 1/4a[110] (APB-I) and 1=4a½110� þ 1=4a½110� (APB-II).

APB-I has a low formation energy of 102 mJ m�2 because the

only distortion resulting from this shift is found between

octahedral and tetrahedral Fe sites at the interface. The

oxygen sublattice is not affected, and the total number of

tetrahedral and octahedral sites remains the same. APB-II has

a calculated formation energy of 954 mJ m�2, associated with

a larger degree of structural distortion induced by the lattice

translation. The most notable feature of APB-I is the breaking

of the long B-site chains perpendicular to the boundary plane,

which results in a modification of the bond angle between iron

atoms in these chains from 90 to 180� and a subsequent change

of the magnetic superexchange interaction from ferromag-

netic to antiferromagnetic. As noted before, this has an impact

on the magnetic properties of iron oxide nanoparticles

(Nedelkoski et al., 2017) and thin films (Moreno et al., 2021).

The resulting antiferromagnetic superexchange between

octahedral Fe3+ ions across the boundary has been confirmed

for Fe3O4 thin films via magneto-resistance measurements

(Eerenstein et al., 2001). Simulations of the effect of APBs on

the atomic spin structure in Fe3O4 nanoparticles (10 nm) in

fields of 5 T suggested a tilting of the net magnetization for the

two structural subdomains separated by the APB away from

the applied field direction, thus resulting in magnetic domains

leading to the observed reduced total magnetization

(Nedelkoski et al., 2017). However, in simulations of structures

containing this kind of defect, dipole–dipole interactions are

often neglected, or only approximated by a macrocell method,

due to the high computational effort required to calculate the

dipole–dipole energy term that contains all interatomic

distances (Nedelkoski et al., 2017; Evans et al., 2014). Never-

theless, the long-range nature of this interaction might

produce non-negligible effects on the atomic spin structure

that could have been overlooked by the previous approx-

imations. Previous studies also rely on high-resolution trans-

mission electron microscopy techniques for the detection of

APBs in iron oxide nanoparticles (Wetterskog et al., 2013;

Nedelkoski et al., 2017).

In this work we employ atomistic Monte Carlo simulations

explicitly considering the dipole–dipole interactions to study

the effect of APBs on the magnetic spin structure of iron oxide

nanoparticles. Furthermore, we show via simulations of X-ray

powder diffraction patterns and by comparison with experi-

mental data that APBs in nanoparticles produce a distinct

signature in the diffraction profile that concerns the widths of

diffraction peaks, which can be used to check for the presence

of APBs and to quantify them.

2. Methods

2.1. Computer simulations

In order to study the effect of APBs on the spin structure

and the crystal structure, simulations were performed. Spin

structures were simulated with an atomistic Monte Carlo

approach utilizing the Metropolis algorithm (Newman &

Barkema, 1999). The influence of APBs on powder diffraction

patterns was simulated with the Debye scattering equation

(Debye, 1915). Since for small crystals �-Fe2O3 appears to be

the more common composition (Demortiere et al., 2011;

Andersen et al., 2021) we focus on this compound. The unit

cell contains eight tetrahedrally coordinated (A site) iron sites

and 16 octahedral (B site) iron sites in addition to 32 oxygen

atoms. Vacancies are distributed on B sites in order to achieve

charge neutrality (Andersen et al., 2021). The vacancies have

been observed to order, thus reducing the unit-cell symmetry

from cubic to tetragonal (Shmakov et al., 1995; Greaves, 1983;

Jørgensen et al., 2007). For the sake of reducing the number of

parameters in this study, random vacancy distribution is

assumed on the octahedral sites, yielding the cubic space

group Fd3m. The magnetic structure of �-Fe2O3 can be

described by octahedral and tetrahedral sublattices where the

atomic magnetic moments are antiferromagnetically aligned

via superexchange interactions between Fe3+ ions on A and B

sites. This results in ferrimagnetic ordering of the magnetic
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moments in the unit cell (Lee & Lee, 2006; Andersen et al.,

2021). A net magnetic moment per unit cell can be observed

due to the larger number of Fe ions on B sites than on A sites,

resulting in a bulk saturation magnetization of 82 A m2 kg�1

at 0 K (Coey, 2010).

We emphasize that the nanoparticles considered for the

simulations are idealized in the sense that no spatial gradients

in the iron or oxygen concentrations or in the lattice para-

meters are included. Moreover, no surface anisotropy effects

resulting from facets that might be present in real samples

were considered. Previous studies have found that, while

surface effects, such as a non-magnetic surface, have an

influence on the magnetic properties of iron oxide nano-

particles, they alone are not able to explain the reduced

magnetization of these particles (Disch et al., 2012; Köhler et

al., 2021). In the simulations presented here we do not

consider them, since these surfaces are not expected to alter

the effects of APBs. For real particles, however, a non-

magnetic surface might contribute to the observed net

magnetization.

2.1.1. Monte Carlo simulations. The energy for a semi-

classical Heisenberg spin model of magnetic moment vectors

in �-Fe2O3 nanoparticles used in this work is given by

E ¼ Eexchange þ Eanisotropy þ EZeeman þ Edipole; ð1Þ

where the contributions are due to the magnetic exchange

interactions of nearest neighbours, the cubic anisotropy, the

applied field through the Zeeman interaction and the

magnetic dipole–dipole interactions of atomic spins.

The strongest contribution is the exchange energy, and this

is given by

Eexchange ¼ �
P
i 6¼j

JijSi � Sj; ð2Þ

where the sum runs over the nearest neighbours, Si and Sj are

the spin vectors located at the atom positions i and j, and Jij is

the relevant exchange constant. The numerical values used for

the inter-sublattice (AB) and intra-sublattice (AA and BB)

exchange constants are JAA/kB = �21.0 K, JBB/kB = �8.6 K

and JAB/kB =�28.1 K, respectively, where kB is the Boltzmann

constant in joules per kelvin (Kodama & Berkowitz, 1999). For

the modified superexchange interaction across the APB, JBB/

kB is taken as 103.3 K if both octahedral iron atoms are placed

at the APB (Nedelkoski et al., 2017).

The magnetocrystalline anisotropy contribution is given by

(Evans et al., 2014)

Eanisotropy ¼ �
kc

2
P

i

S4
x þ S4

y þ S4
z

� � : ð3Þ

A cubic magnetocrystalline anisotropy constant kc of

3.2 � 10�25 J per atom was used (Nedelkoski et al., 2017). Sx ,

Sy and Sz are the vector components of the classical spin vector

S. Surface anisotropy was not explicitly considered, but

surface canting of spins might still be visible in the simulations,

due to the reduced number of neighbours and the rough

surface introduced by the spherical cutting of the particle.

The interaction of the particle with the external magnetic

field is described by the Zeeman energy (Blundell, 2001),

EZeeman ¼ �
P

i

�iSi � B; ð4Þ

where B is the applied field in tesla and �i is the magnetic

moment of atom i taken as 5 �B.

The energy contribution from magnetic dipole interactions

is

Edipole ¼ �
X
i 6¼j

�0�i�j

4�R3
3ðSi � R̂RÞ ðSj � R̂RÞ � Si � Sj

� �
; ð5Þ

where R̂R and R are the distance vector and the distance

between atoms i and j, respectively. Due to the long-range

nature of these interactions the sum has to run over all Fe ions

in the particle, resulting in a computational burden that scales

with R3. In this work the dipole–dipole interactions are

calculated for all spins directly without further approxima-

tions.

Only the ground states are considered here, i.e. the

temperature entering the Boltzmann distribution of the

Metropolis algorithm is set to a value of 0.01 K. For the spin

structure simulations, a field of 5 T was applied and 20 starting

configurations of the particle with random placements of the

vacancies were averaged after allowing equilibration of the

system with 5000 Monte Carlo steps, i.e. every spin in the

structure has statistically been moved 5000 times. For the

hysteresis simulations, 8000 steps were used per field step of

0.1 T and 20 different configurations in 20 orientations,

meaning a total of 400 simulated loops were averaged.

The particle is built up by repeating the Fd3m �-Fe2O3 unit

cell n times in all space directions and removing all atoms

outside a bounding sphere with a diameter of D = 5.0, 6.7 or

9.2 nm. Oxygen atoms were considered as non-magnetic and

thus were not included in the structural model for Monte

Carlo simulations. Random vacancies were introduced at the

octahedral lattice sites, giving an average occupation of 0.88%.

This is the theoretical occupation of this site in bulk maghe-

mite. Note, however, that site occupancies for real samples

might vary (Grau-Crespo et al., 2010; Cervellino et al., 2014;

Andersen et al., 2021). The APB was introduced into the

nanoparticle by shifting one half of the crystal structure by 1/

4a[110], resulting in the configuration shown in Fig. 1, where

the APB is placed at the particle centre and assumed to be

planar. The last assumption is based on energetic considera-

tions, where a minimization of interfacial energies is expected

to lead to planar APBs (Bragg, 1940; Allen & Cahn, 1979).

The placement of the APB at the particle centre is based on

experimental observations using high-resolution transmission

electron microscopy (Levy et al., 2011; Nedelkoski et al., 2017;

Köhler et al., 2021).

2.1.2. Debye scattering equation. The Debye scattering

equation (DSE) is given by

IðQÞ ¼
X

m

f 2
mðQÞ þ

X
m 6¼n

fmðQÞ fnðQÞ
sinðQrmnÞ

Qrmn

; ð6Þ
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where fn(Q) is the atomic scattering or form factor of atom n,

and rmn is the distance between atoms at rm and rn . The

scattering vector magnitude is defined as Q ¼ ð4�=�Þ sin �.
Derivations can be found in the original work by Peter Debye

(1915) or in the work of Farrow & Billinge (2009). Thermal

vibrations of atoms were not considered, since they produce

only a decrease in peak intensity for increasing scattering

angles and a diffuse background, and thus are not expected to

affect substantially the peak shapes and widths in the

considered Q range (Warren, 1990). Due to the spherical

average used in the derivation of the DSE, the calculated

pattern corresponds to the particle in all possible orientations.

Since only the pair-wise atomic distances rmn enter equation

(6) the input structure is not required to be periodic, which

allows the study of effects that alter the periodicity of crystal

structures such as APBs. I(Q) in equation (6) is the average

coherent scattering intensity.

The first part of equation (6) is the self-scattering contri-

bution from an atom with itself, i.e. m = n and hence rmn = 0,

and is equal to the number of atoms N times the average of the

squared atomic form factors h f(Q)2
i. The atomic form factors

are approximated by the interpolation

f ðsin �=�Þ ¼ cþ
P4

i¼1

ai exp �biðsin �=�Þ2
� �

; ð7Þ

where a, b and c are the Cromer–Mann coefficients as given in

International Tables for Crystallography (Cromer & Mann,

1968; Brown et al., 2006). This approximation is reliable up to

Q = 25 Å�1, enough for the scattering range considered in this

work. The nanoparticle structures used for the DSE are set up

in the same way as for the Monte Carlo simulations, but here

oxygen atoms are of course considered as part of the structure.

2.2. X-ray powder diffraction

Synchrotron X-ray powder diffraction experiments were

performed on beamline MS-X04SA of the Swiss Light Source

at the Paul Scherrer Institut (Villigen, Switzerland) (Willmott

et al., 2013) on a dried sample of 15.6 nm nanoparticles with

oleic acid coating obtained from Ocean NanoTech LLC (San

Diego, California, USA). The instrumental contribution was

determined by measurements of the NIST standard 660a

LaB6 . Measurements were performed with an X-ray wave-

length of 0.4329 Å. The nanoparticle sample was filled into a

glass capillary with 0.9 mm interior diameter, which was

inserted into a brass fitting and loaded into the sample

cassette. For the measurement the sample was picked up by

the sample-changer robot and inserted horizontally in the

sample space. During the measurement the capillary was

rotated around its long axis. After collection of the data with a

1D detector the instrument-related corrections were applied

immediately. The measured data were corrected for the empty

capillary and the empty beam contributions.

3. Results and discussion

3.1. Influence of APBs on the atomic spin structure

The strong antiferromagnetic superexchange across the

APB leads to spin canting of the involved cations that persists

even in high fields of 5 T (Fig. 2). From a visual inspection of

the spin arrangement, the spin canting is confined to the
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Figure 1
(a) The spherical nanoparticle structure used for the Monte Carlo and
Debye scattering equation simulations (visualized with MayaVi; Rama-
chandran & Varoquaux, 2011). Oxygen atoms have been omitted for
better visibility of the iron atoms. The structure contains an APB through
the particle centre (black dashed line). Pale-green dots correspond to iron
atoms on tetrahedrally coordinated A sites. Red dots are the B-site iron
atoms that are octahedrally coordinated by oxygen atoms [black dots in
panel (b)]. Vacancies are placed randomly on B sites. (b) The Fd3m unit
cell of the �-Fe2O3 structure [generated with Vesta (Momma & Izumi,
2011)]. The grey plane indicates the shifting plane of the 1/4a[110] APB.
The outlines of two unit cells are also shown in black. The blue line
highlights a B-site chain perpendicular to the APB, where the translation
results in a change of bond angles from 90� to 180� across the boundary
and subsequent antiparallel alignment of the atomic spins (drawn below
in top view).

Figure 2
An enlargement of the spin structures of the 9.2 nm particles with an
APB at the centre, indicated with a black rectangle. The structures were
simulated under consideration of dipole–dipole interactions (visualized
with MayaVi). A field of 5 T was applied along the vertical direction. Full
parallel (octahedral sites) and antiparallel (tetrahedral sites) alignment
with the applied field is shown with red and blue colours, respectively.
Intermediate colours indicate spin canting away from perfect alignment.
The introduction of an APB leads to a disturbance in the spin structure
due to the antiferromagnetic exchange interaction across the boundary.



region directly next to the APB. The dipole–dipole inter-

actions have only a small influence on this spin arrangement

(see supplementary Fig. S5) and also on the averaged net

magnetization. This may be expected, since the spin structure

on this local scale is mainly influenced by the much stronger

exchange interactions. Additionally, shape anisotropy is

expected to be negligible for the considered spherical particle

shapes. However, for non-spherical particles the resulting

shape anisotropy should be taken into account.

The macroscopic magnetization is strongly reduced for all

considered particle sizes [Fig. 3(a)]. For the largest considered

particles the magnetization is reduced by 3.9% in a field of

1.5 T. This reduction becomes slightly stronger in a weaker

field, 4.3% at 0.9 T. The magnetization of the smaller particles

exhibits a similar field dependence. The overall relative

reduction of the net magnetization compared with the simu-

lated particles with no APBs gets stronger with decreasing

particle size [Fig. 3(b)]. This size dependence reflects the

relative proportion of atomic moments directly influenced by

APBs. Due to the planar nature of this type of defect, the

relative volume immediately affected decreases with

increasing particle size. For the case of a single APB the

reduction in magnetization can be approximated by

MAPBðR; tÞ

Mbulk

¼
VtðRÞ � VAPBðR; tÞ

VtðRÞ
; ð8Þ

where MAPB is the magnetization of a particle containing an

APB and Mbulk is the bulk saturation magnetization that is

expected for a particle without any defects. The spin canting at

the APB leading to the reduced magnetization can be

approximated by assuming a cylindrical slab within the

particle, where the net magnetization is zero, according to

VAPB = �R2t, where t denotes the thickness of this slab. In

general, t is a function of the applied field. In Fig. 3(b) the

black line corresponds to an approximation by equation (8)

with t = 0.33 nm.

A comparison with experimental data shows that perfectly

crystalline particles can exhibit almost bulk-like saturation

magnetization (Herynek et al., 2021) while particles containing

APBs have been found to show strongly reduced magnetiza-

tion (Köhler et al., 2021). In the latter case a reduction of

about 13% for 15.6 nm particles was attributed to APBs in an

applied field of 1.0 T. A similar reduction in saturation

magnetization was also observed for larger cubic particles,

where evidence for the presence of APBs was found

(Wetterskog et al., 2013). These reductions are stronger than

what we found for 9.2 nm particles in comparable fields. As

mentioned above, the larger particle size may allow for the

presence of more than one APB. This possibility is explored in

the next section for the mentioned 15.6 nm particles. Addi-

tionally, it is likely that the APBs in real samples are not as

perfect on the atomic level as was assumed in our simulations.

These local lattice distortions might contribute to the stronger

influence on the net magnetization. Finally, the absolute

reduction of the net magnetization also depends on the value

chosen for the antiferromagnetic superexchange constant,

which has only been extrapolated and not yet experimentally

confirmed (Nedelkoski et al., 2017).

As mentioned in the Introduction, magnetic domain

formation in particles expected to be superparamagnetic has

been proposed to explain the observed reduced magnetization

(Nedelkoski et al., 2017). In Fig. 4(a) the net magnetizations of

the particle halves on either side of the APB of the simulated

particle structures are shown in a polar representation. Here,

the normalized magnetization vectors of the simulated struc-

tures are placed at the origin. A projection plane is chosen

perpendicular to the applied field direction such that fully

aligned vectors that are either parallel or antiparallel to the
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Figure 3
(a) Simulated magnetization versus applied field data for 5.0, 6.7 and 9.2 nm particles. Each curve is the result of an average of 20 different particle
configurations in 20 orientations each. 8000 Monte Carlo steps were used for each field step of 0.1 T. (b) Magnetization ratios of curves obtained for
particles with APBs and those without, shown as a function of the particle diameter for different applied fields. The black line corresponds to an
approximation by equation (8) with t = 0.33 nm.



field vector correspond to points at the

centre of the plot. The position of the

projected points is defined by an

azimuthal angle (�) and an elevation

angle (�), where the former is drawn on

the perimeter and the latter gives the

radial distance from the centre. The

elevation angle is defined as the angle

between the spin vector and the plane

perpendicular to the field vector, thus

resulting in an angle of �90� for full

alignment. For the plots the absolute

values of the elevation angles are used.

The azimuthal angle defines the orien-

tation of the spin vector around the field

vector. The APB is positioned on the

line connecting azimuthal angles 90 and

270� [Fig. 4(b), red line]. Left- and right-

facing triangles correspond to the left

and right halves, respectively. Black

dots show the total magnetization

vector of the particles. The averaged net

magnetization vectors for the particle

halves are tilted with respect to the

applied field, as shown in the inset of

Fig. 4(a). These results seem to indicate

that there is a collective canting of spins

on either side of the APB, in agreement

with previous simulations by Nedelk-

oski et al (2017)

However, an inspection of the net

magnetization in slabs at different

distances from the APB shows that this

strong tilting mainly affects the region

within one unit-cell distance of the

APB. For the slabs farther away the

canting is strongly reduced. This effect

is sketched in a highly exaggerated

manner in Fig. 5(b), with the arrows

symbolizing the net magnetization

direction of the slabs. This shows that the particles remain in

the single-domain state, as expected from energetic consid-

erations, and no multi-domain state forms. This is also in

agreement with neutron scattering experiments that should be

able to detect a multi-domain state (Bedanta et al., 2015; Disch

et al., 2012; Köhler et al., 2021). The direct calculation of

dipole–dipole interactions has only a small influence on this

behaviour (supplementary Figs. S7 and S8). For smaller

particles, a gradual realignment with increasing distance from

the APB can also be observed, where significant canting of

moments is only observed within one unit-cell distance of the

APB (supplementary Fig. S6).

3.2. Influence of APBs on X-ray powder diffraction patterns

The X-ray powder diffraction line profile is affected by

several contributions, including the crystallite shape and size,

lattice strains, dislocations, twin and stacking faults, grain

surface relaxations, compositional fluctuations, and APBs. In

the whole powder pattern modelling (WPPM) approach

introduced by Scardi et al. (2010) these different contributions

can be deconvoluted by using the Fourier transforms of the

profiles related to the individual effects. In this approach the

peak profile of a powder diffraction peak for a spherical

nanoparticle is obtained via

IhklðQ;QhklÞ ¼ k
RD
0

Chkl exp ½�iðQ�QhklÞ� dL; ð9Þ

where Qhkl is the peak position, D is the particle diameter, L is

the distance in real space along [hkl] and Chkl denotes the

product of all Fourier transforms of the profile contributions.

The parameter k contains constant terms that are not expli-

citly considered here, including the absolute square of the
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Figure 4
(a) Net magnetization vectors for particle halves to the left (left-facing triangles) and to the right
(right-facing triangles) of the APB, simulated with consideration of dipole–dipole interactions. The
total net magnetization vectors are drawn as black dots. (b) A sketch illustrating the construction of
the polar plots.

Figure 5
(a) Net magnetization vectors for slices to the left- and to the right-hand side of the APB (large
black triangles) together with the individual spin vectors (small triangles) for 9.2 nm particles. (b) A
sketch of a particle with D’ 9 nm, showing the numbered slices. The slab positions indicated at the
top of panel (a) correspond to the slice numbers shown in (b). The canting of spins is confined to the
region within one unit cell around the APB, and this is indicated in an exaggerated way by the
arrows below the particle shown in panel (b).



structure factor |Fhkl|
2. In this work we focus primarily on the

finite size and the APB contribution. For real samples the

instrumental contribution might also need to be considered.

Hence, in the present case Chkl is given as

Chkl ¼ AIP Asize AAPB; ð10Þ

where AIP, Asize and AAPB are the Fourier coefficients related

to the instrumental profile, the particle size and the APBs,

respectively. Expressions for these components are shown in

Appendices A–C. To the best of our knowledge, the contri-

bution AAPB for APBs in maghemite and magnetite has not

been shown before and is developed in this work in Appendix

B using the theory presented by Wilson and Zsoldos (Wilson,

1943; Wilson & Zsoldos, 1966) and Warren (1990). Consid-

eration of further line-broadening effects is straightforward by

inclusion of the corresponding Fourier transforms of the

resulting peak profiles in equations (9) and (10).

The effect of particle size on simulated powder diffraction

patterns is shown in Fig. 6(a). A decrease in particle size leads

to an increase in the peak widths that affects all diffraction

peaks. Fits to these curves with equation (9) only using the size

component Asize return the input parameters of the particle

diameters with high precision. The peak positions were

constrained to the theoretical values of the used unit cell. Peak

intensities were left unconstrained for the fit. A linear back-

ground was used to account for the small-angle scattering

contribution creeping under the Bragg reflections.

Simulations of powder patterns with nanoparticles

containing an APB through the particle centre as depicted in

Fig. 1(a) show a distinct hkl dependence of the peak broad-

ening [dashed lines in Fig. 6(b)]. Comparing the curves with

patterns obtained from particles with no APB reveals that

certain peaks are not affected at all, namely peaks 222, 400 and

440, marked with the letter ‘u’ in Fig. 6(b). This hkl depen-

dence and its association with APBs has been recognized

before, e.g. in �-Al2O3 (Rudolph et al., 2019) with a similar

structure, in a powder of �-Fe2O3 (Nakajima et al., 1987) and

in iron oxide nanoparticles (Köhler et al., 2021). As shown in

Appendix B, for the peaks with pairs of indices whose sums

are multiples of four, no phase shifts due to the APB occur and

thus the peaks are not affected. The contribution of the APB

to the powder diffraction line profile can, as mentioned above,

be included in equation (9) by the use of the Fourier transform

of the APB peak profile AAPB as developed in Appendix B.

By using equation (9) with Asize and AAPB, the finite size

broadening and the APB effect are correctly considered and

the particle diameter D and the APB probability 	 can be

obtained directly from fits to the data. Application to the

simulated powder patterns for particles with one APB at the

centre is shown in Fig. 6(c), where good agreement is obtained

between a pattern generated by a superposition of peak

profiles according to equation (9) and the simulations. As

shown by Warren (1990), the APB does not change the inte-

grated intensity of the peaks, so for the fits the scale factors of

the peaks were constrained to the values obtained from the fits

to particles with no APBs. The only fitting parameter was

therefore the APB probability 	. By definition, 	 is the total

probability of an APB occurring within the distance given by

the lattice parameter a0 along each real-space direction. Thus

multiplication by the number of unit cells, i.e. D/a0, yields the

probability per particle. This value should be the same for

each simulated structure since only one APB was introduced

for each particle size. From the fits to the simulated data

shown in Fig. 6(c), parameters 	 of 0.075, 0.055 and 0.041 were

obtained for particle sizes of 5.0, 6.7 and 9.2 nm, respectively,

which give the APB probabilities per particle diameter as

0.442, 0.442 and 0.451, respectively. Since the APB is always

parallel to one real-space direction, the total probability is 	 =

2/3	x, where 	x denotes the probability along x. For a spherical
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Figure 6
(a) X-ray powder pattern simulations using equation (6) for spherical
particles with no APB with diameters of 5.0, 6.7 and 9.2 nm. The
simulated data were normalized to the number of scatterers and offset for
clarity. Each fitted curve is a superposition of peak profiles according to
equation (9). Difference curves between the data and the fits are shown
below in the same order as the diffraction patterns from top to bottom.
The fitting parameters were the particle size and the peak intensities. (b)
A comparison of patterns simulated for particles with and without an
APB at the centre. Difference curves between patterns simulated for
particles without and with an APB show that some peaks are not affected,
marked with ‘u’, while others are broadened, marked with ‘a’. (c) Fits to
the simulated patterns for particles containing an APB at the centre using
equation (9). The only fitting parameter was the APB probability 	.
Integral peak intensities and particle sizes were fixed from the fits shown
in panel (a).



particle, an APB on the (110) plane is at an angle of 45� to the

x axis and thus the phase shift is only observed for a fraction of

the particle cross section, while for some parts the X-rays ‘see’

a structurally coherent particle (see supplementary Fig. S2).

This fraction is given by the ratio of the area of the APB

projection onto the yz plane to the particle cross section,

resulting in a factor of 1/21/2 in 	x . With that, the number of

APBs at the particle centre is

nAPB ¼
3

2
ð21=2
Þ

D

a0

	: ð11Þ

For the simulated patterns this yields 0.94 (1), 0.94 (1) and

0.96 (1) APBs with increasing particle size. The slight devia-

tions from the expected value may be attributed to the

imperfect spherical size of the smaller particles and to the fact

that the description of the peak broadening due to APBs was

developed under the assumption of large crystals. For a single

off-centred APB, values for the number of APBs smaller than

one are obtained by the use of equation (11), since the peak

broadening is not as strong (see supplementary Fig. S1). This is

related to a decrease in the ratio of the projected APB area to

the sphere cross section.

3.3. Application to experimental data

A fit using equation (9) to experimental powder diffraction

data obtained for nanoparticles with sizes of 15.6 nm is shown

in Fig. 7. These particles were extensively characterized in a

previous publication, where we found a significantly reduced

magnetization compared with the bulk material of about 23%

to 60 (1) A m2 per kgFeOx (Köhler et al., 2021). A magnetically

dead surface layer of 0.3 (1) nm thickness was determined, but

it was concluded that APBs are responsible for a drop in

magnetization of about 13% compared with the bulk material.

The parameters for the fit shown in Fig. 7 were the peak

positions, the peak intensities, the particle diameter D, the

APB probability parameter 	 and a linear background. Poly-

dispersity was not considered in the fit and the instrumental

contribution to the peak broadening was deemed insignificant

compared with the finite size broadening (supplementary

Fig. S4). Other sources of line broadening were also not

considered. The fact that a good fit is obtained even with these

approximations suggests that these contributions are not

strong in the present sample. In particular, peaks 400 and 440

that are not affected by the APB would indicate if significant

contributions of, for example, strain or dislocation broadening

were present. However, the fact that a single particle size

parameter produces a good fit to both peaks suggests that this

is not the case. The particle diameter calculated from the fit is

to 15.1 (2) nm, which is very close to the diameter of

15.6 (1) nm determined via small-angle X-ray scattering [see

Köhler et al. (2021)]. A value of 	 = 0.055 (3) was determined,

resulting in 2.2 (1) APBs by the use of equation (11).

To estimate the impact of APBs on the magnetization,

equation (8) with t = 0.33 nm, as determined from the Monte

Carlo simulations, is used. The volume affected by the APB

[VAPB in equation (8)] is multiplied by the number of APBs

determined from the powder diffraction fit. Together with the

magnetically dead surface layer this results in a magnetization

of 65 (1) A m2 per kgFeOx, which is slightly larger than the

experimental value. A larger affected slab thickness of t =

0.55 nm would be needed to achieve the measured magneti-

zation. The presence of multiple APBs may lead to a stronger

influence on the spin structure, due to the smaller distance

between APBs not allowing for full alignment of moments

with increasing distance from the APB. Additionally, in the

regions where APBs cross or meet the spin structure, distur-

bance is likely to be stronger than what is observed for the

single APB. Furthermore, accumulation of vacancies and

lattice distortions at the APB might further reduce the

magnetization. Note also that the determined number of

APBs might not reflect the real number but rather gives the

number of APBs completely at the centre of the nanoparticle

that would lead to the observed peak broadening. It is,

however, possible that more APBs than the determined

number are present but that they are positioned at a distance

from the particle centre. Thus the peak broadening would be

the same, but there would be more boundary planes where the

spin structure is disordered, which would subsequently result

in a stronger reduction of the magnetization. Nevertheless,

with the developed description of the APB-induced peak-

dependent line broadening, a good fit to the experimental data

is obtained and an estimate of the number of APBs can be

made. On this basis the lower limit of the reduction in

magnetization can be approximated, where the presented

values may serve as a reference for future studies.
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Figure 7
A profile fit to experimental data of iron oxide nanoparticles with
diameters of 15.6 nm. Depicted are sections of a measurement over a
wider Q range. The whole pattern is shown in supplementary Fig. S3. The
fitted curve is a superposition of peak profiles according to equation (9).
Fitting parameters were the particle size D, the APB probability 	, the
peak intensities, the peak positions and a linear background. The
difference between the data and the fit is shown with a green line.



4. Conclusions

In conclusion, to study the influence of antiphase boundaries

on the atomic spin structure and X-ray powder diffraction

patterns, we performed Monte Carlo and Debye scattering

equation simulations for 5, 6.7 and 9.2 nm nanoparticles. Our

results suggest that APBs are capable of reducing the

observed magnetization of a particle by 3.9% (for 9 nm

particles) to 7.9% (for 5 nm particles) in saturation fields of

1.5 T compared with a particle without this defect. This

reduction is caused by strong spin disorder at the boundary,

while order is restored towards the particle surface, leaving the

nanocrystals in a single-domain state. Additionally, we have

shown that dipole–dipole interactions have only a small

influence on the macroscopic magnetic properties of spherical

particles in the size range considered here. Finally, we have

presented a method for the detection and quantification of

APBs using the powder diffraction method, utilizing the hkl

dependence of peak broadening. Analysis of experimental

data supports the simulation findings and shows that the

number of APBs is directly related to the drop in magneti-

zation observed for these particles.

5. Supplementary materials: signature of APBs in iron
oxide nanoparticles

The simulated structures obtained from the Monte Carlo

simulations are given in supplementary text files containing

the iron atom positions and the spin vectors.

APPENDIX A
Finite size contribution

The Fourier transform of the particle size component Asize can

be obtained from the intersection volume Vi between a

particle of diameter D and an identical copy shifted by a

distance L along the scattering vector normalized to the

particle volume V according to (Scardi & Leoni, 2004)

AsizeðL;DÞ ¼
ViðL;DÞ

VðDÞ

¼
ð�=12ÞðD� LÞ

2
ð2Dþ xÞ

ð4=3Þ�ðD=2Þ3

¼ 1�
3

2

L

D
þ

1

2

L

D

� �3

: ð12Þ

APPENDIX B
APB contribution

A theory describing the dependence of the peak width on the

hkl indices was developed by Wilson (1943) and later

corrected by Wilson & Zsoldos (1966). Warren (1990) arrived

at similar expressions using a slightly different approach

(Scardi & Leoni, 2005). Following Warren, the 1/4a0[110] APB

leads to a phase shift due to the displacement of atoms, whose

influence on the diffracted intensity can be expressed as an

average phase factor that is given by

hexp ½i�ðn1n2n3Þ�i

¼ hexp ½i�ðn1Þ�ihexp ½i�ðn2Þ�ihexp ½i�ðn3Þ�i

¼ hexp ½i�ð1Þ�ijn1j
x hexp ½i�ð1Þ�ijn2j

y hexp ½i�ð1Þ�ijn3j
z ; ð13Þ

where �(n1n2n3) is the phase shift between a unit cell at the

origin and its neighbour at n1 n2n3 . This phase shift is the sum

of all phase shifts along the path from the origin at 000 to

n1 n2 n3 . Thus, the average indicated by angle brackets is the

product of the averages in all three real-space directions. The

average shift in one direction is the sum of all changes in this

direction or, putting it differently, an average shift occurring n

times, where n is the number of possible shifts in that direc-

tion. This average shift for pairs of cells hexp ½i�ð1Þ�i is

assumed to be equal for all directions in real space and is the

sum of possible phase changes between neighbouring cells

times their probability of occurring. For the 1/4a0[110] APB,

the possible atom displacements are along [011], [101] and

[110], and the corresponding phase shifts � are 2� 1
4 ðkþ lÞ,

2� 1
4 ðhþ lÞ and 2� 1

4 ðhþ kÞ.

The average phase factors between neighbouring cells along

the three real-space directions are

hexp ½�ð1Þ�ix ¼ ð1� 	Þ exp ð0Þ þ 	 exp i2� 1
4 ðkþ lÞ

� �
;

hexp ½�ð1Þ�iy ¼ ð1� 	Þ exp ð0Þ þ 	 exp i2� 1
4 ðhþ lÞ

� �
;

hexp ½�ð1Þ�iz ¼ ð1� 	Þ exp ð0Þ þ 	 exp i2� 1
4 ðhþ kÞ

� �
;

ð14Þ

where 	 is the probability of a change in phase, i.e. crossing an

APB, that is assumed to be equal for all directions. The term

ð1� 	Þ expð0Þ corresponds to the probability of no change

multiplied by the associated phase factor of 1, i.e. no shift. The

terms of the form 	 expði�Þ relate to the phase shifts occurring

with probability 	. Thus if � = �(2n) for all directions, the

average phase factor is equal to 1 and no change in the peak

widths occurs. If � = �(2n + 1), a change in phase is observed

between the cells and therefore the respective peaks appear

broadened. For peak indices with the property h + k = 4n,

h + l = 4n and k + l = 4n in all directions, the phase factors

evaluate to 1, which is consistent with the observation of

unaffected peaks 222, 400 and 440 in the simulations

[Fig. 6(b)].

For the peaks that are affected, a distinction can be made on

the basis of the peak indices. They can be subdivided into

reflections with only even (a.1) and only odd indices (a.2). For

reflections of type a.1, equation (13) with equation (14) yields

hexp ½i�ðn1n2n3Þ�i ¼ ð1� 2	Þjn1jþjn2j; ð15Þ

noting that for this group of reflections one pair of indices will

always be divisible by four and, due to the cubic symmetry, the

indices can be arranged such that this pair is h + k. Here again

it is assumed that the APB probability is the same in all real-

space directions. Within group a.2 with only odd indices, there

are some peaks with two pairs of indices whose sum is divisible

by four. We call this group a.2.1 and their average phase

factor is
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hexp ½i�ðn1n2n3Þ�i ¼ ð1� 2	Þjn1j: ð16Þ

For group a.2.2 where all indices are odd and no sum of

pairs is divisible by four, the associated phase factor is

hexp ½i�ðn1n2n3Þ�i ¼ ð1� 2	Þjn1jþjn2jþjn3j: ð17Þ

The numbers of unit cells traversed by an infinitesimal shift

in the direction [hkl] can be expressed in terms of the peak

indices h, k and l by considering that the number of cells

crossed per unit distance is proportional to the angle between

two vectors.

In case a.1, the sum of the number of cells |n1| and |n2| has to

be considered, which can be described by the cosine of the

angle between [hkl] and [110]. To account for the symmetry-

equivalent orientations of the lattice planes that contribute to

the respective peaks, the cosines of the angles between [hkl]

and the vectors [HKL] ([110], [101], [011], ½011�, ½101� and

½110�) are added, giving

na:1ðh; k; lÞ ¼
X 1

a0

cos�

¼
X Hhþ Kkþ Ll

a0 H2 þ K2 þ L2ð Þ
1=2

h2 þ k2 þ l2ð Þ
1=2

¼
2ðhþ kþ lÞ

a0 2ðh2 þ k2 þ l2Þ½ �
1=2
: ð18Þ

With the normalization to the cubic lattice parameter a0 ,

the APB probability 	 obtained from a fit is given as the

probability per lattice parameter distance. For a.2.1 peaks,

only |n1| is considered and the appropriate exponent is

na:2:1ðh; k; lÞ ¼
ðhþ kþ lÞ

a0 h2 þ k2 þ l2ð Þ
1=2
; ð19Þ

obtained from [HKL] vectors [100], [010] and [001].

Finally, for a.2.2 peaks, e.g. peaks (511) and (333), the

exponent is

na:2:2ðh; k; lÞ ¼
4l

a0 3 h2 þ k2 þ l2ð Þ½ �
1=2
; ð20Þ

where [HKL] vectors ½111�, ½111�, ½111� and [111] are used.

It can thus be seen that, in general, the Fourier transform of

the APB peak profile takes the form

AAPB ¼ ð1� 2	Þnðh;k;lÞL; ð21Þ

where L is the Fourier length (Scardi & Leoni, 2005). For the

different groups of reflections the respective factors n(h, k, l)

have to be inserted, as given in equations (18), (19) and (20).

APPENDIX C
Instrumental contribution

The inclusion of the instrumental broadening in equation (9) is

straightforward, with the normalized Fourier transform of a

pseudo-Voigt function given by

AIPð
; �;LÞ ¼ ð1� kÞ exp
��2
2L2

ln 2

� �
þ k exp ð�2�
LÞ;

ð22Þ

where

k ¼
1

1þ 1= � ln 2ð Þ
1=2

� �
ð1� �Þ=�½ �

: ð23Þ

Here, the parameter 
 controls the peak broadening due to

the instrument, and � is a mixing parameter between the

Lorentz and Gauss functions to describe the peak shape

(Scardi & Leoni, 1999)
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Lüscher, R., Maag, S., Quitmann, C., Reinle-Schmitt, M. L.,
Schmidt, T., Schmitt, B., Streun, A., Vartiainen, I., Vitins, M., Wang,
X. & Wullschleger, R. (2013). J. Synchrotron Rad. 20, 667–682.

Wilson, A. J. C. (1943). Proc. Math. Phys. Eng. Sci. 181, 360–368.

Wilson, A. J. C. & Zsoldos, L. (1966). Proc. Math. Phys. Eng. Sci. 290,
508–514.

research papers
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