
research papers

122 https://doi.org/10.1107/S1600576721012371 J. Appl. Cryst. (2022). 55, 122–132

Received 26 May 2021

Accepted 22 November 2021

Edited by H. Chapman, DESY/Universität

Hamburg, Germany

Keywords: coherent X-ray diffractive imaging

(CXDI); free-electron lasers; diffract-then-

destroy; protein structures; single particles;

XFELs; imaging.

Supporting information: this article has

supporting information at journals.iucr.org/j

Noise reduction and mask removal neural network
for X-ray single-particle imaging

Alfredo Bellisario, Filipe R. N. C. Maia and Tomas Ekeberg*

Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box

596), SE-751 24 Uppsala, Sweden. *Correspondence e-mail: tomas.ekeberg@icm.uu.se

Free-electron lasers could enable X-ray imaging of single biological macro-

molecules and the study of protein dynamics, paving the way for a powerful new

imaging tool in structural biology, but a low signal-to-noise ratio and missing

regions in the detectors, colloquially termed ‘masks’, affect data collection and

hamper real-time evaluation of experimental data. In this article, the challenges

posed by noise and masks are tackled by introducing a neural network pipeline

that aims to restore diffraction intensities. For training and testing of the model,

a data set of diffraction patterns was simulated from 10 900 different proteins

with molecular weights within the range of 10–100 kDa and collected at a

photon energy of 8 keV. The method is compared with a simple low-pass

filtering algorithm based on autocorrelation constraints. The results show an

improvement in the mean-squared error of roughly two orders of magnitude in

the presence of masks compared with the noisy data. The algorithm was also

tested at increasing mask width, leading to the conclusion that demasking can

achieve good results when the mask is smaller than half of the central speckle of

the pattern. The results highlight the competitiveness of this model for data

processing and the feasibility of restoring diffraction intensities from unknown

structures in real time using deep learning methods. Finally, an example is shown

of this preprocessing making orientation recovery more reliable, especially for

data sets containing very few patterns, using the expansion–maximization–

compression algorithm.

1. Introduction

Knowing the structure of biological macromolecules, such as

proteins, is fundamental to understanding their mechanisms

and function. Historically, X-ray crystallography has been the

most successful tool for structure determination, and it is still

the most commonly used technique. The major drawback is

that the proteins must be crystallized, which is not always

feasible and makes it hard to study protein dynamics. Single-

particle imaging (SPI) methods aim to investigate biological

structures without the need for crystallization. One SPI

method that has shown impressive results is electron micro-

scopy (EM). Cryogenic EM (cryo-EM), in particular, is

routinely used to study protein structures and dynamics. Yet

cryo-EM is limited in time resolution, as it cannot reach time

scales much faster than milliseconds (Chen & Frank, 2015).

X-ray free-electron lasers (XFELs) are the latest generation

of accelerator-based light sources and can produce coherent

X-ray pulses shorter than 100 fs. XFELs have enabled the use

of X-rays for SPI experiments. The underlying principle

behind X-ray SPI experiments is known as ‘diffraction before

destruction’ (Chapman et al., 2006). In such experiments, the

X-ray pulse hits a stream of biological samples injected into a

vacuum chamber. The pulse damages the sample, and the

entire structure is fragmented into ions on the time scale of a
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few femtoseconds (Hau-Riege et al., 2004; Jurek et al., 2004;

Bergh et al., 2008). The femtosecond duration of the X-ray

pulse guarantees that the scattered photons carry information

about the structure before the effects of radiation damage

take place (Neutze et al., 2000). Since the first demonstration

of this method, XFELs have been used to determine the

structures of several types of samples, such as cells (Mancuso

et al., 2010; Seibert et al., 2010; van der Schot et al., 2015), cell

organelles (Hantke et al., 2014) and viruses (Seibert et al.,

2011; Kassemeyer et al., 2012; Daurer et al., 2017), and even to

resolve the three-dimensional structure of viruses (Ekeberg et

al., 2015).

Achieving atomic resolution for small biological structures,

such as proteins, is challenging because it requires a low

background and a high hit rate. Photons scattered from the

beamline’s injection gas and optical instruments will create a

background signal that is often comparable in strength to the

signal originating from the sample. Furthermore, the data will

be incomplete because of ‘missing’ regions, where no diffrac-

tion is collected due to, for example, a beam stop or gaps

between individual detector modules.

Additionally, photon detectors can only measure the

intensity of the scattered beam but not the phase. Phase-

retrieval algorithms allow one to determine phases from an

oversampled signal (Fienup, 1978), yet solving such a problem

requires computational effort and experimental data with a

sufficiently strong signal. Depending on the sample size and

the desired resolution, the number of photons needed varies,

and it is necessary to take into account noise (Martin et al.,

2012) and missing data to ensure the convergence of the

algorithms.

Applications of neural networks have been blooming in the

past decade, and the technology can now often be used

without requiring an unreasonable computational effort or

huge data sets thanks to ‘transfer’ learning methods and new

hardware technology. Machine learning techniques are inter-

esting for future experiments at XFEL facilities which are

undergoing a rapid increase in their data collection rate. X-ray

detectors can generate up to 15 Gbyte s�1 of raw data

(Muennich et al., 2016) and machine learning solutions may be

helpful to improve and speed up data analysis. Up to now, only

a few studies have addressed this potential directly for X-ray

SPI experiments, employing neural networks for image clas-

sification (Langbehn et al., 2018; Shi et al., 2019; Zimmermann

et al., 2019; Ignatenko et al., 2021), for defect identification and

phase retrieval (Cherukara et al., 2018; Lim et al., 2021; Wu,

Juhas et al., 2021; Wu, Yoo et al., 2021), for shape and orien-

tation recovery of silver nanoclusters (Stielow et al., 2020), and

for the reconstruction of electron densities of metallic nano-

particles from experimental data of the 3D Fourier space

(Chan et al., 2020).

In an X-ray SPI experiment, each diffraction pattern is a

noisy and incomplete sampling of unknown Fourier magni-

tudes in a 3D volume at an unknown orientation. In this paper,

we investigate deep learning as a tool to denoise and demask

diffraction patterns. The goal is to provide a tool that can

restore diffraction intensities from unknown protein struc-

tures to support future online analysis, for example in hit

finding, diffraction pattern classification and other experi-

mental diagnostics. Moreover, restoring diffraction patterns

allows us quickly to calculate autocorrelation functions

without the severe artefacts caused by missing data.

2. Method

2.1. Data set simulation

To perform denoising and demasking under realistic

experimental constraints, we need a tool that can handle the

diffraction signal from any structure at any orientation, since

during experiments no previous knowledge is assumed about

the sample or its orientation. Our method achieves this by

training a neural network with simulated diffraction patterns

from proteins chosen at random from the Protein Data Bank

(PDB) (Berman et al., 2000).

We downloaded 10 900 atomic coordinates files, each

randomly selected, without repetitions, from proteins within

the molecular weight range of 10–100 kDa. From each file,

only one diffraction pattern was then simulated. During SPI

imaging, the sample weight is usually known and the selection

does not represent a significant limitation to the generality of

the algorithm. Diffraction patterns were simulated using the

Condor package (Hantke et al., 2016), setting the photon

energy to 8 keV. The detector was assumed to be placed 15 cm

from the interaction region and the pixel size was 200 mm.

Several sources of noise could affect a diffraction experi-

ment, but in our study we limited ourselves to Poisson noise,

which is by far the most dominant. First, we normalized all the

noiseless patterns to set them to the same maximum intensity.

We then downsampled each pattern to 128 � 128 pixels to

reduce the computational effort and rescaled with a number

we will refer to as the intensity factor before applying Poisson

noise. This gave us control of precisely how strong the signal is
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Figure 1
Simulated diffraction patterns from a Burkholderia cepacia lipase (PDB
3lip; Schrag et al., 1997), logarithmic scale colour map. (a) A simulated
diffraction pattern without noise. (b), (c) Poisson-sampled diffraction
patterns. (d) A masked simulated diffraction pattern without noise.
Orange pixels represent missing data.



in each pattern. Fig. 1 shows an example from our simulated

data set.

2.2. Data preprocessing

Neural networks often struggle when the dynamic range of

the input is high. For this reason, we applied a log-scale

normalization to keep values within the range [0, 1] and

further reduce the dynamic range. Log-scale normalization

was performed by applying the following conversion,

I 0i ¼
log ðIi þ 1Þ

max
j
½log ðIj þ 1Þ�

; ð1Þ

where Ii is the value of the pattern at pixel i and I 0i is the

corresponding normalized value.

To understand how the size of the missing regions affects

the recovery of the signal, we studied a mask composed of a

stripe across the entire detector and tested our model for mask

widths of increasing size. We also tested the network on a

mask corresponding to the missing regions on the AGIPD

photon detector currently used in Hamburg at the European

XFEL facility.

2.3. Neural network pipeline

We implemented our pipeline using Keras (Chollet et al.,

2015) and Tensorflow (Abadi et al., 2015). The deep learning

pipeline was designed following a model architecture known

as U-Net (Ronneberger et al., 2015), originally developed for

image segmentation in biomedical sciences. U-Net is a

convolutional neural network inspired by autoencoders and

residual networks.

Convolutional autoencoders are networks developed to

learn the representation of a data set efficiently and to

perform dimensionality reduction. The first part of an auto-

encoder is called the encoder, which compresses the input into

a set of feature maps that are then upsampled and decoded by

the second part of the network, the decoder. The Fourier

transform of a single particle can be sampled more finely than

the Nyquist–Shannon rate, allowing compression without any

loss of information. The same is true even for noiseless

diffraction patterns without phases, but the compressed

information content will be the size of the autocorrelation

instead of the size of the sample. For this reason, autoencoders

seem especially well suited for denoising diffraction data.

U-Net supplements the autoencoder network with skip-

layers (Fig. 2), providing the decoder with features from the

encoder that can now bypass the bottleneck. This helps the

convergence during network training. In addition, dropout

layers are used to reduce the overfitting effect and applied

after each of the last two downsampling steps. During each

training epoch, these layers randomly disable 50% of the

following hidden layers, setting weights to zero and forcing

other units in the layer to be activated.

The U-Net is trained using an Adam optimizer (Kingma &

Ba, 2014) to minimize a binary cross-entropy loss function

between the output and the noiseless pattern. We divided the

data set into three ensembles. The first ensemble contains 9900

images, 5% of which were used as a validation data set while

the rest were used for training. Another 1000 images were

used to test the trained network. There is no overlap between

the training, test and validation data sets. Each image in the

data sets corresponds to a different protein in a random

orientation. For each task, noise level and mask, we retrained

the network from scratch for 20 epochs. Each training phase

took around 30–40 min running on an RTX 2080 Ti GPU card.

Details regarding the implemented model, a portion of each

data set and the weights of the neural network are deposited

within a dedicated repository (Bellisario et al., 2021).

2.4. Binary filter

The inverse Fourier transform of the diffraction intensities

of a protein represents the spatial autocorrelation function of

its electron densities in real space. If the autocorrelation

support is known, it is possible to constrain the auto-

correlation space by applying a binary filter, which sets every

pixel that does not belong to the support to zero. By applying

an inverse Fourier transform to the filtered autocorrelation

function, we can retrieve denoised diffraction intensities. This

is equivalent to applying a low-pass filter to reduce the local

variance of the diffraction intensities. In our case, we could

apply an almost optimal binary filter for each diffraction

pattern, as we could derive the true autocorrelation from the

noiseless simulated intensities. We applied this simple

denoising strategy to our noisy test data set to benchmark the

results presented in this paper.
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Figure 2
(a) The U-Net schematic structure. Concatenations between symmetrical
layers are the key difference of U-Nets over standard convolutional
neural networks and autoencoders. In our model, we also applied dropout
layers in the encoder for regularization. Dropout layers are used for
further implicit data augmentation. (b) Examples of loss functions
obtained during training for denoising at an intensity factor of 10.
Minibatch loss quickly drops and oscillates within the range of the
validation loss. Each sudden change in the minibatch loss function after
294 steps (one epoch) is due to the effect of dropout layers. The minibatch
loss function is reported for better visualization of the loss decay.
Validation decays slowly and mostly overlaps the training loss.



More elaborate algorithms have been introduced to solve

phase retrieval while also restoring intensities for sparse and

missing data (Pietrini & Nettelblad, 2018), achieving

remarkable results. However, these algorithms require a long

computation time, making them less suitable for real-time

evaluation.

2.5. Orientation recovery

Orientation recovery over denoised and demasked inten-

sities was performed using a modified version of the expan-

sion–maximization–compression (EMC) algorithm (Loh &

Elser, 2009) that can work with floating numbers. In particular,

while standard EMC uses a Poisson distribution for the

measured photons, we assumed a Gaussian distribution to

work with continuous and normalized data from U-Net. We

benchmarked EMC on U-Net outputs against a variation of

EMC designed for data-starved problems. For a very few

patterns, the oriented intensities will not cover the entire

Fourier space. To overcome this, we convolve the 3D Fourier

model after each iteration with a 3D Gaussian kernel with a

standard deviation smaller than the Shannon pixel size. This

will distribute each pixel value in the pattern over many voxels

in the 3D model, thus increasing the overlap between patterns.

We will refer to this approach hereinafter as blurred EMC.

3. Results and discussion

3.1. Noise reduction

First, we trained U-Net to denoise and compared its results

with the binary filter approach. Fig. 3 shows diffraction

patterns from Fusarium oxysporum trypsin (PDB 1fn8) and

the corresponding denoised intensities using both U-Net and

autocorrelation denoising. These, and all the denoised images

shown in this paper, come from the respective test data sets

and the neural network did not have access to them during

training.

Both U-Net and autocorrelation filtering produce visually

convincing results. Both suffer from low signals at high scat-

tering angles but produce a dramatic improvement even for

the noisiest case. To quantify the performance of these pipe-

lines, we calculate the mean-squared error (MSE) metric

between the result and the original noiseless patterns. For this

comparison, the U-Net output has to be linearized by

inverting the logarithmic normalization applied earlier. The

MSE is a useful metric for these applications since it is

preserved by the Fourier transform and thus also represents

the error in the autocorrelation of the pattern.

Fig. 4 shows the MSE distributions as a function of the

intensity factor. The denoising task becomes more challenging

for both methods as the signal decreases, and the auto-

correlation filter outperforms U-Net somewhat when the

signal is strong, while for low signals the relation is reversed.

While we are especially interested in low-signal conditions, the

good performance of the binary filter implies that its appli-

cation has to be favoured for high diffraction signals. Yet

binary filters are rarely used in practice as they are notoriously
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Figure 3
Diffraction patterns from Fusarium oxysporum trypsin (PDB 1fn8;
Rypniewski et al., 2001), logarithmic scale colour map. (a)–(c) Poisson-
sampled diffraction patterns at intensity factors of 1000, 100 and 10,
respectively. (d)–( f ) Denoised output from U-Net. (g)–(i) Denoised
output from the binary filter. ( j) A noiseless diffraction pattern. The
mean squared errors (MSEs) of each reconstruction with respect to
noiseless intensities are reported in the top left-hand corner of the
patterns.

Figure 4
A violin plot for the MSE distributions at different noise levels. Each
violin reports the full distribution of the MSE values within the test data
set at the respective intensity factor. The gap in the bar represents the
median value, while the black area corresponds to the interquartile
ranges 25–75%. Dashed lines connect the mean values for each
distribution.



bad at handling missing data, as we will discuss in Section 3.3.

We also have to consider that the values for the binary filter

represent a best-case scenario by using the already known

autocorrelation. In contrast, our neural network did not

require knowledge about the noiseless intensities to obtain the

reported results. U-Net is a parameter-free model, and in this

sense it could be a quicker and more reliable approach for

online analysis. Furthermore, linearization negatively impacts

the performance of U-Net, as, by downsampling to smaller

images, the local maxima are averaged, and we need to fit the

noisy patterns to find their value. We also note that U-Net

introduces fewer visual artefacts even when the MSE is

slightly worse.

The variance of the MSE distributions is higher when

denoising the test data set with U-Net, as shown in Fig. 4. The

outliers in the MSE distributions correspond to large proteins

with a smaller speckle size, or diffraction patterns with strong

anisotropy. This problem seems to be related to the data set as

these images are not well represented during training. We

conjecture that data augmentation and a larger training data

set could remove outliers without overfitting the model.

In many computer vision applications the performance of

image processing models is studied in terms of peak signal-to-

noise ratio (PSNR). In our case the PSNR can be directly

derived from the MSE as

PSNR ¼ 20 log10 maxðIÞ½ � � 10 log10ðMSEÞ: ð2Þ

Table 1 reports the average PSNR for reconstructions

obtained with both of the denoising algorithms and for noisy

inputs.

We further tested how robust the network is to ensemble

bias, that is, how well it performs on diffraction data that are

not drawn from the same ensemble as the training data. We

decided to consider two scenarios. First, we tested its robust-

ness to non-protein-like structures by considering small

geometric objects. Second, we simulated data from larger

biological structures that should correspond to the current

state-of-the-art capabilities of X-ray SPI.

To achieve this, we simulated additional diffraction inten-

sities from a cube, a sphere and an icosahedron of size 4 nm

and the same average density as a protein (1.35 g cm�3)

(Fig. S1 in the supporting information). These objects produce

diffraction patterns with decidedly different speckle structures

and a strong intensity drop at high scattering angles. Current

X-ray SPI experiments provide a resolution comparable to the

typical size of a 10 kDa protein, so for the second scenario we

decided to test our network on virus-like nanoparticles. We

simulated one pattern per new sample, choosing the biological

assembly data of BDV T1 virus-like nanoparticle (PDB 1wcd)

(Coulibaly et al., 2005), Seneca Valley virus (PDB 3cji) (Zhang

et al., 2003) and Dengue virus capsid (PDB 1p58) (Venka-

taraman et al., 2008), with respective diameters of 25, 40 and

60 nm. To preserve the oversampling, we moved the detector

further back for these simulations, just as one would for a

normal experiment on samples of this size. We set the detector

distance to 2.67 m for every particle to compare them. We also

simulated PDB 1wcd at 2 m detector distance to optimize the

central speckle width within the range considered during

model training.

U-Net manages to handle intensities from these new

simulations with an MSE within the expected range, as shown

in Table 1. Its solid performance on these patterns suggests

that U-Net has indeed learned features relevant to denoising

diffraction intensities from unknown structures. We note that

the BDV T1 virus-like nanoparticle has a relatively higher

error than the others at the same detector distance. This is

expected since the simulated central speckle was quite large

and outside the training data set range. It also explains why a

shorter detector distance significantly improved the MSE. As

we can see from the MSE values in Table 2, our pipeline is in

principle able to handle data from particles larger than

proteins as long as the speckle size does not differ too much

from the range covered by the training data set.

We extracted the true phases of the diffraction patterns

from our Condor simulations and used them to derive the best

possible 2D electron-density reconstructions given each set of

noisy intensities. Assuming knowledge over phases is a strong

assumption, but it is still useful to evaluate if denoising has an

impact on the image’s resolution. This test is preferable to

running a full phase retrieval since these results often vary

strongly depending on the exact parameter choices. When

using the square root of the intensities denoised with U-Net as

amplitudes together with the correct phases, we noticed an

improvement in the real-space image. For example, we could

not distinguish between an icosahedron and a sphere in real

space (Fig. S2) when using the lowest signals without
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Table 1
Average MSE and PSNR calculated with respect to simulated noiseless
data.

The first column shows the intensity factor used when Poisson sampling
normalized data. The second column is relative to the average metrics
calculated for noisy patterns at the correspondent intensity factor. The last two
columns report the average performance of the two methods.

Average noisy
pattern Average U-Net

Average binary
filter

Intensity
factor MSE PSNR MSE PSNR MSE PSNR

1000 3.8 � 10�6 54.2 8.5 � 10�7 60.7 3.5 � 10�7 64.6
500 7.6 � 10�6 51.2 1.4 � 10�6 58.5 6.8 � 10�7 61.7
100 3.7 � 10�5 44.3 3.0 � 10�6 55.2 2.8 � 10�6 55.5
50 7.4 � 10�5 41.3 5.9 � 10�6 52.3 5.0 � 10�6 53.0
10 3.8 � 10�4 34.2 1.2 � 10�5 49.2 2.1 � 10�5 46.7

Table 2
Mean squared errors for diffraction intensities of geometric shapes, at the
lowest signal-to-noise ratio (intensity factor equal to 10).

Object MSE PSNR

Sphere 5.69 � 10�6 52.4
Cube 1.04 � 10�5 49.8
Icosahedron 7.34 � 10�6 51.3
PDB 1wcd (2.67 m) 1.71 � 10�5 47.7
PDB 1wcd (2.00 m) 5.10 � 10�6 52.9
PDB 3cji (2.67 m) 7.06 � 10�6 51.1
PDB 1p58 (2.67 m) 5.28 � 10�6 52.8



denoising. On the other hand, the diffraction intensities of the

cube were the most difficult to reconstruct, having the highest

MSE. In real space, this manifests itself as fuzzy edges and a

slight halo around the corners. Finally, we note that the cube,

having long sharp edges, is the object here that is the most

dissimilar to a protein and probably marks the boundary for

what objects can still be handled by our U-Net.

Finally, we report the ‘best-case’ reconstruction performed

for the 2D electron density of a protein from simulated phases.

We compare the results obtained using amplitudes derived

from the denoised intensities with the results from amplitudes

derived from the output of the binary filter. As in the case

above for the virus particles, the real-space structures in Fig. 5

were obtained from known simulated phases, thus repre-

senting the best possible outcome for the given amplitudes. We

can observe how denoised amplitudes achieve higher-quality

images than noisy ones, but the binary filtered intensities

introduce more artefacts both around and within the protein

support. This effect is probably caused by artefacts introduced

in the pattern at high momentum transfer q. Nevertheless,

denoised intensities with both methods seem to improve the

image resolution, and binary filtered intensities lead to slightly

noisier real-space images. As for the geometric shapes, the

original noisy intensities introduce a blurring effect on the

reconstruction. However, it is important to remark that this

comparison does not prove that intensities denoised with

U-Net will always improve the resolution or that phase

retrieval would benefit from this process. Therefore, future

work should be dedicated to investigating the impact of noise

reduction with neural networks on phase retrieval.

3.2. Mask inpainting

In this section, we consider masked but noiseless patterns as

we aim to understand the ability of U-Net to fill in missing

data. We tested the U-Net for a mask width of 2–20 pixels

along the central row of the simulated intensities. In Fig. 6 we

show an example of simulated diffraction intensities where

differently sized missing regions have been inpainted using

U-Net.

For small masks, the reconstruction is impressive and even

high spatial frequencies are recovered. However, as the mask

size increases, only low spatial frequencies are correctly

recovered, while high spatial frequencies are recovered as an

estimated local average. When the central speckle is entirely

missing, the reconstruction becomes very difficult and not

even the estimated central speckle resembles the ground truth.

To give a better visualization of the differences between the

recovered intensities and the true diffraction pattern, Fig. 7

shows the intensity profile for the central row of pixels in

the mask. Even for small masks, local minima are usually

slightly overestimated. This effect progressively increases for

larger masks until intensities at high spatial frequencies are
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Figure 5
Diffraction intensities and real-space 2D electron densities of shark
IgNAR (PDB 4hgm; Kovalenko et al., 2013). The real-space image was
derived using true phases and cropped for visualizing details. (a) Poisson-
sampled diffraction intensities. (b) Denoised output from U-Net. (c)
Denoised output from the binary filter. (d)–( f ) Reconstructions obtained
from, respectively, noisy intensities, U-Net output and binary filtered
intensities. (g) A noiseless diffraction pattern. (h) The original structure.

Figure 6
Diffraction patterns for human aurora A catalytic domain (PDB 4zs0;
Kilchmann et al., 2016), logarithmic scale colour map. Orange is used in
the top row to highlight masked pixels. (a) A simulated diffraction pattern
with a 2 pixel-wide mask. (b) A simulated diffraction pattern with a
10 pixel-wide mask. (c) A simulated diffraction pattern with a 15 pixel-
wide mask. (d)–( f ) U-Net demasked output. (g) Simulated diffraction
intensities without a mask.



recovered as a local average and not as individual speckles.

The distance from the unmasked regions seems to be signifi-

cant for the reconstruction. In Fig. 8 we show three different

rows from the same demasked pattern. The pixels for the 71st

row are the closest to unmasked data. In this case, the

prediction is very close to the shape of the simulated diffrac-

tion signal, while the intensities are only slightly under-

estimated. For rows further into the masked region, the profile

gets closer to a local average of the expected intensities and

gradually loses shape complexity.

We report the MSE analysis for the neural network output

in Fig. 9. Outliers beyond the third quartile for each mask class

typically correspond to diffraction patterns with small central

speckles compared with the mask, making the problem harder.

In order to be able to compare these results with the denoising

case, MSEs are calculated over the entire pattern and not only

within the mask. The third quartile line always lies below 10�5

when the mask dimension is smaller than 10 pixels. This value

corresponds to the average MSE when denoising in the

noisiest scenario. After this point, the mask size is too wide to

achieve good recoveries on the average pattern. Preliminary

work on other mask shapes, such as circular beamstops

(Figs. S3 and S4), showed a similar dependence on the

diameter of the masked area.

In Fig. 9, the distributions have a high variance, especially

for wide masks. Experience from phase retrieval shows that it

is the ratio between the size of the missing region and the

Shannon pixel that is relevant to how well we can reproduce

the intensities in the masked area (Thibault et al., 2006). To

achieve a good recovery, experience shows that we require a

mask size smaller than half of the central speckle. The

scatterplot in Fig. 10 reports MSE values for every mask as a

function of the ratio between the mask width and the speckle

size. For ratios smaller than 0.5, we can see a higher density of

data with low errors, but at ratios closer to 1, the MSE values

are higher and have a stronger variation. For even wider

masks, the MSE values are consistently higher. The speckle

size has been calculated as the distance between the two local
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Figure 7
A profile of the recovered intensities along the central row for PDB 4zs0,
plotted for three different mask sizes. When the mask is only a few pixels
wide, all of the spatial frequencies are correctly retrieved, but the local
minima are slightly overestimated. The central speckle size is roughly 22
pixels for this protein.

Figure 8
Profiles of the recovered intensities along three different rows for PDB
4zs0 and a mask size of 15 pixels. As we get closer to the unmasked data,
we observe that the quality of the recovery improves significantly. In
particular, the 71st row, which is the first row of masked data, is very
accurate.

Figure 9
A violin plot of the MSEs calculated for increasing mask width. The
average performance seems to depend linearly on the mask size for small
masks. The trend for mean MSE distributions indicates that the
dependence gradually saturates afterwards.



minima of the central speckle along the vertical axis, the same

as the shorter extent of the mask. Seventy-five per cent of the

patterns in the entire data set have a central speckle that spans

less than 25 pixels along the vertical axis, and the average

central speckle size is close to 18 pixels. Most patterns have

few data points for the low spatial frequencies when using

mask widths of 10 pixels or greater. As the ratio between mask

size and speckle size increases, the performance of the

network clearly worsens.

3.3. Noise and mask

Binary filters, which we compared with earlier in this article,

can provide satisfactory results for denoising but are not

robust to missing data regions. For this reason, this method is

rarely applied for experimental data. However, as shown in

the previous section, neural networks can inpaint masks, and it

is reasonable to believe that they will perform much better

than binary filters in the presence of both noise and mask. This

section aims to investigate U-Net performance under this

scenario to provide a proof of concept of their applicability for

more realistic data. A qualitative comparison with binary

filters is reported in Fig. 11.

In Fig. 12 we report a comparison between these two

methods considering different signal intensities and masks

covering a width of 2 or 10 pixels along the central row.

Comparing MSE distributions for the different methods at the

same mask size and intensity factor, we can see that the

average difference is larger than one order of magnitude and

sometimes goes above two orders of magnitude. U-Net

outperforms the binary filter under every condition and for

every single pattern. U-Net was also robust to data from the

geometric shapes used to test out-of-ensemble patterns, even

when applying missing regions. We note that the mask

dimension affects not only the MSE range but also the

variance of the distribution. Given the results from the

previous section, this might not be surprising. The smallest

central speckle in our data set is only 7 pixels wide along the

vertical axis, and the amount of missing information in a

10 pixel-wide mask is much larger than for the average

pattern. The low effectiveness of the binary filter is almost

independent of the intensity factor and only dependent on the

mask size. Filtered intensities do not provide any improve-

ment for data visualization unless the missing region is very

small. In practice, the results from the autocorrelation filter

would be even worse than presented here since we had access

to optimal autocorrelations for filtering.

Finally, we applied a realistic mask, taken from the AGIPD

detector (Allahgholi et al., 2015) employed at the European

XFEL in Hamburg. An example is reported in Fig. 13. U-Net

also manages to handle this irregular mask. As expected,

intensities in large missing regions achieve a good estimate
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Figure 10
A scatter plot of the MSEs as a function of mask size over speckle size.
Most of the patterns have a ratio of mask size to speckle size smaller than
1. Data are reported for all of the mask widths from Fig. 9.

Figure 11
Diffraction patterns from leucyl-tRNA synthetase of Candida albicans
(PDB 5agi; Zhao et al., 2015) with two different mask sizes, logarithmic
scale colour map. (a), (d) Masked and Poisson-sampled diffraction
intensities. (b), (e) U-Net outputs. (c), ( f ) Results obtained using the
binary filter constraint. As the mask size increases, the binary filter
method becomes more and more ineffective, while the denoising
capabilities of U-Net remain roughly unchanged.

Figure 12
A violin plot for the MSE distributions. The MSEs are calculated between
linearized denoised and demasked reconstructions and original inten-
sities. There is a clear correlation between noise and MSE for the U-Net,
while the performance of the binary filter is mostly affected by the size of
the mask. Furthermore, a larger mask introduces a larger variance in the
outputs due to patterns with speckle sizes close to or smaller than
10 pixels.



only for low spatial frequencies. MSE values for each recon-

struction are within the expected range given the mask size,

which is 14 pixels wide along the vertical axis for its widest

area. The asymmetry in the AGIPD mask does not seem to

affect the recovery of the intensities, and the reconstructions

depend on the local width of the mask. The noise reduction is

on a par with the performance in the unmasked case, which

suggests that the denoising is mainly a local operation and

does not suffer from large masks in other parts of the detector.

We then used our U-Net to restore simulated patterns of a

single protein before attempting orientation recovery. We

show how restoring missing data can help SPI data analysis,

reducing the number of patterns required. We simulated

diffraction at random orientations from phytochrome (PDB

4o01; Takala et al., 2014) with around 1400 photons per

masked pattern. We adjusted the experimental parameters to

keep the Shannon pixel size within the range of the training

data set. In particular, we simulated a photon energy of 6 keV,

setting the detector distance at 3 cm from the interaction

region and the pixel size to 200 mm. We applied a 2 pixel-wide

mask positioned along the central rows. To reconstruct the 3D

Fourier space model, we tested three EMC implementations:

(i) regular EMC for noisy and masked patterns, (ii) floating-

number EMC for U-Net outputs, and (iii) blurred EMC. We

ran each version of EMC on data sets of different sizes ranging

from 20 to 2000 images.

Fig. 14 shows that EMC requires around 700 noisy patterns

to converge, while blurred EMC can run on fewer patterns but

at the price of introducing higher errors on average. Even

though EMC does not create better outcomes, given enough

data the denoised and demasked data converged using

significantly fewer patterns. Restored intensities also allow

EMC to run more reliably with larger data sets.

4. Conclusions

In this work, we have provided a pipeline based on deep

learning to denoise and demask diffraction images from X-ray

single-particle imaging data. The neural network model has

been trained and tested on simulated images, achieving

satisfactory reconstructions. Our method has reduced high

noise levels while also restoring data into missing regions

better than binary filters. Demasking has been proved feasible

within the reasonable limits imposed by lack of data at low

spatial frequencies, and reconstructions of masked and noisy

inputs have achieved satisfying results under realistic experi-

mental settings. Specialized algorithms (Pietrini & Nettelblad,

2018) can be applied for interpolating missing data, per-

forming denoising and demasking at the same time. However,

these algorithms are not suitable for online analysis, as they

require user evaluation and long computational time. Deep

learning methods could become new and reliable tools for

data visualization and preprocessing of XFEL data in real

time.

Phase-retrieval and orientation-finding algorithms would

greatly benefit from clean data. In Section 3.1, we carried out a

sanity check to show that intensities processed by our model

do not cause distortions in real space. In Section 3.3, we

showed that EMC reliably converges to a solution using fewer

patterns when provided with denoised and demasked data.

This result is particularly interesting for studying rare or short-

lived conformational states where data can be scarce. While

these findings are promising, these algorithms are notoriously

susceptible to biases and distortions in diffraction intensities.

We would therefore not recommend U-Net outputs as an

input to these algorithms without further studies. Still, the

algorithm might already be very useful to improve online hit

finding and pattern classification, where missing data can

severely limit the analysis. For example, filling in the missing

data makes it possible to calculate an autocorrelation directly,

free from the strong artefacts caused by missing data and low

signals. This result can also be used during phase retrieval,

where the autocorrelation function is often used as an initial

real-space constraint.

Data processing speed is crucial to X-ray single-particle

imaging experiments where big data sets need to be processed

online at high rates. Our U-Net can process images at 200 Hz

on a modern GPU (RTX 2080 Ti). This rate is comparable to

the current hit rates achieved during X-ray SPI experiments

(Ayyer et al., 2021).
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Figure 13
Diffraction patterns for an altered co-substrate of deacetoxycephalo-
sporin C synthase (PDB 1hjg; Lee et al., 2001), logarithmic scale colour
map. (a) Poisson-sampled diffraction intensities with the mask from the
AGIPD detector at the European XFEL. (b) U-Net denoised output with
MSE. (c) A noiseless diffraction pattern without a mask.

Figure 14
Average rotation error for the oriented patterns using EMC and blurred
EMC. Blue markers refer to the EMC performance over masked and
noisy intensities. Orange markers refer to the performance of EMC when
using restored intensities. Blurred EMC (green markers) was applied to
noisy and masked data only.



This model proved to be particularly robust in handling

diffraction patterns from nanoparticles that are not repre-

sented in size and shape within our data set, ensuring its

application to restoring data from unknown structures. By

tailoring our model to the restoration of diffraction intensities

for specific protein classes (e.g. membrane proteins) with

similar geometries, U-Net performance, while losing gener-

ality, could further improve on such a specific task. Ideally, a

well trained network should handle different noise sources,

background signals and masks. We believe our method could

be quickly tuned to work under different experimental

settings, as suggested by the short training time and its

robustness to new data, providing an interesting tool for real-

time data analysis during beamtimes. For future experimental

applications where the background is significant, we think that

model training should include dark runs to allow the network

to learn from the specific background of the experiment and

other sources of noise for data augmentation purposes.
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rådet (grant No. 2017-05336; grant No. 2018-00234).

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
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Horke, D. A., Küpper, J., Loh, N. D., Mancuso, A. P. & Chapman,
H. N. (2021). Optica, 8, 15–23.

Bellisario, A., Maia, F. R. & Ekeberg, T. (2021). Noise Reduction and
Mask Removal Neural Network for X-ray Single-Particle Imaging,
https://github.com/AlfredoBellisario/UNet_XraySPI.

Bergh, M., Huldt, G., Tı̂mneanu, N., Maia, F. R. & Hajdu, J. (2008). Q.
Rev. Biophys. 41, 181–204.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235–242.

Chan, H., Nashed, Y. S., Kandel, S., Hruszkewycz, S., Sankara-
narayanan, S., Harder, R. J. & Cherukara, M. J. (2020). arXiv:
2006.09441.

Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-
Riege, S. P., Marchesini, S., Woods, B. W., Bajt, S., Benner, W. H.,
London, R. A., Plönjes, E., Kuhlmann, M., Treusch, R., Düsterer,
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Jönsson, O., Odić, D., Iwan, B., Rocker, A., Westphal, D., Hantke,
M., DePonte, D. P., Barty, A., Schulz, J., Gumprecht, L., Coppola,
N., Aquila, A., Liang, M., White, T. A., Martin, A., Caleman, C.,
Stern, S., Abergel, C., Seltzer, V., Claverie, J., Bostedt, C., Bozek,
J. D., Boutet, S., Miahnahri, A. A., Messerschmidt, M., Krzywinski,
J., Williams, G., Hodgson, K. O., Bogan, M. J., Hampton, C. Y.,
Sierra, R. G., Starodub, D., Andersson, I., Bajt, S., Barthelmess, M.,
Spence, J. C. H., Fromme, P., Weierstall, U., Kirian, R., Hunter, M.,
Doak, R. B., Marchesini, S., Hau-Riege, S. P., Frank, M., Shoeman,
R. L., Lomb, L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A.,
Schmidt, C., Foucar, L., Kimmel, N., Holl, P., Rudek, B., Erk, B.,
Hömke, A., Reich, C., Pietschner, D., Weidenspointner, G., Strüder,
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