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Bartosz Naskręcki,a* Mariusz Jaskolskib,c and Zbigniew Dauterd

aFaculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland, bDepartment of

Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland, cInstitute of Bioorganic Chemistry,

Polish Academy of Sciences, Poznan, Poland, and dMacromolecular Crystallography Laboratory, NCI, Argonne National

Laboratory, Argonne, USA. *Correspondence e-mail: bartnas@amu.edu.pl

The simple Euler polyhedral formula, expressed as an alternating count of the

bounding faces, edges and vertices of any polyhedron, V � E + F = 2, is a

fundamental concept in several branches of mathematics. Obviously, it is

important in geometry, but it is also well known in topology, where a similar

telescoping sum is known as the Euler characteristic � of any finite space. The

value of � can also be computed for the unit polyhedra (such as the unit cell, the

asymmetric unit or Dirichlet domain) which build, in a symmetric fashion, the

infinite crystal lattices in all space groups. In this application � has a modified

form (�m) and value because the addends have to be weighted according to their

symmetry. Although derived in geometry (in fact in crystallography), �m has an

elegant topological interpretation through the concept of orbifolds. Alterna-

tively, �m can be illustrated using the theorems of Harriot and Descartes, which

predate the discovery made by Euler. Those historical theorems, which focus on

angular defects of polyhedra, are beautifully expressed in the formula of de Gua

de Malves. In a still more general interpretation, the theorem of Gauss–Bonnet

links the Euler characteristic with the general curvature of any closed space. This

article presents an overview of these interesting aspects of mathematics with

Euler’s formula as the leitmotif. Finally, a game is designed, allowing readers to

absorb the concept of the Euler characteristic in an entertaining way.

1. Introduction

Topology, broadly defined as the study of certain properties of

geometric figures (or spaces) that do not change as these

figures or spaces undergo continuous deformation, is a rela-

tively young branch of mathematics, developed as a distinct

field by Henri Poincaré (see the biographical notes in

Appendix A) at the end of the 19th century. However,

topologists usually associate the foundation of their discipline

with Leonhard Euler (see Appendix A), whose famous

formula relating the numbers of vertices, edges and faces of

any three-dimensional polyhedron, V � Eþ F ¼ 2, is of

fundamental importance in topology. This formula later

became the basis of the concept of the Euler characteristic �,

which can be applied not only to polyhedra [more generally

termed polytopes (for a definition see Appendix B)] but also

to more unusual (to our senses) topological figures, such as

spheres, toruses, strips etc. Roughly speaking, � is defined as

an alternating sum of the numbers of k-cells associated with a

given figure, where 0-cells are equivalent to vertices, 1-cells to

edges, and so on up to k = N, N being the dimension of the

figure. Moreover, these concepts can be applied not only to

finite objects, such as, e.g., the cube, but also to objects that

extend in space infinitely. An excellent example of such an
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infinite topological object is a crystallographic lattice: periodic

and infinite in three dimensions (or in any number N of

dimensions, RN). It was the consideration of the crystal-

lographic unit cell (as an object sharing its bounding elements,

or k-cells, with its neighbors) and its minimal asymmetric part,

the asymmetric unit (ASU), that some time ago made us

realize that the Euler’s formula for such ‘incompletely

bounded’ figures will be different, yielding a sum that is

smaller by 1 (Dauter & Jaskolski, 2020). This concept was

extended, with proof, to the Euler characteristic, termed for

such objects the modified Euler characteristic �m (Naskręcki

et al., 2021a). A completely general treatment of �m based on

the topological notion of orbifolds (Appendix B) (Naskręcki

et al., 2021b) showed that these abstract topological ideas have

very practical extension to crystallography.

In this paper we introduce in an accessible way the notions

of the Euler characteristic and modified (multiplicity-

weighted) Euler characteristic in relation to crystallographic

polyhedra, lattices and symmetry groups. Moreover, we show

how the idea of �m can be derived from some fundamental

topological theorems, such as Harriot’s theorem or Descartes’

theorem. It is our goal to use the concept of the Euler char-

acteristic to make topology more familiar, and useful, to

crystallographers.

The article is constructed in such a way that sections that

present cornerstone concepts are concluded with ‘Take-home

messages’, which we hope the reader will have understood and

will remember. As the finale, we have designed a game ‘Let’s

compute Euler’s number’ which offers an entertaining way of

absorbing the concept of the Euler characteristic.

1.1. A note on polyhedra and solids

We start from a Euclidean space of a given dimension N. In

such a space we will consider sets, called k-cells, which are

topologically equivalent to closed balls of dimension k � N.

Such cells can be joined together to form new subsets, e.g.

forming a rectangle from four edges (1-cells) that overlap at

four vertices (0-cells).

A k-polytope embedded in a Euclidean space of dimension

N is a union of cells of dimensions ranging from 0 to k. In

particular, a 2-polytope in R2 is usually called a polygon, while

a 2-polytope in R3 is typically an empty ‘skin’ (polyhedron),

consisting of flat faces joined at straight edges and point

vertices. If the points inside the boundary of this ‘skin’ are also

included in the definition of the object, it becomes a solid (a

3-polytope in R3), which formally also includes several 3-cells

(interiors I). In this special case, the topological Euler char-

acteristic of the solid equals one (V � Eþ F � I ¼ 1). In

particular, one might ask, what is the crystallographic unit

cell? In the extreme case one might say that it is a skeleton of

12 edges of a parallelepiped and the faces do not matter.

However, since the crystal unit cell is ultimately filled with

concrete matter, atoms and molecules, most crystallographers

would view the unit cell as a solid parallelepiped, with proper

faces bounding the three-dimensional interior. In this view, the

translationally repeated unit cells cover all points of the R3

space.

Depending on the context, we will refer to a k-polytope

(built from cells of dimensions between 0 and k) in RN for

k � N and call it k dimensional. The standard notation is to

say that we have a polytope in RN , which denotes a solid N-

dimensional polytope. We will always make the proper

distinction because, as noted above, even the adopted defini-

tion influences the result of the sum in Euler’s polyhedral

formula and characteristic.

1.2. Plan of the paper

Our goal in this paper is to familiarize the crystallographic

community in an accessible way with the broad system of

concepts and theorems centered around the notion of the

Euler characteristic. The concepts introduced in the following

sections are connected in various ways. Fig. 1 is a concise

scheme of the paper that should serve as a roadmap for

readers.

We divided the concepts we introduce into three realms: the

alpha world – centered on the idea of measuring angles in

geometric objects; the kappa world – built around the concept

of the curvature (Appendix B) and global change of shape;

and the chi world – concepts stemming from the notion of the

Euler characteristic.

Each of these worlds has a non-trivial intersection with the

other worlds. In Section 2 we discuss in detail the major

concepts related to the alpha world. In Sections 3 and 4 we

discuss the main properties and definitions of the Euler

characteristic and its various generalizations.

In Section 5 we link the alpha and kappa worlds with the chi

world via the fundamental result of Gauss (see Appendix A)

and Bonnet (see Appendix A), which on the one hand

connects the concept of curvature (kappa world) to the Euler

characteristic for smooth surfaces, and on the other hand

connects the total angular defect (Appendix B) (alpha world)

to the same Euler characteristic in a polytopal analog of the

Gauss–Bonnet theorem. In Section 6 we discuss further
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Figure 1
The three circles represent the three different worlds, each built around
the boldface definition in that circle. Each white box represents the
theorem that connects a particular set of worlds.



developments and more technical points of the introduced

mathematical concepts.

The paper is illustrated with several examples and exercises,

including a puzzle game (in Section 3.2), which should help

interested readers to gain a more thorough understanding of

the concepts introduced. The concepts and theorems discussed

in the following sections are summarized in Table 1. The main

message of this paper is that the Euler characteristic is a

simple, explicit and useful concept from topology that can be

applied in crystallography to study space groups and their

lattice tessellations.

2. Harriot theorem and the angular defect

One of the fundamental concepts in geometry is the notion of

an angle between two lines. In higher dimensions this gener-

alizes to an angle between planes, hyperplanes etc. In various

spaces the ensemble of angles in a certain polyhedron satisfies

a list of restrictions. A particular relation holds in the planar

triangle �ABC. Its internal angles ffA; ffB; ffC satisfy the

fundamental equality [Fig. 2(a)]

ffAþ ffBþ ffC ¼ �: ð1Þ

One can generalize the statement above to the sphere. For

this purpose, we consider geodesic arcs, i.e. arcs of the great

circles, which have their center in the center of the sphere and

radius equal to that of the sphere. Between three points

(vertices) on a sphere that do not belong to a common arc, we

can form three geodesic arcs (edges) which bound a region

that we call a spherical triangle. In 1603 Thomas Harriot (see

Appendix A) proved that a spherical triangle on the surface of

a sphere satisfies a more general equalityP
�� � ¼ F=r2; ð2Þ

where F is the area of the spherical triangle, r is the radius of

the sphere onto which it is inscribed and the sum of the three

spherical angles is
P
�. The proof of Harriot’s theorem is

quite elementary and based on the concept of ‘lunes’

(Todhunter, 1886, pp. 72–73). In essence, every two great

circles on a sphere that are not identical dissect the sphere into

four regions or lunes [Fig. 2(b)]. Pairwise opposite lunes have

the same area F. It follows that F ¼ 2�R2, where � is the

opening angle between the lunes. For a spherical triangle with

vertices ABC, we consider the three pairs of lunes which are

generated along pairs of arcs between vertices. Adding up the

areas provides the formula given above. For a detailed version

of the proof, see Hopf (1940).

The formula for a planar triangle as well as the formula

of Harriot for a spherical triangle generalize to higher-

dimensional analogs of these figures. In three dimensions one

has to take into consideration both the vertex angles and edge

angles (Fig. 3). J.-P. de Gua de Malves (1783) gave the

following formula:P
��

P
�þ 4� 1

2� 1 ¼ 0; ð3Þ

where the first summation goes over all four triplanar angles �
at the four vertices of the tetrahedron, and the second

summation is over biplanar angles � at the six edges between

all pairs of faces of the tetrahedron, as marked in Fig. 3. The

contribution 4� 1
2 corresponds to the four faces of the tetra-

hedron with their half spherical angles and the final 1 is the full

angle corresponding to the interior of the tetrahedron. Notice

the unusual convention: the values of � range between 0 and 1

and correspond to the fraction of the area of the unit sphere

that the angle subtends inside the tetrahedron. For � we

measure between 0 and 1 the fraction of the area of the unit

sphere, centered at any point within the edge, that is cut out by
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Table 1
Formulas and theorems discussed in the paper.

Name of the theorem
Dimension
of the object

Dimension
of the space

Triangle angular formula 2 2
Harriot theorem 2 3
de Gua de Malves formula 3 3
Gram theorem N N
Descartes’ theorem 2 3
Grünbaum & Shephard theorem N � 1 N
Gauss–Bonnet theorem 2 3
Discrete Gauss–Bonnet theorem 2 3
Euler’s formula 2 3
Vanishing of the modified Euler characteristic

for crystallographic tessellations
N N

Equivalence between different definitions
of the Euler characteristic

K N

Figure 2
Planar (a) and spherical (b) triangle ABC.



the two planes. In this interpretation the formula obtains a

symmetric form,

P
�0i �

P
�1j þ

P
�2k �

P
�3l ¼ 0; ð4Þ

where the summation goes over the angles associated with

vertices (�0 – 0-dimensional elements), edges (�1 – one-

dimensional elements), faces (�2 – two-dimensional elements)

and interiors (�3 – three-dimensional elements). In higher

dimensions this ‘telescoping’ form of the sum remains valid for

higher-dimensional ‘triangles’, which are called simplices. The

formulas of Harriot and de Gua de Malves were generalized in

the theorem of Gram. A complete account of this story is

provided by Grünbaum (2003, ch. 14).

2.1. Gram’s theorem

For every N-dimensional convex polytope P the angle sums

satisfy

PN
i¼0

ð�1Þi�i ¼ 0: ð5Þ

In this formula we always have �N ¼ 1 and �N�1 equals half of

the number of ðN � 1Þ-dimensional faces. In general,

�iðPÞ ¼
P
�ij is the sum of all angle contributions from

i-dimensional elements of P.

To clarify this statement let us discuss in detail two exam-

ples, based on the ASUs of space groups P1 and Pm�33m.

In the space group P1 the ASU encompasses the whole unit

cell, even if accidentally the cell has equal edge lengths and

angles, effectively having the shape of a rhombohedron or

cube, as illustrated in Fig. 3(a). Each of the eight vertices of the

cube contributes 1
8 of the whole spatial angle to the interior of

the polyhedron, �0i ¼
1
8. All 12 edges contribute a quarter of

the surrounding space into the cube interior, �1j ¼
1
4. Again,

one-half of the space divided by each of the six faces lies inside

the cube, �2k ¼
1
2, and there is only one full interior of this

solid, �31 ¼ 1. Thus, we have

P
�0i þ

P
�1j þ

P
�2k þ �31 ¼ 8� 1

8� 12� 1
4þ 6� 1

2� 1

¼ 1� 3þ 3� 1 ¼ 0: ð6Þ

There is only one possible choice of the ASU in the cubic

space group Pm�33m, as a tetrahedron illustrated in Fig. 3(b).

All bounding elements of this tetrahedron lie at the special

symmetric positions of this space group. Vertices 1 and 4 are

positioned at sites of m�33m symmetry and transform onto

themselves 48 times, and vertices 2 and 3 lie at 16-fold posi-

tions with 4/mmm symmetry. The edge 1–4 lies along a

direction of 3m symmetry and sixfold multiplicity, the edges 1–

2 and 3–4 lie along directions of 4mm symmetry and eightfold

multiplicity, and the remaining edges 1–3, 2–3, 2–4 lie along

directions of mm2 symmetry and fourfold multiplicity. All four

faces are positioned at mirror planes and the interior of the

tetrahedron lies obviously at a general position of this space

group. The fractions of the contributing elements (k-cells)

residing within the bounds of this ASU are, therefore, as

follows:

�01 ¼ �02 ¼
1

48 ; �03 ¼ �04 ¼
1

16 ;

�11 ¼
1
6 ; �12 ¼ �13 ¼

1
8 ; �14 ¼ �15 ¼ �16 ¼

1
4 ;

�21 ¼ �22 ¼ �23 ¼ �24 ¼
1
2 ;

�31 ¼ 1:

ð7Þ

The signed sum of all contributors to the de Gua de Malves

formula is therefore

2� 1
48þ 2� 1

16

� �
� 1

6þ 2� 1
8þ 3� 1

4

� �
þ 4� 1

2� 1 ¼ 1
6�

7
6þ 2� 1 ¼ 0: ð8Þ

2.2. Angular defects

Starting from two-dimensional polytopes embedded in the

three-dimensional space, one can talk about the angular defect

of a given vertex. This concept is in principle related to a

discrete form of curvature (more on this in Section 5 about the

Gauss–Bonnet theorem). An angular defect at a vertex is 1

minus the sum of the angles of the faces at that vertex. Here

again we use the convention that the angles are normalized

with respect to the measure of the given N-dimensional unit

sphere. For N = 1 this measure is 2�, for N = 2 it equals 4�, and
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Figure 3
(a) In space group P1 the ASU covers the whole unit cell and has the
shape of a parallelepiped or, as in this special case, a cube. The angles
marked in light blue are denoted in the text as �0i and the angles marked
in dark blue as �1i. (b) The ASU (blue tetrahedron) embedded within the
unit cell (black) of the cubic space group Pm�33m. The internal angles at
the vertices (light blue) and edges (dark blue) of the ASU are marked.



in general it is equal to the total surface of the N-dimensional

sphere.

For example, at each vertex of the cube, all angles between

the three pairs of faces meeting at each corner are equal to

�=2, i.e. 1
4 of the full planar angle 2�. The angular defect at

each cubic vertex is therefore 1� 3� 1
4 = 1

4. The sum of the

angular defects at all eight vertices adds up to 2.

René Descartes (Appendix A) discovered [see the historical

account by Federico (1982)] that the total sum of defects KðvÞ

at all vertices v of the boundary S of a 3-polytope P always

satisfies P
v

KðvÞ ¼ 2: ð9Þ

We note here that the value of 2 is equal to the Euler char-

acteristic �ðSÞ of the boundary of the polytope P, as fully

explained in the next section. In (9) it is crucial that the

boundary of the polytope P is topologically equivalent to a

sphere [otherwise the value �ðSÞ might change]. The notion of

the Euler characteristic was of course not known to Descartes;

his is, therefore, the true precursor of Euler’s discovery.

According to Hilton & Pedersen (1989) this formula is

equivalent to the original Euler formula V � Eþ F ¼ 2. On

the other hand, Descartes’ theorem is a special case of the

more general Gauss–Bonnet formula. We will introduce this

formula after the discussion of the Euler characteristic.

Descartes’ theorem has an interesting history. According to

Grünbaum & Shephard (1991), ‘The elementary and beautiful

theorem known as Descartes’ Theorem was discovered in the

seventeenth century and is stated in Descartes’ De Solidorum

Elementis. The manuscript was lost, however, and we only

know of its contents because a copy made by Leibnitz was

discovered in the Royal Library of Hanover in 1860. A tran-

scription and translation of this manuscript, together with

comments, can be found in Federico’s (1982) fascinating

account of the work.’

In higher dimensions, Grünbaum & Shephard (1991) found

a generalization of Descartes’ formula which still preserves

the equality with the Euler characteristic. In their formulation

they use a telescoping sum of all defects �k of k-cells in an

(N � 1)-polytope P embedded into RN in which an intersec-

tion of any two (N � 1)-faces is either empty or an (N � 2)-

face, forming altogether a polytope which is a topological

manifold. The formula is

PN�3

k¼0

ð�1Þk�k ¼ �ðPÞ: ð10Þ

Note that �0 is the sum of defects at all vertices (0-cells), �1 is

the sum of all defects at all edges (1-cells) etc. A nice example

is an empty hypercube in dimension 4 (with cells up to

dimension 3). It is a union of eight three-dimensional cubes,

where four 3-cubes meet at each of the 16 vertices. The defect

at each vertex is 1� 4� 1
8 ¼

1
2 since the solid angle at a vertex

of a 3-cube is 1
8. Therefore, the defect �0 ¼ 16� 1

2 ¼ 8. The

hypercube has 32 edges, with three 3-cubes meeting at each

edge. Hence the edge defect equals 1� 3� 1
4 ¼

1
4 since the

angle between two faces of the 3-cube is 1
4. In total, we have

�1 ¼ 32� 1
4 ¼ 8. We conclude, therefore, that the Euler char-

acteristic of the empty hypercube (without the internal 4-cell)

equals �0 � �1 ¼ 0. This agrees with a general statement from

topology that a 3-manifold has the Euler characteristic equal

to zero.

Take-home message. The total angular defect of a polytope

is a quantity that, despite its very geometric origin, is a

topological invariant.

3. The Euler characteristic

One of the most fundamental ideas in mathematics is the

notion of ‘counting of objects’. In its simplest form, given two

sets A;B, one can attach to them their cardinality (Appendix

B) (which in the case of finite sets is simply the number of

elements), denoted jAj and jBj, respectively. For two finite sets

the most fundamental property of the counting function can

be encoded in two statements:

(i) The size of a set {*} containing only one (any) element

equals 1, i.e. the cardinality |{*}| = 1.

(ii) The counting function jXj of a set X is compatible with

operations on finite sets A;B (i.e. with sum A [ B and inter-

section A \ B):

A [ Bj j ¼ Aj j þ Bj j � A \ Bj j: ð11Þ

Property (ii) indicates that the counting measure jXj of a

finite set X is a valuation (Appendix B). In general, a valuation

v on a collection S of sets is a function from S to the set of real

numbers such that

v A [ Bð Þ þ v A \ Bð Þ ¼ v Að Þ þ v Bð Þ: ð12Þ

In its general form, property (ii) is called the inclusion–

exclusion principle:

Sn
i¼1

Ai

����
���� ¼P

n

i¼1

jAij �
P

1�i<j�n

jAi \ Ajj þ � � �

þ ð�1Þn�1
jA1 \ � � � \ Anj: ð13Þ

When the sets that we encounter are infinite, the cardinality

of a set lacks the natural valuation property. In particular,

when dealing with (compact) (see Appendix B) polytopes in

the Euclidean space R
N (which contain infinitely many

points), the cardinality of a polytope would not constitute a

sensible valuation – we need something much finer.

We denote by P the set of polytopes (of varying dimen-

sions) that can be obtained from the finite unions and inter-

sections of convex closed polytopes.

Valuative definition of the Euler characteristic. The cele-

brated theorem of Hadwiger (Klain & Rota, 1997, Theorem

5.2.1) states that there exists a unique function � : P ! R

such that:

(i) � is invariant under rigid motions of the polytope

P � RN , i.e. �ðPÞ ¼ �½�ðPÞ	 where � : RN
! R

N is either a

rotation or a translation.

(ii) � is convex continuous, i.e. for a sequence of convex

polytopes fAng of fixed dimension which approach a convex

teaching and education
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polytope A with respect to the Hausdorff metric (Appendix

B), the value �ðAnÞ approaches �ðAÞ in the limit n!1.

(iii) �ð;Þ ¼ 0 for the empty set ;. For any K which is a non-

empty convex compact polytope (of arbitrary dimension), we

have �ðKÞ ¼ 1.

(iv) � is a valuation, i.e. for any P;Q 2 P we have

�ðPÞ þ �ðQÞ ¼ �ðP [QÞ þ �ðP \QÞ: ð14Þ

Remarks:

(a) This definition is powerful enough to let us compute the

value of � for any polytope in P. For historical reasons the

number � is called the Euler characteristic (Appendix B).

(b) The statements (i)–(iv) above are referred to as ‘prop-

erties’ of the function �.

(c) The normalization of � in property (iii) makes the

condition (ii) rather trivial. However, the properties (i), (ii)

and (iv) [without (iii)] determine other convex-continuous

valuations (like volume integrals, surface integral etc.).

(d) The Hausdorff metric used in property (iii) allows one

to generalize the usual Euclidean distance between points to

collections of multiple points (such as polytopes). We present

in Fig. 4 two pairs of polytopes – two that are close in the sense

of the Hausdorff metric [Fig. 4(a)], and two that are ‘far apart’

[Fig. 4(b)]. Continuity of a given function f with respect to the

Hausdorff metric means that a small change in the value of the

Hausdorff distance of two arguments (polytopes) implies a

small change in the value of the function f against these

arguments.

Properties (i)–(iv) allow us to design a game, ‘Let’s compute

Euler’s number’ in Section 3.2. The rules are rather simple. We

start from a given shape, which is our challenge. In each step

all we can do is to decompose the shape into two parts for

which we try to compute the Euler characteristic separately.

Then we add these numbers and compute the Euler char-

acteristic for all intersections of the pieces and apply the rules

of alternating sum. There are two tricky aspects of the game: if

the shape is polytopal, the game will always end (think about

triangulation of the space); the result (value of the Euler

characteristic) does not depend on the way we play a parti-

cular round. This surprising conclusion can be proven on the

basis of either the combinatorial or topological formula for the

Euler characteristic.

Combinatorial definition of the Euler characteristic. Euler,

Schläfli and Poincaré defined, at various levels of generality,

the Euler characteristic of a polyhedral complex P as

�ðPÞ ¼
Pn
k¼0

ð�1ÞkfkðPÞ; ð15Þ

where f kðPÞ denotes the number of k-cells of P. It is possible

to check that the function defined in such a way satisfies

principles (i)–(iv).

In the most classical form, for a polyhedral surface S (e.g. a

boundary surface, or ‘skin’, of a solid convex 3-polytope in

R
3), if S has V vertices, E edges and F faces we have

�ðSÞ ¼ V � Eþ F: ð16Þ

In particular, for such a polyhedral skin S of a solid convex

3-polytope the celebrated Euler theorem is (Euler, 1758)

�ðSÞ ¼ 2: ð17Þ

In his wonderful book Richeson (2008) explores the many

facets of this remarkable formula.

In fact, formula (15) can be deduced from the properties

(i)–(iv) of � as was shown by Klain & Rota (1997, Theorem

3.2.3). This means that the valuative definition of � provided

by Hadwiger, while being rather modern compared with the

definitions of Euler, Schläfli and Poincaré, is a much more

natural point of departure for our discussion. Such an achro-

nological state of affairs is not uncommon in mathematics.

Topological definition of the Euler characteristic. The Euler

characteristic can be extended to any topological space X. The

meaning of �ðXÞ in such a case is the alternating sum

�ðXÞ ¼
P

i

ð�1ÞibiðXÞ; ð18Þ

where biðXÞ denotes the ith Betti number of X and the

summation index runs from 0 to the dimension of the space X.

An ith Betti number of X is the number of i-dimensional

‘holes’ in X (Richeson, 2008, ch. 23; see also Hatcher, 2002;

Spanier, 1982). The dimension of the ‘hole’ is related to its

boundary, rather than its interior (a sphere bounds a ball-like

hole etc.). A circle C bounds a disc-shaped hole, hence

b1ðCÞ ¼ 1. A sphere S bounds a ball but it has no disc-like

hole, hence b1ðSÞ ¼ 0, b2ðSÞ ¼ 1. In the familiar context when

X is a polytope P, the combinatorial and topological defini-

tions of the Euler characteristic coincide. While the terms of

the telescoping sums (15) and (18) are rather similar in

appearance, they are not directly comparable. The Betti
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Figure 4
The Hausdorff distance between shapes in panel (a) is smaller than the
distance between shapes in panel (b). In the latter case the distance
increases because the necessary fattening must be larger to encompass
the intertwining inner loop.



numbers biðPÞ of a polytope P cannot in general be deduced

from the number of faces f iðPÞ. For example, the Betti

numbers of a polytopal skin of a convex polytope are always

b0ðPÞ ¼ 1, b1ðPÞ ¼ 0, b2ðPÞ ¼ 1, biðPÞ ¼ 0, i> 2, while the

numbers f iðPÞ will vary with each polytope P.

However, we note here that the valuative, combinatorial

and topological definitions of the Euler characteristic do

coincide for polytopes. That means we should recognize the

quantity �ðPÞ as something more fundamental than any of

these three definitions.

3.1. What is homotopy equivalence and how is it related to
the Euler characteristic?

Homotopy equivalence (Appendix B) is a notion that was

discovered during the formative years of mathematical

topology. The main idea of homotopy equivalence is to be able

to ‘bend one space into another’. In essence, homotopy

equivalence between two spaces X and Y preserves the

essential topological features, such as path connectivity and

the number of connected components.

This ‘bending’ is done with respect to very strict assump-

tions: the transformation that replaces one space by another is

continuous, which intuitively means that we deform spaces

without tearing them apart. So, we say that a subset of the

Euclidean space X is homotopy equivalent to a subset Y if

there exist two maps f : X ! Y and g : Y ! X , both

continuous and such that their compositions f 
 g and g 
 f are

homotopic (Appendix B) to the identity maps (an identity

map is just sending an element to itself) on X and Y,

respectively.

In particular, a space is homotopy equivalent to a point only

if there exists a point within this space such that every other

point is connected to it by a connected path (but sometimes

this is not enough – see the example of the circle and a point at

the end of Section 3.2). For example, any star-shaped polytope

is homotopy equivalent to a point, and so is any convex subset.

The necessary homotopy (Appendix B) is realized by moving

each point onto a fixed point along a line which is contained

within the space. In Fig. 5(a) we visualize how a point is

homotopy equivalent to a bounded segment. The homotopy

moves linearly each point of the segment onto one particular

point of the segment. Similarly, in Fig. 5(b) we show how a

polygon which consists of several connected segments is

homotopy equivalent to a point. The homotopy ‘shrinks’ the

branches in several stages. Finally in Fig. 5(c) we demonstrate

how two paths on the plane with the same start and end points

transform under homotopy into each other in a finite time t.

For two polytopes (not necessarily convex or connected)

the homotopy equivalence between them will save the general

connectivity between points but might even lower the

dimension. Take a square with a smaller open square removed

and a one-dimensional rectangular skeleton (a parallelogram)

– they are homotopy equivalent, but definitely not rigid-

motion equivalent. However, the Euler characteristic remains

the same.

With the topological extension of � we gain the extra flex-

ibility of the homotopy invariance, �ðXÞ ¼ �ðYÞ if X is

homotopy equivalent to Y. The topological extension of the

definition of the Euler characteristic also satisfies the usual

principles (i)–(iv). In the first rule we can replace the rigid

motion with any homotopy equivalence, and in principle (iii)

the convex polytope can be replaced with any topological

space that is homotopy equivalent to a point.

3.2. ‘Let’s compute Euler’s number’ game

We are now ready to explain explicitly the computation of

the Euler characteristic for several spaces. We encode the

principles (i)–(iv) into the following rules:

Rule A: the Euler characteristic of any two homotopy-

equivalent spaces is the same. This rule also includes all rigid

motions of polytopes.
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160 Bartosz Naskręcki et al. � The Euler characteristic for teaching topology J. Appl. Cryst. (2022). 55, 154–167

Figure 5
(a) An illustration of the process of transforming a single point x0 of the
closed interval ½a; b	 into the interval itself. The transformation is a
homotopy map Hðx; tÞ ¼ x0ð1� tÞ þ x. (b) An illustration of how a
homotopy can deform in two steps a six-segment edge graph into a single
point. In the first step we contract the four outer segments into their end
points using the homotopy from Fig. 4(a). Next, we contract with a similar
homotopy the remaining two segments to the central point. (c) An
example of a homotopy process Hðx; tÞ, in which a curve with two fixed
end points is continuously transformed into another curve. The
intermediate steps of the evolution in time are denoted with Hðx; tiÞ

for time points 0< t1 < t2 < t3 < t4 < t5 < 1:



Rule B0: the Euler characteristic of the empty set equals 0.

Rule B1: the Euler characteristic of a space homotopy

equivalent to a point equals 1.

Rule C: for any two spaces A and B we have the equality

�ðA [ BÞ ¼ �ðAÞ þ �ðBÞ � �ðA \ BÞ: ð19Þ

These rules are now used to define a game that we call ‘Let’s

compute Euler’s number’. The word ‘game’ means here an

engaging classroom activity. Below are four example runs of

the game.

3.2.1. Game 1. We start with a filled square on the plane

[Fig. 6(a)]. According to rule B1, since the filled square is

convex, its Euler characteristic equals 1. Alternatively, we

argue that there exists a linear motion, continuous from point

to point, which moves each point of the filled square onto its

center.
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Figure 6
Panels (a)–(d) provide graphical illustrations of the four games 1–4 described in detail in the text.

In an alternative (not optimal) run, we can dissect the filled

square P1 ¼ ACDE into a union of two ‘halves’, which are

filled rectangles ABEF and BCDE, intersecting along one

edge BE. Let us call these rectangles � and �. The Euler

characteristic of each piece equals 1 due to rule B1 and the

Euler characteristic of � \ � is 1 as well (an edge is also

convex). Hence �ð� [ �Þ = �ð�Þ + �ð�Þ � �ð� \ �Þ = 1 + 1 �

1 = 1. As a result, we can see that the decomposition did not

affect the final result.

3.2.2. Game 2. Let us consider a shape P2 that consists of a

circle � and an edge � attached to this circle at one point B

[Fig. 6(b)]. The shape P2 ¼ � [ � is an empty lollipop. Rule C

tells us that

�ðP2Þ ¼ �ð�Þ þ �ð�Þ � �ð� \ �Þ: ð20Þ

Rule B1 informs us that �ð�Þ ¼ �ðBÞ ¼ 1, hence

�ðP2Þ ¼ �ð�Þ. For a trained topologist this is not surprising

since every such ‘hairy’ circle is homotopy equivalent to a pure

circle. So how do we compute �ð�Þ? Well, a circle is a union of

two closed half-circles � and � which intersect at the union of

two points � \ � ¼ fA;Bg. Therefore, we have



�ð�Þ ¼ �ð�Þ þ �ð�Þ � �ð� \ �Þ: ð21Þ

Rule B1 tells us that �ð�Þ ¼ �ð�Þ ¼ 1 (now we use the

topological version of this rule) and the application of rule C

gives

�ð� \ �Þ ¼ �ðAÞ þ �ðBÞ � �ð;Þ: ð22Þ

Finally, we obtain �ð�Þ ¼ 0 and �ðP2Þ ¼ 0.

3.2.3. Game 3. Let us consider a rectangle with a smaller

rectangle removed from its interior [Fig. 6(c)]. The position of

the interior rectangle (as it will turn out) is not important.

What is important is that we do not remove the inner

boundary around the hole. From a topological point of view,

this space is homotopy equivalent to an ordinary circle (in a

sense, the flexibility of topology ruins the excitement of our

game . . . ). So, the conclusion should be � ¼ 0:
In the polygonal version, we can decompose the shape P3

into a union of four trapezoids T1 ¼ ABFE, T2 ¼ AEHD,

T3 ¼ CGFB, T4 ¼ DHGC, with parallel sides corresponding

to one outer and one inner edge of the hollow rectangle. Each

trapezoid Ti satisfies �ðTiÞ ¼ 1 since it is a convex shape.

Pairwise neighboring trapezoids, say � ¼ T1 and � ¼ T2, have

an edge � \ � as their intersection, hence �ð� \ �Þ ¼ 1,

according to rule B1. Let � ¼ T1 [ T2 and � ¼ T3 [ T4. It

follows from rule C that �ð�Þ ¼ �ð�Þ ¼ 1. The same rule

implies that

�ðP3Þ ¼ �ð�Þ þ �ð�Þ � �ð� \ �Þ: ð23Þ

The intersection � \ � is a union of two disjoint edges BF

and DH. It follows from rule C that �ð� \ �Þ ¼ 2 and finally

�ðP3Þ ¼ 1þ 1� 2 ¼ 0:
3.2.4. Game 4. Finally, let us try a three-dimensional case.

Fig. 6(d) shows a square pyramid with a tunnel cut out at its

bottom. We cut the original shape P4 into three convex

pyramids �; �; �, two of them (�; �) connected along a face

(� \ �Þ. It follows from rule C that the Euler characteristic of

the union P4 ¼ � [ � [ � satisfies �ðP4Þ = �ð�Þ þ �ð� [ �Þ �
�½� \ ð� [ �Þ	.

Rule B1 implies that �½� \ ð� [ �Þ	 ¼ 1. Next, rule C

implies that

�ð� [ �Þ ¼ �ð�Þ þ �ð�Þ � �ð� \ �Þ; ð24Þ

and �ð�Þ ¼ �ð�Þ ¼ �ð� \ �Þ ¼ 1 by rule B1. In total, we

calculate that

�ðP4Þ ¼ 1þ 1� 1 ¼ 1: ð25Þ

3.2.5. Further challenges. Now, our readers, equipped with

such a powerful tool, are asked to try to compute the Euler

characteristic of the following shapes:

(1) A rectangle with two holes (of any shape). (Answer

� ¼ �1.)

(2) A torus surface (hint: cut the torus surface vertically into

two bended tubes; argue that the Euler characteristic of such a

tube is the same as for a circle; the intersection of these tubes

is a union of two disjointed circles). (Answer � ¼ 0.)

(3) A ball. (Answer � ¼ 1.)

(4) A sphere. (Answer � ¼ 0.)

(5) A union of two filled rectangles that meet at a single

corner, and which are glued to a filled triangle that is attached

by its side to the corresponding edge of one of the rectangles.

(Answer � ¼ 1.)

(6) A square pyramid as in Game 4, but with two perpen-

dicular tunnels drilled at its bottom, running parallel to the

base edges. (Answer � ¼ 1.)

(7) A cube with a tunnel drilled through its center. (Answer

� ¼ 0.)

(8) A cube with two crossing tunnels drilled through its

center. (Answer � ¼ �2.)

(9) A cube with three crossing tunnels drilled through its

center. (Answer � ¼ �4.)

(10) Challenge: can you generalize the formula for a cube

drilled with n tunnels meeting at one central point? [Answer:

� ¼ 2� ð1� nÞ.]

We note that, in cases where for two spaces X and Y the

Euler characteristic is different, these spaces are not homo-

topy equivalent. However, even when �ðXÞ ¼ �ðYÞ, it does

not imply in general that such spaces are equivalent. A simple

and fun proof (without any algebraic topology) that a circle is

not equivalent to a point is provided by Brown (1974).

Take-home message. The computation of the Euler char-

acteristic of a polytope (or even of topological space) is a

valuation process which measures the essential ‘connectivity’

properties of a given set. It is a natural, yet non-trivial,

extension of the counting measure for finite sets, which

remains finite for polyhedra.

4. The modified Euler characteristic

A typical object in crystallography is a polytope, such as the

unit cell or its ASU, which is propagated through space by the

action of a certain space-group symmetry. Such a construction

provides a new point of view on the intrinsic geometry of the

polytopes. Instead of studying a single solid polytope in space,

for which the Euler characteristic equals 1, we need to take

into account the possibility of vertices, edges and faces being

shared by adjacent polytopes in the tessellation.

To fix that, one has to introduce a new principle of sharing.

In this new ‘modified Euler characteristic’ (�m) concept we

count the k-cells in the minimal space element (in crystal-

lography, the ASU or Dirichlet domain) which is replicated

under the space-group action, with the contribution of each

k-cell normalized by a weight that is inversely proportional to

the number of sharing neighbors, or by the fraction of the total

solid angle around this k-cell subtended by the polytope in

question. A quantity that will abstract from the particularities

of the tessellation subdivision is termed the orbifold Euler

characteristic (Appendix B), as introduced by Satake (1956)

and Thurston (2002). We have investigated the concept of

modified Euler characteristic in earlier papers (Dauter &

Jaskolski, 2020; Naskręcki et al., 2021a) and in relation to the

orbifold notion as well (Naskręcki et al., 2021b). The modified

Euler characteristic has the form
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�m ¼
XN

i¼0

ð�1Þi
XnðiÞ
j¼1

1

mðijÞ
ð26Þ

where 1=mðijÞ is the fraction the individual element j of

dimensionality i contributes to one selected polytope. In

three-dimensional space this can also be expressed as

�m ¼ Vm � Em þ Fm � Im ð27Þ

where Vm;Em;Fm; Im represent the total fractions of elements

of different dimensionality ascribed to one polyhedron in the

three-dimensional lattice (Dauter & Jaskolski, 2020;

Naskręcki et al., 2021a).

The modified Euler characteristic is multiplicative with

respect to coverings of the spaces. The tessellation by its

periodic behavior corresponds to a space named the N-

dimensional torus. Every torus is obtained by ‘gluing’ the

appropriate cells. In particular, in dimension 2 we start from a

filled square. We glue pairwise in the same orientation the two

vertical edges, as well as the horizontal edges. In effect, this

new space allows one to ‘pass through the wall’. The effect of

crossing the northern boundary is to return to the southern

border. A similar situation arises when crossing east to west.

In three dimensions we identify and glue together the corre-

sponding faces of the cube, to obtain a three-dimensional

torus. In general, one can imagine a filled hypercube in

dimension N, where we perform a compatible identification of

the (N � 1)-cubes.

Such a torus maps onto a space which is an orbifold. This

object looks locally like a polytope (or even an ASU) except

for some special points at which the neighborhoods are rather

unusual (Naskręcki et al., 2021b).

Take-home message. The fundamental principle that

emerges from the calculations of �m is that for all space groups

the modified Euler characteristic of the ASU equals 0.

Therefore, the modified Euler characteristic of a periodic

tessellation is a useful invariant of the tessellation. A practical

computation of the modified Euler characteristic can be

performed in a way that resembles the original Euler game.

Each time we divide a k-cell along a (k � 1)-cell, the latter

inherits the weight of the former.

Below we present two examples of the computation of the

modified Euler characteristic.

Space group P3 example. In space group P3 the ASU

recommended in International Tables for Crystallography,

Volume A (Aroyo, 2016), is a prism with a pentagonal base

[Fig. 7(a)]. Each of the three lower and three upper vertices

lying at the threefold axes provides 1
6 of the total spatial angle

inside the ASU, and the four remaining vertices provide 1
8 each

of the total angle. The Vm value is therefore 6� 1
6þ 4� 1

8 ¼

1 1
2. Each of the three vertical edges positioned along the

threefold axes provides 1
3 of the total angle and the remaining

12 edges give 1
4 of that angle each. The total value is therefore

Em ¼ 3� 1
3þ 12� 1

4 ¼ 4. The seven faces give in total Fm ¼

7� 1
2 ¼ 3 1

2. With one full interior we get

�m ¼ Vm � Em þ Fm � Im ¼ 1 1
2� 4þ 3 1

2� 1 ¼ 0: ð28Þ

Space group P21 example. In space group P21 the ASU

encompasses the lower half (0 � y< 1
2) of the unit cell

[Fig. 7(b)]. Every second horizontal planar angle at the ASU

vertices has the monoclinic value of � and the remaining

vertices have the complementary angle �� �. In effect, the

average value of all these angles is �=2, and the total internal

spatial angle of all eight vertices is Vm ¼ 8� 1
8 ¼ 1 (in analogy

to the cube). All edges contribute in total Em ¼ 12� 1
4 ¼ 3.

The contribution of the six faces is Fm ¼ 6� 1
2 ¼ 3. The

resulting value is

�m ¼ Vm � Em þ Fm � Im ¼ 1� 3þ 3� 1 ¼ 0: ð29Þ

One can further note that the formula of de Gua de Malves is

a special form of the modified Euler characteristic, which

always takes the value of 0. When we replicate a given poly-

hedron through space, the vertices, edges and faces are

appropriately shared among three-dimensional cells. The

teaching and education
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Figure 7
(a) In space group P3 the ASU (marked in blue) covers 1/3 of the unit cell
(black). The representative planar angles within the horizontal face of the
ASU are marked. (b) In space group P21 the ASU corresponds to one-
half of the unit cell. The planar angle at four vertices is the monoclinic
angle � and at the four other vertices it is �� �.



weight with respect to which each k-cell is counted in the

modified Euler characteristic formula corresponds to the

fraction of the total angle that the given k-cell subtends from

the full solid angle. That means that, in the context of poly-

topes that are replicated by space-group action, we can rein-

terpret the modified Euler characteristic in terms of angles

rather than weighted counts of shared k-cells. The examples in

Figs. 3(a) and 3(b) perfectly illustrate this point.

5. Gauss–Bonnet formula

The formula of Harriot and its higher-dimensional analogs

encode what modern mathematics calls the curvature around a

point. In simple terms, a curvature (Gauss curvature)

measures how the space ‘bends’ around a single point and

quantifies it as a real number (negative, zero or positive). We

can have positive curvature, e.g. of a point on a sphere. Zero

curvature means that the space around a point is flat. For

negative curvature things are somewhat upside down and

spaces like that for a human standing at a particular point

would look unnatural in the sense of revealing more of the

horizon than expected. A saddle point is a good example of a

place with negative Gaussian curvature (Richeson, 2008, ch. 21).

The measure of the curvature on a surface S can be used to

express the total value of such a deformation. The Gauss–

Bonnet theorem states that for a closed surface the total

measure of the Gaussian curvature equals 2�n for a certain

integer n. In precise termsR
S

K dA ¼ 2��ðSÞ; ð30Þ

where the integer �ðSÞ is the Euler characteristic of S. The

integration goes over the surface S with respect to the surface

measure dA (Richeson, 2008, ch. 21).

Let us investigate a simple example. For a sphere of radius

R its Gaussian curvature K is constantly equal to 1=R2 at any

point of the sphere. Hence the integralZ
S

K dA ¼
1

R2
area ðSÞ ¼ 4�: ð31Þ

This leads us to the conclusion that �ðSÞ ¼ 2 for the surface

of a sphere, independently of its radius, a conclusion we can

also explain using the combinatorial properties of the Euler

characteristic. This is in fact remarkable, because for other,

more wobbly closed surfaces that are distortions of a sphere

and can be treated as homotopy equivalent to it, the Gaussian

curvature K will obviously change locally, leading to an

extremely complicated integration problem. Yet, the final

result is always the same, 4� in three-dimensional space.

Take-home message. The total Gaussian curvature of a

closed surface is a quantity that is independent of any small

(i.e. continuous) deformations of this object. Its nature is

purely topological.

In this paper we are mostly interested in the curvatures,

angles, topological properties etc. of polyhedra and polyhedral

tessellations of spaces. In particular, we need to develop and

discuss the notion of the curvature for a space with edges and

boundaries.

For a surface built out of two-dimensional polygons, the

faces are flat, and hence their Gaussian curvature is 0. The

bending of the space is concentrated on the vertices. Specifi-

cally,

KðvÞ ¼ 2��
P

i

�i ð32Þ

is the angular defect at a vertex v, as in Fig. 2(b). The

summation is over face angles adjacent to v. Summing the

defects KðvÞ over all vertices v of a polytopal surface we

obtain a discrete analog of the Gauss–Bonnet theorem (30):P
v

KðvÞ ¼ 2��ðPÞ: ð33Þ

Note that the most classical case of the polyhedron homo-

topic with a sphere reveals the equivalence of the discrete

Gauss–Bonnet theorem with the formula of Descartes

[equation (9)]. There are also generalizations of (30) and (33)

to spaces with boundaries or of higher dimensions. In the

discrete setting, a miracle happens again and the right-hand

side of formula (33) equals 2��ðPÞ, where �ðPÞ is the Euler

characteristic of the polyhedral surface P. In simple geometric

terms, the number �ðPÞ is computed by counting the number

of ‘holes’ in the polyhedron P. For example, a polyhedral torus

surface has exactly one hole. An empty cube has no holes

through its surface etc. Eventually, the Euler characteristic

�ðPÞ ¼ 2� 2g where g is the number of holes in P.

6. Vistas

We have discussed many interesting connections between the

alpha (angle), chi (Euler characteristic) and kappa (curvature)

worlds. The key result that connects the three worlds is Des-

cartes’ theorem, which links the total angular defect with the

Euler characteristic. While being a result about angles, it is the

simplest variant of the Gauss–Bonnet theorem for polytopes.

The formula of Harriot provides a link between the angle

sums, Euler characteristic and modified Euler characteristic

for tessellations of space. In higher dimensions such a

comparison can be made via the theorem of Gram, as

explained above.

In our rather elementary considerations throughout this

paper, we have not discussed in detail that the modified Euler

characteristic can be interpreted as the Euler characteristic of

an orbifold space associated with the tessellation. A detailed

discussion of this view of our topic is presented by Naskręcki

et al. (2021b). This high-brow point of view makes it possible

to prove in an elegant way that the modified Euler char-

acteristic is zero for every tessellation in every Euclidean

space, using only the multiplicativity of the Euler character-

istic under coverings of spaces and the vanishing of the

modified Euler characteristic for a simple cubical tessellation

(which corresponds on the orbifold side to a wrapped torus

space). The Gauss–Bonnet theorem has its version for (two-

dimensional) orbifolds. Yet again, this establishes a connection
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between counting angles in polytopes shared in the tessella-

tion and the modified Euler characteristic.

Finally, we note that the terms that appear under the sum

signs in the modified Euler characteristic may be interpreted

as the number of k-dimensional cells in the tessellation of

space. More precisely, if we are given a certain space tessel-

lation and we fix a vertex of a particular polytope as the center

of this tessellation, then, growing with the sphere radius R, we

obtain a counting function NkðRÞ which computes the number

of k-dimensional cells which are strictly contained in or

intersect a ball of radius R centered at this fixed vertex.

Coxeter (Appendix A) (1948, ch. 4.8) studied such functions

and observed that the leading term coefficients 	k [so that

NkðRÞ ¼ 	kRN þ � � �] satisfy the formula
P

kð�1Þk	k ¼ 0 for

the periodic tessellations (under certain simplifying condi-

tions). We have explored this theme (Naskręcki et al., 2021b),

proving that this formula is essentially the modified Euler

characteristic of the orbifold associated with the tessellation.

7. Conclusions

The notion of the Euler characteristic of a space, polyhedron

etc. is a well established numerical quantity, known for many

years in mathematics. Over the past five decades, due to

advances in our understanding of topological and differential

aspects of polytopes, several new variants of the Euler char-

acteristic have been proposed. The first formulation of Euler

was somewhat ahistorical to the following development and

proved to be less fundamental than the combinatorially

founded concepts introduced later.

In particular, the modern notion of an orbifold plays a key

role in this development, as well as in modern applications

driven by computer graphics. Also, a reformulation of the

Gauss–Bonnet equation combines the local differential input,

expressed in the Descartes angular defect formula, with the

global idea of the Euler characteristic of an orbifold space.

Such a point of view sheds new light on the intricate relations

between combinatorially computed data of polyhedra and

tessellations. Our aim in this paper has been to make the

crystallographic community aware of these modern notions

and indicate their practical and very concrete nature, as well as

the unexploited potential for applications in the computa-

tional and numerical aspects of crystallography.

In the general context, the many facets of the modified

Euler characteristic reveal the unity and beauty of mathe-

matics and crystallography, combining their many flavors:

combinatorial, geometric and topological. We hope that

interested readers will benefit from this unified exposition and

will view the modified Euler characteristic as a versatile tool

that allows the qualitative properties of various spaces to be

measured.

APPENDIX A
Biographical notes (in alphabetical order)

Pierre Ossian Bonnet (1819–1892) was a prolific mathe-

matician and teacher of the 19th century. In his early life he

considered a career as an engineer but he eventually turned to

analysis and geometry. He taught at École Polytechnique and

the Sorbonne in Paris, working at that time on several ideas in

differential geometry. His interests were broad and included

cartography, algebra and mathematical physics. In particular,

he applied certain ideas from differential geometry to

geographical maps, including an extension of Lambert’s ideas

about transformations which preserve angles on cartographic

maps. His greatest contribution was the extension of the ideas

of Gauss about curvature of surfaces and the proof of the

Gauss–Bonnet formula for a surface with boundary.

Harold Scott MacDonald Coxeter (1907–2003) was a man

of many talents. An accomplished pianist and a talented

linguist, he finally chose mathematics as his master subject,

much to the benefit of humanity. Educated in Cambridge, he

spent some time at Princeton and returned to Trinity College

where he was appointed as a lecturer. He became later a

professor in Toronto. He made major contributions to the

theory of polytopes, the study of reflection groups and

tessellations of spaces.

René Descartes (1596–1650) was a French philosopher and

mathematician. He served for a while in the French and Dutch

armies, but later he mostly lived in the Netherlands. He died

from pneumonia in cold Sweden as a tutor of Queen Christina.

With his famous maxim cogito ergo sum, he is regarded as the

precursor of modern rationalistic philosophy, pioneering the

‘Age of Reason’. Descartes left an enduring legacy in mathe-

matics. He introduced the Cartesian system of coordinates and

algebraic methods for analyzing geometrical problems.

Descartes was a prominent figure of the scientific revolution in

the 17th century.

Leonhard Euler (1707–1783) was one of the greatest and

most prolific mathematicians of all time. Swiss by birth, he

spent most of his life in Berlin and St Petersburg, where he is

buried. He influenced many branches of mathematics,

including calculus, analysis, number and graph theories,

complex function theory, and topology. In crystallography

Euler is remembered for his expði�Þ representation of

complex numbers, for his theorem about the number of five-

fold axes (12) in solids with icosahedral symmetry, or for his

formula relating the number of vertices (V), edges (E) and

faces (F) of any solid (V � Eþ F ¼ 2). His famous identity

expði�Þ þ 1 ¼ 0 is considered the most beautiful formula ever.

Carl Friedrich Gauss (1777–1855) is probably the greatest

mathematician of all time, called ‘Princeps mathematicorum’;

he very strongly influenced many branches of mathematics

and science and tutored many famous mathematicians. Gauss

was intellectually prodigious at a very young age. He studied

at the universities at Braunschweig and Göttingen, where he

later lived. His most notable contributions were in number

theory, geometry, probability, geodesy and astronomy. He

contributed to important research on magnetism and his name

is used as a unit of magnetic induction. Gauss left many

important unpublished ideas, extending his influence

throughout the 19th century.

Thomas Harriot (circa 1560–1621), in today’s terms, was a

scientist, mathematician and explorer. In 1585–1586 he was
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part of the British Crown’s expedition to the New World

(called Virginia) to assess the economic value of the new

colonies. Tasked with finding the best way of stacking

cannonballs on ship decks, he discovered, without publication,

‘Kepler’s conjecture’ approximately 20 years before Kepler,

i.e. around 1591. Most of Harriot’s discoveries and inventions

are documented only in his sparse notes. The only published

opus is on the exploration of the New World colony.

Henri Poincaré (1854–1912) was educated at École Poly-

technique in Paris and remains one of the very few mathe-

maticians who understood the field in all its aspects. He made

seminal contributions throughout mathematics, competing

with Einstein in the discovery of the principles of general

relativity. His foundational work in topology transformed the

field completely, leading to further development of algebraic

topology and making it possible to provide a topological

definition of the Euler characteristic. He actively developed

mathematical physics, in particular contributing to the quali-

tative understanding of the solutions of differential equations.

APPENDIX B
Glossary of terms (in alphabetical order)

Angular defect. A measure of curvature of a polytope at a

given vertex. It can be expressed as the angle needed to

complement the sum of the angles meeting at a given vertex to

the full angle.

Cardinality. The number of elements in a set.

k-Cell. A k-dimensional building block of a polytope.

Compact set. In the Euclidean space RN a set is compact if

and only if it is a closed and bounded subset of the space.

Continuous function. A function f is continuous if for any a

in the domain of f, if x is close to a, then f ðxÞ is close to f ðaÞ.

The closeness of points is measured by a precise condition

which depends on the topology of the domain and codomain.

Covering. A covering map f : X ! Y between two topo-

logical spaces is a continuous map such that for every point

y 2 Y its preimage set f�1ðyÞ :¼ fx 2 X : f ðxÞ ¼ yg consists of

points x such that some neighborhood Ux of x is homeo-

morphic with a suitable neighborhood of y. A covering is finite

if every preimage set is finite (and in fact the number of

elements in each preimage is the same number d). The number

d is called the degree of the covering.

Curvature. A number that measures the flatness of space at

a given point.

Hausdorff metric. Given two compact sets X;Y in Eucli-

dean space, we can construct for each of them an "-fattening

X";Y", which is a set of elements of space which are within the

distance " from some point in X and Y, respectively. A

Hausdorff metric is a function dHð�; �Þ that satisfies the prop-

erty

dHðX;YÞ ¼ inf f" � 0 : X � Y";Y � X"g: ð34Þ

If it is not possible to achieve one of the inclusions for any ",
then the distance dHðX;YÞ is declared to be infinite.

Homotopy equivalence. An equivalence between two

objects that preserves their essential topological features.

Homotopic maps. Two maps, a : X ! Y and b : X ! Y ,

are homotopic if there exists a continuous map

H : X � ½0; 1	 ! Y (here X � ½0; 1	 is a set of pairs ðx; tÞ

where x 2 X and 0 � t � 1) such that Hðx; 0Þ ¼ aðxÞ and

Hðx; 1Þ ¼ bðxÞ.

Manifold. A topological space which at each point is

topologically equivalent with Euclidean space RN.

Multiplicativity of the Euler characteristic. The Euler

characteristic is multiplicative in the sense that for two topo-

logical spaces X and Y for which the Euler characteristic is

defined and such that there exists a covering X ! Y of finite

degree d it follows that �ðXÞ ¼ d�ðYÞ.
Orbifold. A space which looks in most places like Euclidean

space and has special points with a non-trivial symmetry

group.

Polytope. A figure analogous to a polyhedron but defined in

a space of an arbitrary dimension NðRN
Þ. For N ¼ 0 it is a

point, for N ¼ 1 a line segment and for N ¼ 2 a polygon.

k-Simplex. A k-dimensional analog of a triangle.

Tessellation. A space-filling pattern.

Valuation. A function which satisfies the inclusion–

exclusion principle.
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