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A method is reported to determine the phase and amplitude of sinusoidally

modulated event rates, binned into four bins per oscillation, based on data

generated at the resonant neutron spin-echo spectrometer RESEDA at FRM-II.

The presented algorithm relies on a reconstruction of the unknown parameters.

It omits a calculation-intensive fitting procedure and avoids contrast reduction

due to averaging effects. It allows the current data acquisition bottleneck at

RESEDA to be relaxed by a factor of four and thus increases the potential time

resolution of the detector by the same factor. The approach is explained in detail

and compared with the established fitting procedures of time series having four

and 16 time bins per oscillation. In addition the empirical estimates of the errors

of the three methods are presented and compared with each other. The

reconstruction is shown to be unbiased, asymptotic and efficient for estimating

the phase. Reconstructing the contrast increases the error bars by roughly 10%

as compared with fitting 16 time-binned oscillations. Finally, the paper gives

heuristic, analytical equations to estimate the error for phase and contrast as a

function of their initial values and counting statistics.

1. Introduction

MIEZE (modulation of intensity with zero effort) spectro-

scopy is a hybrid technique combining neutron resonance

spin-echo and neutron time-of-flight spectroscopy. It is routi-

nely available at the spectrometer RESEDA at the Heinz

Maier-Leibnitz Zentrum (Franz & Schröder, 2015) and BL06

at the J-PARC Materials and Life Science Experimental

Facility (Kawabata et al., 2006; Hino et al., 2013). Furthermore,

MIEZE is being actively developed at the Reactor Institute

Delft, the ISIS neutron source (Geerits et al., 2019) and Oak

Ridge National Laboratory (Dadisman et al., 2020). In Fig. 1(a)

we present a basic MIEZE setup. It uses neutron spin

precession generated by two resonant (neutron) spin flippers

(RSF1 and RSF2), separated by a distance L1 and operated at

individual frequencies ( f1 < f2), to manipulate the spin

eigenstates (Gähler et al., 1996). The resulting interference

pattern of the superposition of the spin states corresponds to a

sinusoidal intensity as a function of time akin to an optical

heterodyne interferometer [see Fig. 1(b)].

The modulation frequency of this intensity is given by twice

the difference of the RSF frequencies, fMIEZE ¼ 2ð f2 � f1Þ

(Felber et al., 1998; Jochum et al., 2019). In practice, these

frequencies are limited at the lower end by the neutron spin

flip efficiency generated by the Bloch–Siegert shift to fmin =

35 kHz (Bloch & Siegert, 1940). The limitations at the upper
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end are due to skin and proximity effects in the resonant

flippers, as well as parasitic capacities in the resonant circuits,

which currently set the maximum RSF frequency to fmax =

3.6 MHz (Groitl et al., 2015; Jochum et al., 2020).

In contrast to conventional neutron spin-echo, the quantity

measured in MIEZE corresponds to a sinusoidally modulated

intensity in time, from which the MIEZE contrast

C ¼ I0=Imean, with Imean the time average intensity and I0 the

amplitude of the intensity, can be extracted (Gähler et al.,

1992).

In order to increase the time resolution (the Fourier time,

�MIEZE), fMIEZE has to be maximized since it is directly

proportional to �MIEZE via the following relationship:

�MIEZE ¼
2� h- LS

mnv3
n

fMIEZE; ð1Þ

with the neutron mass mn, its velocity vn and the sample-to-

detector distance LS (cf. Fig. 1). Further details and a

description of the MIEZE setup may be found in the literature

(Franz et al., 2019; Oda et al., 2020).

The process of data reduction is done in two steps. In the

first step, events are registered from electronic signals at the

readout of the detector. These events are either accepted as

neutron counts and then histogrammed on the field-

programmable gate array (FPGA) or rejected on the basis of

event length (Schmidt et al., 2010). In the second step, contrast

and phase are deduced from this 4D histogrammed data set

(pixel � pixel � time bin � foil). This is done by fitting the

time bins, in each pixel and on every foil (see below), using a

sine function. Here, we present an approach that optimizes the

second step of this procedure, requiring less computing power

and allowing an increase in maximum achievable Fourier time

by a factor of four.

From a practical point of view the detector registers events

per oscillation and histograms them according to a certain

number of time bins (Köhli et al., 2016). Thus, for a fixed

number of time bins, the length of each time bin is a function

of the modulation frequency. The lower limit of the time bin

length is given naturally by the temporal resolution of the

detector, which is limited by the electron drift time and the

clock of the electronics readout of the detector (Köhli et al.,

2016). Hence, to detect signals with fast modulation, it is

necessary for the number of time bins to be as low as possible.

However, an insufficient number of time bins per oscillation

results in a smearing of the recorded oscillation amplitude and

a loss in contrast. Therefore, an optimal compromise between

the two needs to be achieved.

Without loss of generality and neglecting the average

background count rate, the event rate registered by a detector

recording signals at discrete intervals in time is given by the

integral over a harmonic oscillation with amplitude I0 and

arbitrary phase �0:

I0 ¼
I0

��

Z��=2

���=2

sin ð�� �0Þ d�; ð2aÞ

I 0 ¼ I0 sinð�0Þ
sinð��=2Þ

��=2
; ð2bÞ

where �� ¼ 2�=ðNo: of time binsÞ. In this resolution func-

tion the sinc function acts as a damping factor, the influence of

which becomes smallest for �� ¼ 0, i.e. infinite time bins

representing a trivial but trivially impractical solution.

Moreover, an infinite number of time bins would require

infinite time-stamp accuracy of every event detected. Wrongly

binned events decrease the contrast. This reduction scales with

the ratio between time-stamp accuracy and time-bin length.

From this perspective fewer time bins are preferable as well.

The final measurement quantity extracted from a MIEZE

measurement is the intermediate scattering function I(Q; �),

which is determined by dividing the sample contrast by an

appropriate resolution contrast: IðQ; �Þ ¼ Csample=Cresolution.

Since all MIEZE measurements are normalized to the

instrumental resolution function (which depends equally on

the damping factor), the damping factor cancels out and

therefore does not need to be taken into account explicitly.

Nevertheless, it is important to track the damping factor, to

not increase the error bars of the contrast beyond a reasonable

limit.

Keeping in mind that at least three parameters Imean (the

time average), I0 (the amplitude) and �0 (the arbitrary phase)

must be extracted from the signal, a minimum of three time

bins is necessary for an unambiguous reconstruction. In

contrast to classical neutron spin-echo, it is not possible to use

a 3He counter as a MIEZE detector. In fact, the detector

requirements are quite demanding: a MIEZE detector

requires high spatial and temporal resolution, while in addi-

tion the thickness of the conversion volume of the detection

system in the neutron flight direction must not exceed the size

of the MIEZE group which decreases with increasing MIEZE

time (Schmidt et al., 2010). Currently a CASCADE detector

with 16 time bins is used to detect the MIEZE signals at

RESEDA (Köhli et al., 2016). The detector consists of eight
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Figure 1
(a) Schematic representation of the essential parts of the MIEZE setup.
Polarized neutrons travel in the y direction, passing the resonant spin
flippers (RSF1 and RSF2) and the precession region between them, the
spin analyzer and the sample, and finally hitting the detector. (b) The
time-of-flight difference �t of the spin eigenstates as a function of
distance along the flight path is shown. The time-of-flight difference at the
sample position is �MIEZE.



10B-coated detection foils, with a conversion layer thickness of

0.8–1.5 mm and a pixel size of 1.56 mm. The current CIPix

ASIC preamplifier readout of the detector electronics is able

to handle frequencies up to 10 MHz. The recent improve-

ments of the RESEDA instrument (Jochum et al., 2020) have

pushed the first-generation CASCADE detectors to their

limits. Nevertheless the time-stamp accuracy of the detected

events still has a reserve, since the internal clock and the

FPGAs run at a frequency of 40 MHz, leading to a maximum

binning inaccuracy of 12.5 ns. These constraints imposed by

the detection system limit the maximum MIEZE frequency at

RESEDA to fMIEZE = 10 MHz/16 = 625 kHz. In this regime,

the damping induced by the sinc function is only 0.64%. The

contrast is extracted from Imean, I0 and �0, which are deter-

mined through a sine fit across the 16 time channels. This

fitting procedure is calculation intensive and cannot be

performed in real time alongside the data acquisition.

To increase the time resolution ( fMIEZE), a practical solution

is to apply the same routine with a reduced number of time

bins. Alternatively, one may find an unbiased estimate to

reconstruct the parameters from the minimum necessary time

bins by taking the time integration of the detector into

account. In the following sections, a reconstruction procedure

of the underlying parameters will be deduced using only four

time bins. This relaxes the required data collection interval by

a factor of four corresponding to f max
MIEZE = 2.5 MHz, thereby

increasing the time resolution by a factor of four. Although

three time bins are the optimal choice to cover the highest

frequencies, we focus here on four time bins because of their

backwards compatibility with older data sets histogrammed in

16 time bins.

2. Reconstruction of the MIEZE signal

As a starting point for the reconstruction of the MIEZE

signal, we give the mathematical description of the time-

dependent event rate IðtÞ as recorded by the detector. This

signal may be split into a time-dependent and a time-inde-

pendent contribution (Imean). The latter describes the intrinsic

background and all of the contrast reductions such as inco-

herent scattering, spin leakage and sample dynamics. The

sinusoidal time dependence is characterized by the amplitude

I0, the duration T ¼ 1=fMIEZE and the phase shift �0. These

combine to give IðtÞ as

IðtÞ ¼ Imean þ I0 sin
2�

T
t � �0

� �
: ð3Þ

Since the time binning of events in the detector is equal to an

integration over time of IðtÞ in the respective interval, one may

write the number of detected events in the kth interval Ik as

Ik ¼
1

T

ZðT=NÞk

ðT=NÞðk�1Þ

IðtÞ dt; ð4Þ

with k ¼ 1; 2; 3; . . . ;N for N bins. Normalizing Ik by Imean

corresponds to the probability of a single event occurring in

the kth interval.

For a subdivision into four intervals (N ¼ 4, cf. Fig. 2 gray

shaded area for I1) one may rewrite (4) as follows:

I1 ¼
Imean

4
þ

I0

2�
sinð��0Þ þ cosð��0Þ
� �

; ð5aÞ

I2 ¼
Imean

4
þ

I0

2�
cosð��0Þ � sinð��0Þ
� �

; ð5bÞ

I3 ¼
Imean

4
þ

I0

2�
� sinð��0Þ � cosð��0Þ
� �

; ð5cÞ

I4 ¼
Imean

4
þ

I0

2�
� cosð��0Þ þ sinð��0Þ
� �

: ð5dÞ

Summing neighboring intervals and simplifying the results

yields

I1 þ I2 ¼
Imean

2
þ

I0

�
cosð��0Þ; ð6aÞ

I2 þ I3 ¼
Imean

2
�

I0

�
sinð��0Þ; ð6bÞ

I3 þ I4 ¼
Imean

2
�

I0

�
cosð��0Þ; ð6cÞ

I4 þ I1 ¼
Imean

2
þ

I0

�
sinð��0Þ: ð6dÞ

Adding the next-nearest-neighbor intervals (Ik + Ikþ2) yields

only the direct component (first terms) while the phase

information is lost:

Ik þ Ikþ2 ¼ Imean=2: ð7Þ

This is a direct consequence of the signal’s harmonic peri-

odicity.
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Figure 2
A typical time-dependent sinusoidal intensity variation with phase
�0 ¼ �=8 and a contrast C ¼ I0=Imean that is defined by the amplitude I0

and the mean value Imean. The gray shaded area I1 normalized to Imean is
the probability of a single event being detected in the first interval from
the division of each oscillation of IðtÞ into four equally long time bins.



Since equations (6a)–(6d) are sums of neighboring intervals,

one may use two independent but identical detector readouts

to measure two separate time intervals that are �=2 phase

shifted relative to each other. This yields equivalent infor-

mation, but allows for a doubling of f max
MIEZE.

Precise phase determination of harmonic signals is well

established using quadrature detection in optical inter-

ferometry (Rerucha et al., 2012) or signal processing where

�=2 phase-shifted signals [(6a)–(6d)] are combined to recon-

struct the unknown phase �0:

tanð��0Þ ¼
I4 þ I1 � ðI2 þ I3Þ

I1 þ I2 � ðI3 þ I4Þ
: ð8Þ

It is also possible to deduce the phase by subtracting equations

(5a)–(5d) from each other:

I1 � I2

I1 � I4

¼
I1 � I2

I2 � I3

¼
I4 � I3

I1 � I4

¼
I4 � I3

I2 � I3

¼ tanð��0Þ: ð9Þ

Equation (9) shows that in principle one interval can be

neglected. However, for this approach information in the form

of counts is ignored within that interval, thus reducing the

overall statistics and accuracy. The average over equation (9)

equals equation (8).

Using C ¼ I0=Imean the reconstructed (rec) contrast may be

deduced as well, by combining either equations (6a) and (6c)

or (6b) and (6d):

C1;rec ¼
I1 þ I2 � ðI3 þ I4Þ

I1 þ I2 þ I3 þ I4

�

2 cos�0

; ð10aÞ

C2;rec ¼
I1 þ I4 � ðI2 þ I3Þ

I1 þ I2 þ I3 þ I4

�

2 sin�0

: ð10bÞ

Of course, the accuracy of the evaluated contrast is strongly

coupled to the accuracy of the estimated phase and diverges at

the singularities, i.e. when cos�0 or sin�0 tend towards zero. In

order to avoid the singularities we apply equations (10a) and

(10b) for the appropriate case:

Crec ¼
C1;rec; for cos �0 � sin�0;
C2;rec; for cos �0 < sin�0:

�
ð11Þ

We emphasize again that this simple reconstruction of contrast

and phase, using only four time bins, allows an increase in

Fourier time by a factor of four. Additionally, this recon-

struction method (unlike the previously used method) does

not require any computationally intensive fitting. This will

speed up data reduction immensely and allow for real-time

data reduction, which will make it possible to optimize

measuring times and use allocated beamtime more efficiently.

3. Estimation of the confidence interval

Next, we discuss how many events are necessary to determine

phase and contrast with a desired accuracy. For this we will

compare three different attempts: (i) the 16-time-bin fitting

method used so far at RESEDA (fit,16), (ii) the four-time-bin

fitting method (fit,4), (iii) the four-time-bin reconstruction

method (rec). The procedure does not take into account a

possible phase jitter of the detector signal. The MATLAB

code utilized for these calculations has been made available

for reference (Jochum et al., 2021). As a first attempt, the

uncertainties are estimated using Gaussian error propagation

with the relative errors 1=ðIkÞ
1=2. Deducing the partial deri-

vatives is straightforward. Less obvious is the estimate of the

total errors �I1; . . . ; I4, due to their mutual dependence.
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Figure 3
For the initial parameters C0 ¼ 0:85, �0 = 60�, approximated deviations for phase � [(a), (b), (c)] and contrast C [(d), (e), ( f )] versus the number of total
count events (I ¼ I1 þ I2 þ � � � þ Ik) for a single run [(a) and (d)] and averaged over 500 runs [(b) and (e)]. The standard deviations [(c) and ( f )]
calculated, respectively, for the reconstruction method (rec; in red) and generic fitting procedures using four (fit,4; in green) and 16 (fit,16; in blue) time
bins are displayed as dots together with their fits (solid lines) from which the power-law exponents were extracted. For clarification the black lines show a
power law with an exponent of �0.5. To highlight the significance of the resulting phase as a function of events, (a) and (b) have been purposefully
cropped. Except in (d) and (e), the green data points coincide with the red data points, reflecting nearly identical values.



Moreover, the total errors also depend on C0 and �0. While a

generalized Gaussian error propagation would account for the

covariance between all parameters, it is not able to give a

reliable answer in the limit I ! 0. Therefore, we applied

simulations and executed them for various initial phases (�0 =

0�, 15�, . . . , 120�) and contrasts (C0 ¼ 0:05; 0:1; . . . ; 0:95).

The first ten single events with the desired sinusoidal

distribution are generated using the pseudo-random generator

of MATLAB and histogrammed subsequently. For a given C0

and �0, the probability of falling in a certain time bin is

determined by equations (5a)–(5d). Subsequently, the phase

and contrast are calculated according to the three different

methods. Next, new events are added to this run and the

evaluation is repeated recursively.

The number of added events in such a series increases

logarithmically. This ensures a low computational burden over

a large dynamic range of events (here over five orders of

magnitude) and keeps the evaluation equally weighted in a

logarithmic representation. Finally, the results are compared

with each other. Figs. 3(a) and 3(d) show the phase (�) and

contrast (C) for one run. The phases estimated for the four-

point fitting method (green) and the reconstruction (red) are

identical within error for more than 30 events.

For a low number (<30) of events, the phase and contrast

values have larger deviations from the true values as a result

of insufficient statistics. As expected from equation (2b), both

fitting methods show biased (damped) contrast estimates. For

the contrast C0 ¼ 0:85 presented in Figs. 3(d) and 3(e), the

expected damping according to equation (2b) is 0.64% � C0 =

0.0054 for the 16 time bins (blue) and 10%� C0 = 0.085 for the

four time bins (green). This shows that the estimates inferred

from the reconstruction method are unbiased.

To estimate the standard deviations of the phase and the

contrast, the simulation was run 500 times.

From these data, the average phase (�avg) and contrast

(Cavg) as well as their corresponding standard deviations (��
and �C) were calculated as a function of events I [cf. Figs. 3(b),

3(c), 3(e) and 3( f)]. While the average phase is estimated

correctly, the unbiased estimate for the contrast bears the

expected damping. In agreement with the experimental

behavior, the estimated standard deviations �� and �C (for the

reconstruction and fitting procedures) decrease with the same

asymptotic behavior as the total number of events

(I ¼
PN

k Ik) increases [cf. Figs. 3(c) and 3( f)]. This proves that

the applied estimator is consistent.

The relationship between standard deviation and events, for

both the phase and contrast, is described by simple power

laws:

��ðIÞ ¼ 10��I�� ; ð12aÞ

�CðIÞ ¼ 10�C I�C : ð12bÞ

From a linear fit to the log–log plot of the estimated standard

deviations [cf. Figs. 3(c) and 3( f)] for more than 30 events, the

power-law exponents (�� and �C) may be inferred:

�� ¼ �C ’ �0:5: ð13Þ

To test the generality of this power-law behavior and to

determine the missing parameters (�� and �C) for varying

contrasts, the simulations for C0 ¼ 0:05; 0:1; . . . ; 0:95 were

repeated while keeping the initial phase fixed at �0= 60�. In

Fig. 4, parameters of the reconstruction and fitting methods

are deduced for a comprehensive range of representative

contrasts. For each such contrast (C0), �� and �C [cf. Figs. 4(a)
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Figure 4
Fit parameter of the error estimation for phase [�� (a) and �� (b)] and contrast [�C (d) and �C (e)] as a function of the initial contrast C0 and at a fixed
phase �0 = 60�. Panels (c) and ( f ) show the scaling parameters ~��� and ~��C using the constraint �� ¼ �0:5. The color code is the same as for Fig. 3:
reconstruction method (rec; in red), generic fitting procedures using four (fit,4; in green) and 16 (fit,16; in blue) time bins. Apart from in plots (e) and ( f ),
the values deduced from the four-point fit and the reconstruction method overlap with each other.



and 4(d)] remain nearly unchanged, confirming that the use of

a normal distribution to approximate a Poisson distribution is

well justified. However, the coefficients �� and �C show

quantitatively distinct dependencies on the initial parameter

C0 [cf. Figs. 4(b) and 4(e)]. �� was observed to follow an

exponential decay with increasing C0:

�� ¼ �2;�C
�1;�

0 ; ð14Þ

with decay constants �2;� and �1;� which vary slightly

depending on the method. The functional dependence of the

contrast is less obvious, and the parabolic fits (solid lines) in

Fig. 4(e) are not ideal.

Since �� and �� (� ¼ � or C) depend on each other, as the

fits are over-parameterized, �� was recalculated with the

constraint �� ¼ �0:5. For the sake of clarity, �� is renamed ~���
in the following if the constraint ð�� ¼ �0:5Þ is applied. The

resulting fits are plotted in Figs. 4(c) and 4( f). Compared with

Fig. 4(b), the exponential dependence of ~��� is maintained.

Furthermore, ~��C can now be described well by a shifted half-

normal distribution:

~��C ¼ �2;C exp �
C0

�1;C

� �2
" #

� 1: ð15Þ

To show that these findings hold for the relevant range of

phases, this procedure was repeated for �0 = (0 . . . 120�) in

steps of 15�. To confirm the 90� periodicity of the angular

dependence, the interval was extended to 120�. This yields a

set of curves comparable with the ones in Fig. 4, which are

color-plotted in Fig. 5, highlighting their behavior throughout

the entire parameter space. The plots confirm that the fitting

parameters deduced with these techniques are practically

independent of �0. Note that, due to the periodicity of the

harmonic functions, these findings are valid for all phases.

Combining equations (12a), (12b), (14) and (15), we find the

analytical equations for the estimate of the standard deviation:

�� ¼ 10 �2;�C
�1;�
0

� �
1

I1=2
; ð16aÞ

�C ¼ 10 �2;C exp � C0=ð�1;CÞ½ 	
2

	 

�1

� �
1

I1=2
: ð16bÞ

The parameters �1;�, �2;�, �1;C and �2;C we found for the

different methods presented here are summarized in Table 1.

Equations (16a) and (16b) and Table 1 show that the

deduced errors depend strongly on the initial contrast C0 and

the applied methods. The most obvious variation is observed

for the parameters �1;C and �2;C. �1;C determines how quickly

�C drops with increasing initial contrast, whereas �2;C scales

the absolute magnitude of �C. We emphasize that the error

bars deduced for the contrast using the four-point fitting

method must be treated carefully, since the procedure of

inferring the estimate is biased. Re-scaling this contrast and its

error with the damping factor of 0.9 given by (2a), the same

error observed for the reconstruction method is maintained.

However, as long as the same procedure is used for sample

and resolution measurements, these effects cancel out and can

therefore be neglected.

4. Conclusions

We have presented an algorithm to deduce the contrast and

phase of a sinusoidally modulated time series sampled at four

data points per oscillation. Both contrast and phase are
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Figure 5
Color-map plots of parameters �� (a), ~���� (b), �C (c) and ~�C�C (d) for varying initial phases �0 and contrasts C0 using the reconstruction. All four
parameters are nearly independent of the initial phase �0. While the parameters �� and �C remain nearly constant even through varying initial contrasts,
~���� decays exponentially and ~�C�C exhibits the same trend as shown in Fig. 3(c) for increasing C0.

Table 1
Parameters to deduce the standard deviations �� and �C using equations
(16a) and (16b), for the reconstruction and four- and 16-point fitting
methods.

Method �1;� �2;� �1;C �2;C

Reconstruction �0.244 1.383 2.29 0.60
Four-point fit �0.244 1.341 7.90 0.95
16-point fit �0.250 1.383 9.15 0.95



recovered in agreement with the results for 16 time bins. The

methods presented here are adequate to estimate phase and

contrast of MIEZE signals. Intrinsically all three methods get

less accurate in determining the phase as the contrast

decreases. On the other hand, their accuracy is independent of

the initial phase. The reconstruction trades a higher time

resolution for less accurate contrast. Quantitatively, this factor

is better than �C0;fit;16=�C0;rec � 0:9 compared with the fitting

method, but may be compensated by increased statistics, i.e.

around 20% prolonged counting time. However, using the

reconstruction, there is no fitting procedure involved, which

significantly reduces the required computational burden.

Thus, this method may be readily applied to a large number of

detector pixels as the measurements proceed in time. As

mentioned above, real-time data evaluation will lead to a more

efficient use of measurement time, decreasing the time needed

for each experiment.

Most importantly, this new method solves one of the main

limitations afflicting the MIEZE resolution. Using a

CASCADE-type detector (Köhli et al., 2016) with a maximum

time resolution of 100 ns (10 MHz), the maximum intensity

modulation frequency for 16 time channels is 625 kHz, which,

at 6 Å, with the current dimensions at RESEDA yields a

MIEZE (Fourier) time of 
3 ns. In contrast, the resolution

limit using the four-point method is 
12 ns at 6 Å or 
100 ns

at 12 Å.

Having extended the time resolution limit using the four-

point reconstruction method, the next challenge for MIEZE

data acquisition is the pixel size of the detector. The reason for

this is that the coherence volume of the MIEZE signal is

indirectly proportional to the wavelength of the incoming

neutron beam, the width of the wavelength band and most

importantly fMIEZE. Thus, for intensity modulation frequencies

at or above 2.5 MHz, extremely flat detector surfaces are

needed to minimize phase differences within a single pixel. A
10B layer on a solid surface instead of Kapton foil could be a

possible solution. Furthermore, a spherical detector foil shape

would suppress the phase rings which occur on flat surfaces

due to variations of path lengths (Schober et al., 2019).

Acknowledgements

We thank B. Pompe from the University of Greifswald and T.

Keller from the Max Planck Institute for Solid State Research

Stuttgart for very useful discussions, and M. Klein from CDT

GmbH for discussions and support of the CASCADE detector

system. Open access funding enabled and organized by

Projekt DEAL.

Funding information

Financial support through the BMBF projects ‘Longitudinale

Resonante Neutronen Spin-Echo Spektroskopie mit Ex-

tremer Energie-Auflösung’ (Förderkennzeichen 05K16W06)

and ‘Resonante Longitudinale MIASANS Spin-Echo Spek-

troskopie an RESEDA’ (Förderkennzeichen 05K19W05) is

gratefully acknowledged.

References

Bloch, F. & Siegert, A. (1940). Phys. Rev. 57, 522–527.
Dadisman, R., Wasilko, D., Kaiser, H., Kuhn, S. J., Buck, Z.,

Schaeperkoetter, J., Crow, L., Riedel, R., Robertson, L., Jiang, C.,
Wang, T., Silva, N., Kang, Y., Lee, S.-W., Hong, K. & Li, F. (2020).
Rev. Sci. Instrum. 91, 015117.

Felber, J., Gähler, R., Golub, R. & Prechtel, K. (1998). Physica B, 252,
34–43.
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Köhli, M., Klein, M., Allmendinger, F., Perrevoort, A.-K., Schröder,
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