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A new algorithm has been developed and coded in DigitalMicrograph (DM) to

reduce a three-dimensional primitive cell to the Niggli cell and further convert

to the Bravais-lattice unit cell. The core of this algorithm is the calculation of the

three shortest non-coplanar vectors to compose the reduced cell. The reduced

cell is converted into the real-space reduced cell and then to the Bravais-lattice

unit cell. The symmetry-constrained unit cell is, in turn, converted back into the

real-space reduced cell, the reciprocal reduced cell and the reciprocal primitive

cell. The DM package demonstrates superior numerical stability and can

tolerate large uncertainties in the experimentally measured input primitive cell,

making it especially suitable for electron diffraction analysis. Additionally, the

DM package can be used to calculate various crystallographic parameters

including Bravais-lattice plane indices, zone-axis indices, tilt angles and the

radius of the high-order Laue zone ring, thus facilitating the correct

determination of the Niggli cell and the Bravais lattice.

1. Introduction

The fundamental step for ab initio new crystal structure

determination (Putz et al., 1999; Le Bail et al., 1988; Young,

1993) is determining the Bravais-type unit-cell parameters of a

crystal. The unit cell can be uniquely obtained once the

primitive cell that can be constructed from X-ray, neutron or

electron diffraction measurements (Pecharsky & Zavalij,

2003; Fultz & Howe, 2013; Williams & Carter, 2009) is reduced

to the Niggli cell (Santoro & Mighell, 1970; Gruber, 1973; de

Wolff, 2006), because the Niggli cell provides a unique

description of a lattice and is defined independently of the

lattice symmetry. This is well documented in International

Tables for Crystallography, Vol. A (de Wolff, 2006).

In 1928, Niggli put forward a set of conditions that produce

a unique choice of basis vectors of a lattice. Subsequently,

Křivý & Gruber (1976) presented a numerical algorithm for

the Niggli reduction, and later the number of iterations of this

algorithm was optimized by Zuo et al. (1995). Křivý and

Gruber use the following notation in the description of the

reduction algorithms:

A ¼ a � a ¼ a2; B ¼ b � b ¼ b2; C ¼ c � c ¼ c2;

D ¼ 2b � c ¼ 2bc cos �; E ¼ 2a � c ¼ 2ac cos�;

F ¼ 2a � b ¼ 2ab cos �;

ð1Þ

where a, b and c are the basis vectors of a cell with parameters

a, b, c, �, � and �; the parameters A, B, C, D, E and F represent

the Niggli-matrix elements Sij.

In real-world applications, two major problems exist during

the reduction procedure. The first problem is the treatment of
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rounding errors, since algorithms implemented using finite-

precision floating-point algebra can result in infinite loops

when the rounding errors are improperly treated (e.g. irra-

tional numbers). This first problem was addressed by Grosse-

Kunstleve et al. (2004) by introducing a tolerance factor to

improve the numerical stability of algorithms. The second

problem is the treatment of the measurement errors of the

experimentally measured input cell (Yang et al., 2017). These

cells with errors generate matrix elements Sij with uncertain-

ties that can be further magnified and propagated to the

successive steps of reduction, finally resulting in a reduced cell

with a large uncertainty that makes correct determination of

the Bravais lattice very difficult.

Electron diffraction is a powerful technique to determine

crystal structure at the nanoscale (Zheng et al., 2014; Wen et

al., 2018; Sheng et al., 2016), and the 3D reciprocal cell can be

determined directly from electron diffraction patterns (Shi &

Li, 2021; Jiang et al., 2011; Li, 2019; Zhao et al., 2008; Zou et al.,

2004). However, the primitive cell measured from an electron

diffraction pattern suffers from a poor measurement precision

because the measured d spacings exhibit around 1% error,

resulting from the diffraction distortions of the electro-

magnetic lens and the uncertainty of the camera length of the

transmission electron microscope (Mitchell & Van den Berg,

2016; Hou & Li, 2008). Moreover, the measurement error of

interzonal angles of a tilt series can be up to a few degrees.

Although the relation between the Niggli cell and the Bravais

lattice is definitive, errors in the experimentally observed cell

will propagate to the Niggli cell, making the conversion of the

Niggli cell into the Bravais lattice very difficult.

Here, we present an alternative algorithm and a corre-

sponding DigitalMicrograph (DM; Gatan, 2019) package,

Niggli Reduction Tools, to calculate the Niggli cell and convert

the Niggli cell into the Bravais lattice. In the new algorithm,

parameters "1–3 are introduced as tolerance factors for the

measurement errors of the basis-vector lengths. Such treat-

ment can tolerate large experimental error and achieve better

numerical stability. The parameters "d and "A define errors on

the lengths and angles of the Bravais-lattice unit cell. Addi-

tionally, symmetry constraints on the determined Bravais cell

are used to evaluate the measurement errors of the observed

cell in the electron diffraction pattern. The DM package can

also be used to calculate the Bravais-lattice plane indices,

zone-axis indices and tilt angles, as well as the radius of the

high-order Laue zone (HOLZ) ring of the electron diffraction

pattern. The robustness of the new algorithm for converting

the Niggli cell to the Bravais lattice will be demonstrated and

discussed.

2. Algorithms

2.1. Fundamentals of the Niggli reduction and the unit-cell
determination

Since a primitive cell has lattice points only at its vertices, all

lattice points appear at the vertices of the collection of the

identical primitive cells of the lattice. This means that each

point of the lattice can be retrieved from any other lattice

point by a vector sum of cell edges of a primitive cell.

Let vectors a, b and c be the edges of a primitive cell. The

translation vector t of the lattice point at (u, v, w) can be

described as t ¼ uaþ vbþ wc. If we start with an arbitrary

primitive cell with edges a, b and c, and wish to obtain a Niggli

reduced cell with edges t1, t2 and t3, the three edges of the new

cell can be expressed in terms of the old ones as

ti ¼ uiaþ vibþ wic, where the subscript i = 1, 2, 3. The indices

(ui, vi, wi) are small integers. The edge length of the new cell

can be determined by the scalar product with itself, t2
i ¼ ti � ti;

and the angles between two edges of the new cell can be

calculated by using the relation cosðti; tjÞ ¼ ti � tj=ðjtijjtjjÞ. In

this way, the three shortest non-planar vectors compose the

Niggli reduced cell with parameters a�0, b�0 , c�0 , ��0 , ��0 and ��0 .

The obtained Niggli reduced cell described in the reciprocal

space can be transformed into a real-space reduced cell (a0, b0,

c0, �0, �0 and �0) through the relationship between the real

and reciprocal lattice. The real-space reduced cell can then be

transformed into the Bravais-lattice unit cell (unit cell; a, b, c,

�, � and �) based on the conditions of the Niggli matrix

elements Sij as reported in International Tables for Crystal-

lography, Vol. A.

Errors of the Niggli reduced cell propagated from the

reciprocal primitive cell (or the input cell) can propagate to

the Bravais-lattice unit cell. These errors can be evaluated and

corrected by applying symmetry constraints on the standard

Bravais lattice: (1) Edges and angles of the obtained unit cell

can be constrained as the symmetry-constrained unit cell

(abbreviated as the sym. unit cell) to satisfy the symmetry of

the Bravais lattice. (2) In turn, the symmetry-constrained unit

cell is inversely transformed into the real-space reduced cell,

the reciprocal reduced cell and the reciprocal primitive cell.

The obtained primitive cell is a symmetry-constrained cell that

can be used to evaluate and correct the errors of the input cell,

or even to perform refinement of the lattice parameters from

experimental electron diffraction data.

2.2. Description of the program

The package Niggli Reduction Tools is based on the Digi-

talMicrograph software, whose language is similar to C or

C++. The package grants permission to copy, use or modify

the code for any purpose under a license.

2.2.1. Distribution and installation. The package is freely

available by email (honglongshi@outlook.com) and as

supporting information to this article, and the DigitalMicro-

graph software is available at https://www.gatan.com/products/

tem-analysis/gatan-microscopy-suite-software.

There are two files in this package:

(i) NiggliReduction.gtk: a compiled package of Niggli

Reduction Tools.

(ii) Tutorial.pdf: a concise help file.

To install the package, the file NiggliReduction.gtk

should be copied to ...\Gatan\DigitalMicrograph\

PlugIns. A new menu ‘ED Tools / Niggli Reduction Tools’

will be built on the menu bar of DigitalMicrograph. Clicking
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the menu ‘ED Tools / Niggli Reduction Tools’ will launch the

graphical user interface (GUI) [Fig. 1(b)].

2.2.2. Software overview. Niggli Reduction Tools can

reduce any 3D reciprocal primitive cell to the Niggli cell and

determine the Bravais-lattice unit cell, as shown in Fig. 1(b).

The GUI has four sections: (1) the ‘Parameters’ box defines

the input cell, the index range ‘N’, and the tolerance factors

‘eps 1~3’ and ‘eps d/A’; (2) the ‘Reduced Cell List’ box lists the

three shortest non-planar vectors within the tolerance factors

eps 1~3; (3) the ‘Unit Cell List’ box lists the possible Bravais

lattices within the tolerance of eps d/A; and (4) the ‘Results’

box outputs a concise list of derived cells and other useful

parameters.

The parameters of the package are defined as follows:

Input cell: defines the measured reciprocal primitive cell.

The unit of the input cell can be Å�1 or nm�1. If a real-space

cell is input, it can be converted into a reciprocal cell by

simultaneously clicking the ‘Alt’ key and the ‘Calc.’ button.

eps 1~3: defines the factors "1–3 to give the tolerance lengths

of the shortest vectors t1, t2 and t3. This mainly depends on the

measurement error �p (typically, 1–5 pixels) and the resolu-

tion r of the examined electron diffraction pattern (or the

image scale, e.g. nm�1 per pixel), and "1–3 = �pr.

eps d/A: defines the tolerance factors "d (the unit is

ångström) and "A (the unit is degree) of the unit cell in

matching the Bravais lattice.

N: defines the range of indices (u, v, w) used in searching for

the shortest vectors.

The algorithm of Niggli Reduction Tools is as follows:

S1. Input a reciprocal primitive cell: a�, b�, c�, ��, ��, ��.
S2. For �N � (u, v, w) � N, calculate the length of the

vector tu,v,w.

S3. Find the first three minima t10, t20 t30.

S4. If t10 < ti < t10 + "1, find the collection of the first minima

and create the vector t1.

S5. If t20 < ti < t20 + "2, find the collection of the second

minima (non-collinear with t1) and create the vector t2.

S6. If t30 < ti < t30 + "3, find the collection of the third minima

(non-coplanar with t1 and t2) and create the vector t3. The

three vectors t1, t2 and t3 compose the reciprocal reduced cell.

S7. Convert the reciprocal reduced cell to the real reduced

cell.

S8. Convert the real reduced cell into the Bravais-lattice

unit cell within the tolerance of "d and "A and determine the

symmetry-constrained unit cell.

S9. Convert the constrained unit cell to the real reduced cell.
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Figure 1
(a) A flow chart of Niggli Reduction Tools, and (b) a screen capture of the graphical user interface of the package. The parameters ‘eps 1~3’ define the
tolerance of the edges of the input cell; ‘eps d/A’ are the errors of the edges and angles of the Bravais lattice; and ‘N’ is the range of indices. From top to
bottom in the ‘Results’ box are pairs of the unit cell, the real reduced cell, the reciprocal reduced cell and the reciprocal primitive cell (raw cell), as well as
figures of merit FOMa and FOM� of the unit cell and the raw cell, the evaluated errors of the raw cell ‘delta’, the S matrix and the Bravais criteria, the
Bravais-lattice-plane indices, the zone-axis indices, the tilt angles, and the radius of the HOLZ ring.



S10. Convert the real reduced cell to the reciprocal reduced

cell.

S11. Convert the reciprocal reduced cell to the reciprocal

primitive cell and calculate other parameters.

Fig. 1(a) shows the workflow of the package Niggli Reduc-

tion Tools. After the parameters of the reciprocal cell

ða�; b�; c�; ��; ��; ��Þ have been input, the three basis vectors

ða�; b�; c�Þ of the input cell are created in the orthogonal

coordinate system as follows (note: if the input cell is a real-

space cell, press the ‘Alt’ key and click the ‘Calc.’ button to

convert it to the reciprocal cell):

a� ¼ a�; 0; 0ð Þ;

b� ¼ b� cos ��; b� sin ��; 0ð Þ;

c� ¼ c� cos ��; �c� sin ��
cos �� cos �� � cos��

sin �� sin ��
;

�

V�

a�b� sin ��

�
;

ð2Þ

where V� is the volume of the input cell. The vector length t of

each index ðu; v;wÞ within the index range of �N is then

calculated; and the three minima ðt10; t20; t30Þ of the ti list can

be determined.

Next, the first minimum t1 within the range

t10 � ti � t10 þ "1 is found and the vector t1 is created; the

second minimum t2 (nonlinear with the vector t1) within the

range t20 � ti � t20 þ "2 is found and the vector t2 created; and

the third minimum t3 (non-coplanar with vectors t1 and t2)

within the range t30 � ti � t30 þ "3 is found and the vector t3

created. Three lists of t1, t2 and t3 that compose the reduced

cell are found in this way and displayed in the ‘Reduced Cell

List‘ box [Fig. 1(b)].

After the reduced cell has been chosen by successively

clicking the list t1, t2 and t3, it will be converted into the real

reduced cell (a0, b0, c0, �0, �0 and �0). The basis vectors

ða0; b0; c0Þ of the reduced cell are created in the orthogonal

coordinate system, written as the matrix A in equation (3); and

the transformation matrix M can be found in International

Tables for Crystallography, Vol. A (de Wolff, 2006). In this

way, the real reduced cell is transformed into 44 Bravais-lattice

unit cells U by matrix multiplication of the matrices M and A:

U ¼ MA; M ¼

m11 m12 m13

m21 m22 m23

m31 m32 m33

2
64

3
75;

A¼

a0 0 0

b0 cos �0 b0 sin �0 0

c0 cos�0 �c0 sin �0

cos �0 cos �0 � cos�0

sin �0 sin �0

V0

a0b0 sin �0

2
664

3
775:

ð3Þ

The lattice parameters are determined from the elements of

the matrix U as follows:

a ¼ u2
11 þ u2

12 þ u2
13

� �1=2
;

b ¼ u2
21 þ u2

22 þ u2
23

� �1=2
;

c ¼ u2
31 þ u2

32 þ u2
33

� �1=2
;

� ¼ cos�1 u31u21 þ u32u22 þ u33u23

bc

� �
;

� ¼ cos�1 u11u31 þ u12u32 þ u13u33

ac

� �
;

� ¼ cos�1 u11u21 þ u12u22 þ u13u23

ab

� �
:

ð4Þ

Only those cells whose edge and angle errors fall in the

range of "d and "A are listed in the ‘Unit Cell List’ box

[Fig. 1(b)]. When one cell is chosen from the ‘Unit Cell List’

box, the selected unit cell will be constrained according to the

symmetry of the Bravais lattice. The symmetry-constrained

unit cell is further inversely converted into the real reduced

cell, the reciprocal reduced cell and the reciprocal primitive

cell. A concise result list of cells is displayed in the ‘Results’

box; more details of the results are output in the ‘Results’

window of the Digital Micrograph software.

Some additional useful parameters are calculated to help

choose the correct Niggli cell and Bravais lattice: (1) errors

between the observed cell and the symmetry-constrained cell

are evaluated; (2) the S matrix and the Bravais-lattice criteria

are live displayed when choosing one cell in the ‘Unit Cell

List’ box; (3) the Bravais-lattice plane indices, the zone-axis

indices and tilt angles are calculated; and (4) the radius of the

HOLZ ring is derived.

3. Illustrative examples

To demonstrate the use of the Niggli Reduction Tools package,

two examples are given here. The first is to reduce a cell with

small errors constructed from a simulated electron diffraction

pattern of an La2(Ti2O7) crystal oriented at ½�221�11�. The second

is to reduce a cell with large uncertainties determined from the

experimental electron diffraction pattern of a silicon crystal.

3.1. Determination of the reduced cell and unit cell of a low-
symmetry lattice (small errors)

The input cell for the Niggli reduction is obtained by

reconstructing the 3D reciprocal cell from a simulated elec-

tron diffraction pattern of the monoclinic structure La2(Ti2O7)

with sub-pixel measurement error (scale = 0.019424 nm�1 per

pixel). The cell parameters described in the reciprocal space

are a� = 2.2204, b� = 2.2872, c� = 1.8037 nm�1, �� = 37.94, �� =

35.65, �� = 70.11	, as shown in Fig. 2(a). After inputting the cell

parameters and clicking the ‘Calc.’ button, we obtain the lists

of t1, t2 and t3 in the ‘Reduced Cell List’ box ("1–3 = 0.1 nm�1

and N = 10), as shown in Fig. 1(b). Here, we select the reduced

cell with the shortest edges (the topmost one, a�0 = 0.7738, b�0 =

1.2941, c�0 = 1.8037 nm�1, ��0 = 89.97, ��0 = 89.95, ��0 = 81.50	);

according to the real–reciprocal relationship of the lattice, the

real reduced cell is calculated to be a0 = 13.0674, b0 = 7.8130,

c0 = 5.5442 Å, �0 = 90.02, �0 = 90.05, �0 = 98.50	 with the

Niggli-matrix elements of A = 170.76, B = 61.04, C = 30.74,
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D = �0.01, E = �0.06 and F = �15.09. Subsequently, the real

reduced cell is converted into the Bravais lattices that are

listed in the ‘Unit Cell List’ box only when the differences of

lengths and angles of the cell fall in the range of "d and "A. In

this example, two Bravais lattices, mP and aP, are listed.

Requiring that the matrix elements of the reduced cell meet

the conditions A 6¼ B 6¼ C, D = E = 0 and F 6¼ 0 (No. 34, II25),

the monoclinic structure mP is selected. The obtained Bravais

lattice is mP, i.e. it must satisfy the symmetry of the monoclinic

crystal system (a 6¼ b 6¼ c, � = � = 90	). After applying the

symmetry constraints to the selected unit cell, the parameters

of the cell become a = 13.0674, b = 5.5442, c = 7.8130 Å, � =

90.00, � = 98.50, � = 90.00	. In turn, the symmetry-constrained

unit cell is inversely converted into the real reduced cell, the

reciprocal reduced cell and the reciprocal primitive cell

(detailed parameters are listed in

Table 1). The symmetry-constrained

reciprocal primitive cell is a� =

2.2199, b� = 2.2871, c� = 1.8037 nm�1,

�� = 37.94, �� = 35.66, �� = 70.12	.

The errors between the input cell

and the symmetry-constrained cell

are evaluated to be �a� = 0.0005,

�b� = 0.0001, �c� = 0.0000 nm�1,

��� = 0.00, ��� = �0.01, ��� =

�0.01	, respectively.

For convenience to evaluate the

candidate Niggli cell and the unit

cell, Niggli Reduction Tools provides

additional useful parameters:

(1) ‘S matrix’ and ‘Criteria’: the S

matrix of the reduced cell and the

Bravais criteria for transforming the

reduced cell to the unit cell.

(2) ‘Indices’ and ‘Angles’: the

lattice-plane indices of the diffrac-

tion spots indicated by the three basis vectors of the input cell,

and the angles between the vectors. The lattice-plane indices

inherit the symmetry of the unit cell and hence can be used to

select the reduced cell and the unit cell in the ‘Reduced Cell

List’ and the ‘Unit Cell List’; the derived angles between the

vectors can be compared with the measured values in the tilt

series experiment.

(3) ‘Zones’ and ‘Tilt Angles’: the zone-axis indices of the

diffraction patterns for constructing the three-dimensional

reciprocal primitive cell, and the tilt angles between zone axes.

The tilt angles can be directly compared with the angles

calculated from ‘Tilt X’ and ‘Tilt Y’ of the transmission elec-

tron microscope.

(4) ‘HOLZ Ring’: the radii of the HOLZ rings of three

zone-axis patterns which can be compared with the measured

ones.

In this illustration, the S matrix of

the reduced cell, (170.76, 61.04,

30.74, �0.01, �0.06, �15.08), fully

satisfies the criteria (A 6¼ B 6¼ C, D =

E = 0, F 6¼ 0). The lattice-plane

indices of the three diffraction spots

indicated by the basis vectors are

ð011Þa� , ð11�11Þb� and ð010Þc� , respec-

tively. Therefore, the interplanar

angles are 70.12, 37.94 and 35.66	

between the vectors a� and b�, b�

and c�, and c� and a�, respectively

(versus 70.11	, the measured angle

based on the one-pattern method).

The zone axis of the examined

pattern is ½�221�11�, and the radius of the

HOLZ ring is calculated to be

17.2712 nm�1 versus 17.2728 nm�1

for the measured one. The small

differences between the observed
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Table 1
List of the determined cells and the symmetry-constrained cells of two examples: (1) the input cell with
small errors created from a low-symmetry lattice of La2(Ti2O7), and (2) the input cell with large errors
reconstructed from a high-symmetry lattice of single-crystal silicon.

The units are nm�1 and Å for edges of the reciprocal-space cells and real-space cells, respectively.

(1) La2(Ti2O7) oriented at ½�221�11� (PDF No. 81-1066, P21, a = 7.812, b = 5.544, c = 13.010 Å, � = 90.00, � = 98.66,
� = 90.00	).

Determined cell Symmetry constrained cell

Input cell 2.2204, 2.2872, 1.8037, 37.94, 35.65, 70.11 2.2199, 2.2871, 1.8037, 37.94, 35.66, 70.12
Reduced cell* 0.7738, 1.2941, 1.8037, 89.97, 89.95, 81.50 0.7738, 1.2941, 1.8037, 90.00, 90.00, 81.50
Reduced cell 13.0674, 7.8130, 5.5442, 90.02, 90.05, 98.50 13.0674, 7.8130, 5.5442, 90.00, 90.00, 98.50
Unit cell 13.0674, 5.5442, 7.8130, 90.02, 98.50, 90.05 13.0674, 5.5442, 7.8130, 90.00, 98.50, 90.00

(2) Single-crystal silicon oriented at ½�333�44� (PDF No. 77-2108, Fd�33m, a = b = c = 5.42 Å, � = � = � = 90.00	).

Determined cell Symmetry constrained cell

Input cell 5.2083, 7.9618, 5.1259, 13.30, 60.94, 71.93 5.2186, 8.0424, 5.2186, 13.26, 60.00, 71.07
Reduced cell* 3.1020, 3.1987, 3.2412, 110.94, 107.13, 108.88 3.1957, 3.1957, 3.1957, 109.47, 109.47, 109.47
Reduced cell 3.8466, 3.8169, 3.7298, 59.95, 62.34, 61.28 3.8324, 3.8324, 3.8324, 60.00, 60.00, 60.00
Unit cell 5.3133, 5.4598, 5.4866, 91.56, 92.64, 88.87 5.4199, 5.4199, 5.4199, 90.00, 90.00, 90.00

Figure 2
(a) The simulated electron diffraction pattern of La2(Ti2O7) oriented at ½�221�11�. The inset is the enlarged
zero-order Laue pattern. (b) The experimental electron diffraction pattern of single-crystal silicon
oriented at ½�333�44�. The high-order Laue ring is marked as a dashed ring, and the high-order Laue
diffraction spot for reconstructing the reciprocal lattice is marked H, which is vector-shifted to C1 in the
zero-order Laue pattern.



cell and the determined cell, as well as the comparison

between the measured values and calculated ones based on

the symmetry-constrained unit cell, suggest that the deter-

mined Niggli cell and the Bravais-lattice unit cell are valid.

In this example, a low-symmetry anisotropic crystal

La2(Ti2O7) is examined, and the top three shortest vectors in

the list of t1, t2, and t3 always compose the Niggli reduced cell.

However, a high-symmetry crystal often generates multiple

equivalent vectors; and the errors of the input cell make these

equivalent vectors different, which complicates the procedure

of choosing the reduced cell.

3.2. Determination of the reduced cell and the unit cell of a
high-symmetry lattice (large errors)

Here, we will discuss a high-symmetry case and an input cell

with large uncertainties (e.g. 1–2 pixels, 0.057783 nm�1 per

pixel). The primitive cell was extracted from the experimental

electron diffraction pattern of a silicon single crystal [Fig. 2(b)].

The parameters of the input cell are a� = 5.2083, b� = 7.9618,

c� = 5.1259 nm�1, �� = 13.30, �� = 60.94, �� = 71.93	. After the

Niggli reduction, the three non-planar shortest vectors ½0�112��,

½0�111�� and ½13�55�� produce the candidate reduced cell with

parameters a�0 = 3.1020, b�0 = 3.1987, c�0 = 3.2412 nm�1, ��0 =

110.94, ��0 = 107.13, ��0 = 108.88	. Subsequently, the reduced

cell is converted into the real reduced cell. The S-matrix

elements of the reduced cell (A = 14.7961, B = 14.5689, C =

13.9112, D = 7.1280, E = 6.6602, F = 7.0548) approximately

meet the conditions A = B = C and D = E = F = A/2 (cF, 1, I1);

thus, the Bravais-lattice unit cell is converted to a = 5.3133, b =

5.4598, c = 5.4866 Å, � = 91.56, � = 92.64, � = 88.87	. After

applying the symmetry constraints of the cubic crystal system,

the symmetry-constrained cell is a = b = c = 5.4199 Å, � = � =

� = 90.00	, which in turn is inversely converted to the

symmetry-constrained real direct cell, the reciprocal reduced

cell and the reciprocal primitive cell (see detailed parameters

in Table 1). The symmetry-constrained primitive cell is a� =

5.2186, b� = 8.0424, c� = 5.2186 Å�1, �� = 13.26, �� = 60.00, �� =

71.07	. The errors between the symmetry-constrained cell and

the input cell are evaluated to be �a� = �0.0103, �b� =

�0.0806, �c� = �0.0927 nm�1, ��� = 0.04, �b� = 0.94, �c� =

0.86	, respectively. These evaluated errors are entirely

consistent with the measurement errors (0.05–0.1 nm�1 in

length and 1	 in angle of the input cell).

Strictly speaking, the determined unit cell in this example is

not a cubic phase but a triclinic structure. A similar case is

often encountered during electron diffraction analysis because

of the large measurement uncertainties of the pattern, which

often suffers from image distortions and the unreliable camera

length (Mugnaioli et al., 2009; Hou & Li, 2008). Hence, in this

work the user-defined parameters "1–3 are introduced to

accommodate the measurement uncertainties of the observed

cell (or the input cell). Meanwhile, the parameters "1–3 will

also result in diverse choices for the Niggli cell. For a high-

symmetry lattice and an input cell with large uncertainties, this

problem will become more severe. For instance, the

measurement errors of the input cell in this example can

produce four approximately equivalent reduced cells within

the tolerance range of "1–3 = 0.1 nm�1 (details are listed in

Table 2). Although the listed reduced cells exhibit slight

differences and so are converted into different Bravais lattices,

these Bravais lattices possess the same symmetry-constrained

unit cell with parameters a = b = c = 5.4199 Å, � = � = � =

90.00	. Moreover, the lattice-plane indices corresponding to

the reciprocal vectors (listed in Table 2), {220}, {313} and {202},

indicate that these four Niggli cells are indeed equivalent cells.

Therefore, to eliminate the ambiguity of choosing the reduced

cell for the high-symmetry lattice, we choose each of these

approximately equivalent cells in the ‘Reduced Cell List’ box

and check the lattice-plane indices and the symmetry-

constrained unit cell, as well as other derived parameters in

the ‘Results’ box.

The other problem in practice is how to choose the correct

unit cell from the ‘Unit Cell List’ box. After a reduced cell has

been chosen, it will be converted into 44 Bravais-lattice unit

cells based on the relationship between the reduced cell and

the unit cell; and only those that match the symmetry of

Bravais lattice within the tolerance of "d and "A will be

displayed in the ‘Unit Cell List’. Large values of "d and "A may

cause the symmetry of the crystals to be overestimated.

Generally, for the electron diffraction technique, the experi-

mental error of the observed cell is larger than that deter-

mined in the X-ray or neutron diffraction case; and the

deviations of the edges and angles ("d and "A) of the deter-

mined unit cell from the standard cell will be up to 1–2 Å and

5–15	, respectively. To ensure that the correct Bravais lattice is

selected in the ‘Unit Cell List’ box, we suggest choosing the

cell with the highest possible symmetry and reasonable eval-

uated errors, while also checking the Bravais criteria, plane

indices, zone-axis indices, tilt angles and HOLZ ring (or

symmetry in the HOLZ pattern). In this example, the ‘cF’ cell

with the highest symmetry and reasonable evaluated errors

(�a� = �0.01, �b� = �0.08, �c� = �0.09 nm�1, ��� = 0.04,

��� = 0.94, ��� = 0.86	 in Table S2 versus the measurement

computer programs
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Table 2
Four equivalent reduced cells in the case of the silicon single crystal.

The units are nm�1 and Å for edges of the reciprocal-space cells and real-space cells, respectively.

Reciprocal vectors Bravais-lattice planes Reduced cell Unit cell

½0�112��, ½0�111��, ½13�55�� ð220Þ, ð3�11�33Þ, ð20�22Þ 3.1020, 3.1987, 3.2412, 110.94, 107.13, 108.88 5.3133, 5.4598, 5.4866, 91.56, 92.64, 88.87
½0�112��, ½0�111��, ½�11�112�� ð02�22Þ, ð3�11�33Þ, ð20�22Þ 3.1020, 3.1987, 3.2563, 108.56, 109.97, 108.88 5.4866, 5.4598, 5.3133, 91.13, 92.64, 88.44
½0�112��, ½13�55��, ½�11�112�� ð02�22Þ, ð331Þ, ð220Þ 3.1020, 3.2412, 3.2563, 111.32, 109.97, 107.13 5.4866, 5.3133, 5.4598, 91.13, 91.56, 87.36
½0�111��, ½13�55��, ½�11�112�� ð�220�22Þ, ð�33�331Þ, ð�22�220Þ 3.1987, 3.2412, 3.2563, 111.32, 108.56, 110.94 5.3133, 5.4866, 5.4598, 88.44, 88.87, 87.36



error of 0.05–0.1 nm�1 in length and 1	 in angle of the input

cell) is the best choice because the other cells, e.g. ‘hR’, ‘oI’

and ‘mC’, belong to a sub-cell of ‘cF’, although it possesses

smaller figures of merit (FOMa = 0.407 and FOM� = 0.531 in

‘mC’) than those (FOMa = 0.992 and FOM� = 1.020) of the

cubic structure.

4. Conclusions

We present a new DigitalMicrograph package to calculate the

Niggli reduced cell and to determine the Bravais-lattice unit

cell. The package can tolerate large uncertainties of the

observed cell while obtaining better numerical stability by

introducing the factors "1–3. Some derived characteristic

parameters including Bravais-lattice-plane indices, zone-axis

indices, tilt angles, the radius of the HOLZ ring and the

evaluated errors can be used to facilitate selection of the

correct Niggli reduced cell and determine the Bravais lattice.

In order to make full use of these parameters to check or

verify the determined cell, we suggest to record a high-order

Laue pattern [simply focus the electron beam on the specimen

and then record the pattern with a short camera length in the

parallel-beam mode, or in the convergent beam electron

diffraction (CBED) or nanobeam diffraction mode] when you

record the electron diffraction pattern for reconstructing the

reciprocal cell.

For convenience when choosing the correct Bravais lattice,

we summarize three typical cases of reciprocal-cell recon-

struction in electron diffraction analysis:

(1) Single-pattern method. The measured parameters in the

method are a 2D cell (a�, b�, ��) and the radius of the HOLZ

ring, which can be compared with the derived value R1 in

‘HOLZ Ring’.

(2) Two-pattern method. The measured parameters of the

method are two 2D cells (a�, b�, c�, ��, ��) and the tilt angle,

which can be compared with the derived value �12 in ‘Tilt

Angles’. If the HOLZ rings of patterns are measured, they can

be compared with the calculated parameters R1 and R2 in

‘HOLZ Ring’.

(3) Three-pattern method. The measured parameters of the

method are three 2D cells (a�, b�, c�, ��, ��, ��). If the tilt

angles are available, the derived values (�12, �23 and �31 in ‘Tilt

Angles’) can be compared with the measured ones; if the

HOLZ rings of the patterns are measured, the calculated

parameters (R1, R2 and R3 in ‘HOLZ Ring’) can assist in

choosing the Bravais cell. Moreover, the symmetry of the

CBED pattern or the HOLZ pattern can be used to check the

determined cell.

Note that the input cell constructed from electron diffrac-

tion patterns carries large uncertainties, and the determined

reduced cell and the unit cell must be checked by other

techniques, e.g. the high-order Laue pattern and/or CBED. We

suggest to improve the accuracy of the input cell, for example,

by strictly calibrating the camera length of the transmission

electron microscope and improving the accuracy of the

diffraction spot measurement and the reciprocal cell recon-

struction.
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Zou, X. D., Hovmöller, A. & Hovmöller, S. (2004). Ultramicroscopy,

98, 187–193.
Zuo, L., Muller, J., Philippe, M.-J. & Esling, C. (1995). Acta Cryst.

A51, 943–945.

computer programs

210 Shi and Li � Niggli reduction and Bravais lattice determination J. Appl. Cryst. (2022). 55, 204–210

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5085&bbid=BB25

