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Structural characterization of powder samples via total scattering methods, in

either real or reciprocal space, must take into account the effect of particle

shape. Here, the shape contribution of a set of ideally isolated particles to the

small-angle scattering (SAS) component of the intensity profile is modelled

using the shape function [Svergun & Koch (2003). Rep. Prog. Phys. 66, 1735–

1782]. The shape function is obtained by orientational averaging of common

volume functions (CVFs) for a discrete set of directions. The effects of particle

size and size dispersity are accounted for via scaling of the CVFs and their

convolution with the underlying probability distribution. The method is applied

to shapes with CVFs expressed analytically or by using discrete tables. The

accurate calculation of SAS particle shape contributions up to large momentum

transfer demonstrates the reliability and flexibility of modelling shape functions

from sets of CVFs. The algorithm presented here is computationally efficient

and can be directly incorporated into existing routines for analysis of powder

total scattering data.

1. Introduction

Accurate structural information is the foundation for the

development of materials for heterogeneous catalysis, semi-

and superconduction, sensing, and photonic and plasmonic

applications (Chen et al., 2017; Luo & Guo, 2017; Billinge &

Egami, 1993; Gong et al., 2015; Hajfathalian et al., 2016;

Gamler et al., 2020; Leonardi & Engel, 2018). The synthesis of

nanomaterials with fine microstructural features requires

advances in powder scattering techniques to fully resolve the

particle structure, microstructure and lattice distortion (Scardi

et al., 2015; Solla-Gullon et al., 2015). Such an analysis is

complicated by broadening of the small-angle scattering

(SAS) component of the intensity profile due to the small size

of nanoparticles, which can no longer be neglected in the

analysis of powder scattering data (Scardi et al., 2011; Li et al.,

2016). In particular, the shape contribution to the SAS

component from particles in a powder, which are assumed to

be ideally isolated, markedly affects the diffuse scattering

between the Bragg peaks as well as the trend of the pair

distribution function (PDF) (Olds et al., 2015). The Fourier

transform (FT) of the SAS particle shape contribution, known

as the shape function �ðrÞ, is used for the analysis of the PDF

data to account for the missing scattering information at small

momentum transfer in experimental data.

The SAS particle shape contribution is commonly calcu-

lated as the orientational average of the form factor, which is

the FT of the particle volume. Because orientational averaging

can be solved in closed form only for a small number of shapes

(Renaud et al., 2009; Bartlett & Ottewill, 1992; Svergun &
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Koch, 2003), numerical integration must be used to calculate

the SAS particle shape contribution for other shapes (Li et al.,

2011, 2016; Senesi & Lee, 2015a). Senesi & Lee (2015b)

showed that the form factor of an arbitrary polyhedron can be

calculated as the sum of the form factors of simple shapes,

such as tetrahedra and cubes. More recently, semi-analytic

expressions for the form factors of polyhedra were derived by

Wuttke (2021, 2017), and implemented in the grazing-

incidence SAS simulation package BornAgain (Pospelov et al.,

2020). Despite these advances, the solution of the shape

function via FTof the SAS particle shape contribution remains

generally not possible in closed form and is affected by the

applied numerical approximations (Svergun & Koch, 2003). In

particular, approximations at large scattering momentum

transfer result in significant errors at short distances in the

shape function. The SAS shape contribution can be numeri-

cally solved only for a finite range of momentum transfer. This

introduces systematic errors in the shape function. Further-

more, the degree of discretization applied during numerical

integration that is sufficient for an accurate SAS shape

contribution within this range is generally not sufficient for an

equally accurate shape function.

The shape function describes the probability of two points

separated by a distance r lying within the particle. It can be

calculated as the autocorrelation of the particle shape. Closed-

form expressions are available only for a few cases (Guinier,

1956; Azaroff, 1968; Svergun & Koch, 2003; Goodisman,

1980). A notable example is the shape function of a sphere of

diameter D, �sphere, which has the simple and well known form

(Stokes & Wilson, 1942; Guinier & Fournet, 1955; Kodama et

al., 2006; Howell et al., 2006)

�sphereðrÞ ¼ 1�
3

2

r

D

� �
þ

1

2

r

D

� �3

: ð1Þ

The sphere is a reasonable approximation when the particle

shape is unknown, when features of interest in the PDF profile

are only weakly affected by the average trend (Polking et al.,

2012; Wang et al., 2013; Hua et al., 2015) or when the particle is

significantly larger than the longest pair distance accessed via

PDF methods (see Section 3.5 for more details). The sphere

approximation is also employed by software applications that

exploit the small-box modelling method, which approximates

the PDF of a nanoparticle by the convolution of the shape

function with the PDF of a bulk structure (Farrow et al., 2007).

However, this approximation affects accuracy and precludes

PDF methods from capturing microstructural features sensi-

tive to particle shape effects.

Common approaches to evaluate the shape function are

based on the trend of the radial distribution function (RDF)

(Olds et al., 2015; Leonardi, 2021; Egami & Billinge, 2003). The

shape function can be approximated by a polynomial that is

optimized in PDF analysis software (Neder & Korsunskiy,

2005; Korsunskiy & Neder, 2005; Korsunskiy et al., 2007; Page

et al., 2011). A more reliable approach is the exploitation of

the duality between real-space and reciprocal-space repre-

sentations of scattering data (Neder & Proffen, 2020). The

intensity profile from the scattering of a powder is modelled by

solving the Debye scattering equation (DSE). The shape

function is then calculated as the FT of the SAS particle shape

contribution (Li et al., 2011). However, the need for the

solution of the DSE makes this approach inefficient. The RDF

must be computed with high accuracy during the solution of

the DSE for the whole particle even though the reduced

experimental data are usually restricted to short pair distances,

e.g. up to �4 nm (Hall & Monot, 1991; Leonardi & Bish,

2016). This limits the use of the PDF compared with other

techniques for analysis of powder scattering data (Billinge &

Levin, 2007). In addition, the separation of the SAS particle

shape contribution from the intensity profile is non-trivial.

Approximating the SAS particle shape contribution by trun-

cation at the intensity minimum before any Bragg contribution

is a popular choice and common practice when analysing

experimental data (Cargill, 1971; Farrow & Billinge, 2009;

Mullen & Levin, 2011). However, the tails of the Bragg peaks

extend underneath the profile, causing significant errors.

Although experimental data are treated the same way,

different approximation errors result from contributions that

are neglected by the DSE, such as the interparticle cross-

correlation.

Olds et al. (2015) proposed computing an approximate

shape function via convolution of the RDF for a discrete

model of the particle shape with either a sinc or the shape

function of a sphere. Such an approach is flexible enough in

principle to describe arbitrary particle shapes. But the use of

the RDF limits the application to small nanoparticles and

results in significant approximation errors. Any numerical

RDF only approximates a continuous region of space. Gaps

between lattice sites are not accurately corrected by the

convolution of the RDF with any other function. The particle

shape itself is a polyhedron bounded by a fixed set of crys-

tallographic planes. To achieve optimal computing perfor-

mance, Olds et al. proposed using the same RDF to compute

the shape function and for modelling the reduced experi-

mental data. However, the RDF cannot be corrected for the

lattice distortion across this model. In addition, the most

frequent pair distance between nearest-neighbour lattice sites

is recorded in the RDF with the largest relative error because

a constant-interval histogram RDF is generally implemented

in computer algorithms (Hall & Monot, 1991; Leonardi &

Bish, 2016). Ultimately, in the work of Olds et al., the FT of the

approximated shape function anomalously diverges from the

DSE solution of perfect face-centred cubic (f.c.c.) nanocrystals

for momentum transfer Q > 0.6 Å�1 despite the fact that the

broadening of the nearest 220 peak and other reflections

remains negligible for larger momentum transfers (e.g. Q <
�

1 Å�1).

Numerical methods were used to tune an analytical model

of the shape function using a training set (Usher et al., 2018).

The coefficients of overlapping Gaussian functions or nth-

order polynomials were optimized against profiles computed

across a range of particle sizes. Besides the possibility to

extrapolate the solution to large nanoparticles, such a model

improves accuracy by taking advantage of size-rescaling

relations. However, the numerical method requires the
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calculation of many auxiliary RDFs. This renders tuning

analytical models inefficient and generally infeasible for

modelling powder scattering data.

Glatter, first, and Svergun more recently proposed using a

linear combination of orthogonal functions to extract the

shape function via modelling of the SAS particle shape

contribution by direct FT (Svergun & Koch, 2003; Glatter,

1977). Although this is a more convenient and reliable

approach than the inverse FT, the arbitrary choice of the

functions inevitably affects the accuracy of the derived model.

Developing upon this idea, here we propose to invert the

order of the operations: first solving the spherical average and

then the FT of the particle volume involved in the calculation

of the form factors (Senesi & Lee, 2015b; Scardi & Leoni,

2001; Leonardi et al., 2012). The FT of the particle volume and

the inverse FT of the SAS particle shape contribution then

cancel each other. This allows FT operations to be disre-

garded, thus avoiding unnecessary calculations and approx-

imations.

In this work, we compute the shape function from the

directional components known as the common volume func-

tions (CVFs). Closed-form expressions of the CVFs are

known only for a few shapes, namely sphere, hollow sphere,

cube, tetrahedron, octahedron, cylinder and hexagonal prism

(Stokes & Wilson, 1942; Leoni, 2019; Lele & Anantharaman,

1966; Vargas et al., 1983; Langford & Louër, 1982; Burresi &

Tapfer, 2019). Here, we also report the closed-form expression

of the CVFs for hollow cubes. Furthermore, discrete CVFs are

readily available for many polyhedra from tables or can be

calculated with numerical algorithms for any polyhedron of

interest with arbitrary accuracy (Leonardi et al., 2012;

Leonardi, 2021). Compared with other methods, the use of

CVFs improves accuracy of the shape function solution for

arbitrary shapes and does not require the additional compu-

tation of any RDF or SAS particle shape contribution. We

assess the accuracy of the shape function solution by model-

ling the SAS particle shape contribution to powder intensity

profiles. We demonstrate that the computed shape functions

accurately describe particle shape beyond resolution or size

limitations. Finally, we investigate how particle size and

dispersity affect the shape function.

2. Methods

2.1. Estimation of the shape function

The CVF describes the volume of the intersection of a

shape with a copy of itself translated by a distance r along the

direction n̂n (Scardi & Leoni, 2001; Leonardi et al., 2012).

Given the shape � of a particle, the CVF �n̂nðrÞ is proportional

to the probability of a pair of sites separated by the vector

r ¼ r n̂n lying within � (Leonardi, 2021),

�n̂n rð Þ / P xþ r 2 �j x 2 �ð Þ: ð2Þ

The shape function is then the orientational average of the

CVF over � = 4� st,

� rð Þ ¼
H

�n̂n rð Þ d�=4�r2: ð3Þ

Due to the nonlinear and discontinuous dependence of the

CVF on the observation direction n̂n, the analytic solution of

the integral is typically not possible. We compute a numerical

approximation using a weighted average of the CVFs for a

discrete set of directions n̂n as (Fig. 1)

� rð Þ ’
P

n̂n

!n̂n�n̂n rð Þ
�P

n̂n

!n̂n: ð4Þ

The directions in these sums are either read from tables or

chosen as evenly distributed over the surface of the unit

sphere. If the set of directions is read from tables, their

projections onto the unit sphere are used as the nodes of a

triangulation. The weight factors !n̂n are calculated as the

surface areas of the polygons that connect the barycentres of

the triangular cells that share the direction projection as one

of the cell’s corners. Although we use a Delaunay triangula-

tion, the pattern of the direction projections can be adapted to

best capture the particle shape with a finite set of directions. In

contrast, if the set of directions is not fixed, they are sampled

from a hemisphere {n̂n ¼ ½hkl�=ðh2 þ k2 þ l2Þ
1=2 with l � 0} at

constant polar angle intervals with the zenith axis ½001�. For

each polar angle, a subset of directions is sampled at constant

azimuthal angle intervals. The weight factors !n̂n are calculated

as the surface area of the portion of sphere surface in the angle

range between two sequential polar and azimuthal angles. The

number of azimuthal angle intervals N is then adjusted to

yield an approximately constant area as

N ¼ N’ sin ’
� �

; ð5Þ
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Figure 1
Modelling the shape function for a cube of edge length �16 nm. The
shape function, �ðrÞ, is computed by summing the CVFs, �n̂nðrÞ, over a set
of ½hkl� directions. Here the CVFs for the [100], [110] and [111] directions
are shown as an example. The contribution for each direction was scaled
with the area fraction, !n̂n, of a unit-surface-area sphere divided by a
tessellation for which the projections of the directions are generator
centres (schematic inset). The small-angle PDF correction in equation (6)
was then computed assuming 4��0 ¼ 1, i.e. by ignoring material
composition.



where ’ is the polar angle and N’ is the number of polar angle

intervals. The point-group symmetry of a shape can be used to

constrain the angular region to sample and further optimize

the computing efficiency of the algorithm. As an example, we

sample the azimuthal angles only in the first octant of the

hemisphere because all shapes considered in this work, as well

as most nanocrystals synthesized with controlled shape

methods, have at least octahedral symmetry. If a finite number

of CVFs is read from tables, an auxiliary triangulation is

computed for the respective set of directions. The CVF for any

direction with a projection lying within one of the auxiliary

triangular cells is then approximated by the linear combina-

tion of the CVFs for the directions of the projections that

bound that cell using the barycentric coordinates as weights

(Leonardi, 2021).

2.2. Modelling powder scattering data

We model powder scattering data in real space and reci-

procal space, the PDF and the intensity profile, respectively,

with the whole pair distribution function modelling (WPDFM)

method (Leonardi, 2021). Although the WPDFM does not use

an atomistic model of a particle, we demonstrate the reliability

of the modelled powder intensity profiles against profiles

simulated via full solution of the DSE. Atomistic models of Pd

single-crystal f.c.c. (unit cell 3.8907 Å) particles are built by

selecting from an ideal lattice all sites enclosed in the particle

shape. A set of 1000 equivalent models per shape are built by

randomly shifting the particle relative to the lattice. The

intensity profiles for these particle models are calculated with

the software Rose-X (Debye, 1915; Leonardi & Bish, 2016),

and their average is used to simulate the statistics of particles

in the powder. This provides a match with the assumptions in

the WPDFM method for the probability of observing a given

atom pair distance in the volume of the particle shape. Given

that the WPDFM estimates the RDF by exploiting the CVF,

the scattering profiles and the shape function computed using

equation (4) share the same accuracy and statistical approx-

imations. The reduced PDF GðrÞ is then computed as

GðrÞ ¼ 4�r�0 gðrÞ � �ðrÞ½ � ¼ 4�r �ðrÞ � �ðrÞ�0

� �
; ð6Þ

where �0 is the average atom density and �ðrÞ the pair density

function (Egami & Billinge, 2003). Notably, in equation (6),

the PDF gðrÞ is corrected by the inverse of the shape function,

which is a constant unit for bulk-like materials.

2.3. Modelling the small-angle contribution to intensity
profiles

The intensity scattered by a powder of identical isolated

crystals is

I Qð Þ ¼
X

i

X
j

fi fj

sin rijQ
� �
rijQ

; ð7Þ

where Q ¼ 2�jqj with the momentum transfer vector q. f is

the atomic scattering factor and rij ¼ jrj � rij the pair distance

between atoms i and j. Equation (7) is the most common

formulation of the DSE. It can be rewritten as

I Qð Þ ¼
X
�

X
�

f� f�

Z1
0

p��ðrÞ
sin rQð Þ

rQ
dr; ð8Þ

where p��ðrÞ is the differential RDF for the elemental species

� and �. Because our interest lies in the particle shape

contribution, we neglect the atomic scattering factor contri-

bution from now on and consider only the autocorrelation

contribution to the intensity profiles. We assume monoatomic

materials and set f ðQÞ ¼ 1. The SAS particle shape contri-

bution is then

ISAS Qð Þ ¼

I Z1
0

�0�ðrÞ
sin rQð Þ

rQ
dr d�

¼ 4��0

Z1
0

r2�ðrÞ
sin rQð Þ

rQ
dr; ð9Þ

where the shape function is integrated over the sphere due to

the powder assumption. We solve equation (9) for the

numerical approximation of the shape function as

ISAS Qð Þ / 4��0

X
m

(
sin rQð Þ

Q3
�m þ 2�mrð Þ

þ
cos rQð Þ

Q2

2�m

Q2
� r �m þ �mrð Þ

	 
)r¼Rmþ1

r¼Rm

; ð10Þ

where �ðrÞ ¼ ð�m þ �mrÞ for r in the mth discrete set of

translation distances [i.e. r 2 ðRm; . . . ;Rmþ1Þ] evaluated with

equation (4).

3. Results and discussion

3.1. Shape function solution accuracy

Errors in the calculation of the intensity profile are

magnified due to the duality between reciprocal and real

space. Therefore, we validate the numerical approximation of

the shape function by testing the agreement between the SAS

particle shape contribution to the intensity profile computed

with the shape function solving equation (10) and as present

for small values of momentum transfer (e.g. Q<
� 1 Å�1) in the

powder intensity profile computed via DSE. We first probe the

accuracy of our algorithm by exploiting the symmetry of a

spherical shape for which �n̂nðrÞ ¼ �sphereðrÞ for all n̂n. For a

sphere, the ideal solution of equation (9) is expressed by the

Rayleigh formula (Rayleigh, 1910; Guinier & Fournet, 1955),

which computes the SAS particle shape contribution

normalized by the volume of the sphere (i.e. �0 ¼ 6=�D3) as

ISAS; sphere Qð Þ ¼

9 sin � Qð Þ½ � �� Qð Þ cos � Qð Þ½ �
� �2

=� Qð Þ6: ð11Þ

Here, �ðQÞ ¼ QD=2 and D is the sphere diameter. The

Rayleigh formula and the solution of equation (10) are in

perfect agreement [Fig. 2(a)]. They overlap with the powder

intensity profile in the limit of small momentum transfer,
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Q<
� 1 Å�1. For larger momentum transfer, Q>

� 1 Å�1, the

powder intensity profile grows because of the contribution

from Bragg peak tails while the SAS particle shape contri-

bution extends further down. We use a similar comparison to

evaluate the reliability of the SAS particle shape contribution

for other shapes that lack closed-form solutions.

We investigate the accuracy of the numerical approximation

of the shape function for a cube to assess the reliability of our

approach when using tabulated CVFs. The SAS particle shape

contribution is calculated using either the closed-form

expression of the CVFs or the discrete approximation from

available tables. In particular, we use the discrete CVFs

tabulated by Leonardi (2021) with a set of 163 ½hkl� inde-

pendent directions and h � k � l � 0 (Leonardi, 2021).

Errors in the intensity profiles are marginal. Approximations

in the shape function yield visible, yet small, errors in the

intensity profile only for large momentum transfer, Q>
� 1 Å�1.

The SAS particle shape contribution deviates from the

expected trend because of the shape function error. The

magnitude of noise errors and that of the deviation increase as

a function of the momentum transfer and with the decrease of

directional resolution of the tabulated CVFs. As a result of the

summation in equation (4), these errors are inversely

proportional to the number of sampled directions. In fact, the

solid angle approximated by each sampled CVF increases with

the decrease of directional resolution [Fig. 2(b)]. Each CVF

approximates a larger set of directions along which the

particle shape and its copy do not intersect for different limit

translation distances. For pair distances larger than the cube

edge length, the difference between shape functions computed

with a different number of directions fluctuates with wave-

length and amplitude inversely proportional to the directional

resolution [Fig. 2(c)]. Such fluctuations result in a noisy error

contribution to the intensity profile. Notably, this relation is

reciprocal to that affecting the inverse FT of the SAS particle

shape contribution. Although the shape function error may be

significant in the intensity profile, the effect on the reduced

PDF is usually negligible. Despite the dependence of the

solution on the directional resolution for a cubic shape but not

for a spherical shape, the reduced PDFs of f.c.c. nanocrystals

with a different shape but identical volume perfectly overlap

in the range of short pair distances [Fig. 2(d)]. This demon-

strates that a small number of directions is enough to compute

an accurate shape function suitable for correcting the PDF.

3.2. Shape function solution efficiency

We measure the performance of the algorithm imple-

mentation within a standalone C library as the time required
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Figure 2
Accuracy of the SAS and shape function. Powder intensity profiles for a 20 nm spherical nanoparticle (a) and a 16 nm cubic nanoparticle (b) with f.c.c.
(unit cell 3.8907 Å) structure and identical volumes. We compare the SAS particle shape contributions computed using the shape function with powder
intensity profiles simulated with the DSE and the WPDFM method. The Rayleigh solution for the spherical particle is shown as a reference. (b) The SAS
particle shape contribution for the cubic particle was computed using an increasing number of directions [i.e. (@40) 40� 40, (@80) 80� 80, (@400)
400� 400] to approximate the shape function. (c) Shape function for the cubic particle computed using an increasing number of directions (left scale),
and their difference (right scale) compared with the solution using the highest number of directions. (d) Reduced PDFs GðrÞ and negative shape function
��ðrÞ, which is the correction term in equation (6).



to solve the shape function for a cubic particle using the

closed-form expressions of the CVFs. A binary version of the

code is available as supporting information. The size of the

particle is irrelevant for performance because its effect is only

a scaling factor. The computing time increases with the

directional resolution and the number of points computed per

shape function (Fig. 3). The relation deviates from linear for a

small number of points calculated along the shape function.

The apparent increase of computing time is explained by

memory initialization. The computing time required to solve

the shape function with sufficient directional resolution

(16 609 or @80 directions) and number of points (5000) to

either calculate an accurate intensity profile or correct a PDF

is only 0.05 s. This allows real-time evaluation of the shape

function within routines that optimize particle shape, size and

their dispersion parameters.

3.3. Compact shapes

We compute the shape function and the SAS particle shape

contribution to the intensity profile for various single-crystal

f.c.c. nanoparticles (unit cell 3.8907 Å). In Fig. 4, the powder

intensity profiles for an octahedron, a tetrahedron, a cylind-

rical rod, a plate-like hexagonal prism and a concave poly-

hedron are shown along with the reduced PDF and the

negative shape function ��ðrÞ, which is the correcting term in

equation (6). The accuracy of the solutions is supported by the

facts that (i) the reduced PDFs oscillate about the pair

distance axis and (ii) the SAS particle shape contributions to

the intensity profiles completely overlap with the powder

intensity profiles for small momentum transfer and then

monotonically decrease under the Bragg peaks. The SAS

particle shape contribution decreases with the same power (i.e.

about �4.0) for all shapes because the particles were chosen

with identical volume (i.e. about 140 nm3). Importantly, the

solution for the concave polyhedron bounded by f311g facets

using CVF coefficients from numerical tables does not show

any visible error up to large momentum transfer, Q>
� 4 Å�1.

This demonstrates the accuracy of our approach to compute

the shape function for arbitrary shapes including concave and

convex polyhedra, rods and star shapes.

The shape functions converge to zero for a pair distance

either zero or equal to the diameter of the circumsphere of the

crystal shape. They are right-skewed due to the convex CVF

profiles of the compact shapes. A pronounced asymmetry

appears for shapes with low sphericity. The less the particle

shape resembles a sphere, the more diverse the translation

distances at which the CVFs along different directions

converge to zero. As an extreme case, flat and elongated

particles (e.g. plate-like hexagonal prisms and cylindrical rods)

are described by two distinct sets of CVFs depending on the

shape, exposing a thin or thick projection along the direction

of observation. Although the transition is ultimately contin-

uous, the profile of the shape function splits into two regions

with an elongated right tail.

Shape functions are continuous functions. They are usually

smooth functions (Zygmund, 1945; Lorentz, 2010; Chen,

2010), but jumps or cusps appear in the second derivative

profile for those particles bound by parallel atomic planes

[Figs. 4(a), 4(c) and 4(d)]. Sites at the particle surface are then

separated by a characteristic pair distance. These sites cause

the pronounced ripples marking the SAS particle shape

contribution to the intensity profiles (Li et al., 2016). The

frequency of the ripples is inversely proportional to the

characteristic pair distance, whereas the amplitude is propor-

tional to the integral surface of the site’s sets (i.e. the particle

surface area). Different sets of sites with different character-

istic pair distances and about the same integral surface area

cause different harmonics. For example, although the octa-

hedron and the cylindrical rod show a single frequency

[Figs. 4( f) and 4(h)], several oscillations with different

frequencies combine in the SAS particle shape contribution of

the plate-like hexagonal prism [Fig. 4(i)].

3.4. Hollow shapes

Particle shapes with concentric hollow regions and uniform

wall thickness represent a special class of morphology (Fig. 5).

The uniform thickness of the walls results in a low-frequency

modulation of the SAS particle shape contribution. The

oscillation is visible against the background diffuse scattering

of the powder intensity profile. We describe the closed-form

expression of the CVFs for hollow sphere and hollow cube

shapes by the sum of the CVFs for the envelope (�U) and the

hollow region (�VÞ minus two times their intersection (�WÞ.

These CVF terms are expressed with a piecewise polynomial

as

� �ð Þ ¼
P3

n¼�1

Hn �; r=Dð Þ
n

	 

i

;max 0;D=Ki�1ð Þ � r � D=Ki;

ð12Þ
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Figure 3
Analysis of computing performance. Time required to compute the shape
function for a cube with (black full dots) a variable number of directions
(or polar and azimuthal angle intervals, e.g. @40 for 40� 40) and 10 000
points per solution, or (blue open dot) 409 033 directions (i.e. @400) and a
variable number of points per solution. The best-fit linear trends are also
shown (red dash–dotted line). The deviation of the fit for the shape
function resolution curve is caused by a constant initialization time.
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Figure 4
Reduced PDF G(r) and intensity scattering profiles from compact-shaped crystals. (a)–(e) Reduced PDF GðrÞ (blue), negative shape function ��ðrÞ,
which is the correction term in equation (6) (red), and (green) the second derivative of the negative shape function for powders of particles with
octahedral (a), tetrahedral (b), cylindrical rod (c), plate-like hexagonal prism (d) and concave star (e) shapes. Sizes and size ratios are given in the figure
legends. ( f )–(j) Powder intensity profiles for the same shapes as in (a)–(e). SAS intensity profiles (red) are compared with the powder intensity profiles
simulated with the DSE (grey) and the WPDFM method (black). The same black triangle is shown in each plot to mark the descending slope of the tail of
the SAS contribution.



where the size ratio between the particle envelope and the

hollow region is � and the Hn coefficients are listed in Tables 1

and 2 for the hollow sphere and hollow cube, respectively.

The CVFs of non-compact and non-convex shapes need not

be monotonic. Although the volume of the intersection of a

shape with its copy is positive and ultimately converges to

zero, it can either decrease, remain steady or even increase

with distance. This behaviour directly affects both the shape

function and the SAS particle shape contribution to the

intensity profiles. Compared with compact convex particle

shapes, shape functions of hollow particles show a flat plateau

in the range of pair distances between the wall thickness and

the particle diameter minus two times the wall thickness,

� < r<D� 2�. Within this range, the CVF curves show the

largest variation, whereas outside of this range they are only

weakly affected by the hollowed morphology.

3.5. Particle dispersity

The effects of particle size and size dispersity in modelled

powder scattering data are captured via scaling and convolu-

tion of the CVF, respectively. Both closed-form and tabulated

CVFs are commonly normalized by the shape volume and a

characteristic size parameter, D, such as the diameter for a

sphere or the side edge length for a cube [see Table 1 of Scardi

& Leoni (2001)]. The normalized CVF zeroes at a translation

distance Dn̂n that is directly proportional to D [i.e. �n̂nð0Þ ¼ 1

and �n̂nðDn̂nÞ ¼ �n̂nðD=Kn̂nÞ ¼ 0] (Scardi & Leoni, 2001;

Leonardi et al., 2012). The proportionality factor Kn̂n is a

function of the direction n̂n. Although the directional depen-

dence is lost, a similar size proportionality still applies to the

shape function. For example, the shape function shown in

Fig. 6(a) for a sample of cubic particles scales exactly with

particle size. Both the pair distances and their probability scale

linearly with D [Fig. 6(a)]. The first scaling is due to the change

in pair distance lengths that can be observed in the particle;

the second scaling results from the pair distance scale factor in

equation (6). Scaling the shape function affects the resolution

(number of points per unit distance) and the accuracy of the

calculated discrete function, making this route not a reliable

option for accounting for different particle sizes. The evalua-

tion of an accurate solution with a given resolution requires

scaling the CVFs according to the target size and then solving

equation (4). The broadening of the SAS particle shape

contribution decreases with increasing particle size, pushing
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Table 1
Coefficients for the analytical expression of the CVF for a hollow sphere.

Note that � ¼ d=D 2 ½0:0 . . . 1:0Þ.

n ¼ �1 n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 K

Un 0
1

1� �3
� � �

3

2 1� �3
� � 0

1

2 1� �3
� � 1

Vn 0
�3

1� �3
� � �

3�2

2 1� �3
� � 0

1

2 1� �3
� � 1

�

Wn 0
�3

1� �3
� � 0 0 0

2

1� �ð Þ

3 1� �2
� �2

32 1� �3
� � 1þ �3

� �
2 1� �3
� � �

3 1þ �2
� �

4 1� �3
� � 0 �

1

2 1� �3
� � 2

1þ �ð Þ

Figure 5
Reduced PDF G(r) and powder intensity profiles from hollow-shaped crystals. (a), (b) Reduced PDF GðrÞ and negative shape function ��ðrÞ, which is
the correction term in equation (6), for powders of particles with hollow spherical (a) and hollow cubic (b) shapes. The corresponding powder intensity
profiles are shown in (c) and (d). SAS particle shape contributions to the intensity profiles (red) are compared with powder intensity profiles simulated
with the DSE (grey) and the WPDFM (black) method.



approximation errors towards smaller momentum transfer.

Therefore, to achieve a given accuracy, the number of direc-

tions considered in the calculation of the shape function has to

be adapted to particle shape and size. The error is inversely

proportional to the smoothness of the particle surface and

proportional to the misorientation angle between neigh-

bouring facets. Although the behaviour outlined for the cubic

shape provides a suitable reference, iterative algorithms can

be used to adapt the number of directions explored achieving

convergence. While the CVF may be known for a finite set of
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Table 2
Coefficients for the analytical expression of the CVF for a hollow cube.

We index the directions using positive indices with h � k � l. This assumption does not limit the generality of the equations because of the cubic symmetry of the
shape. Then A ¼ h=ðh2 þ k2 þ l2Þ

1=2, B ¼ k=ðh2 þ k2 þ l2Þ
1=2 and C ¼ l=ðh2 þ k2 þ l2Þ

1=2. Note that � ¼ d=D 2 ½0:0 . . . 1:0Þ.

n ¼ �1 n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 K

Un 0
1

1� �3
� � �

Aþ Bþ C

1� �3
� � ABþAC þ BC

1� �3
� � �

ABC

1� �3
� � A

Vn 0
�3

1� �3
� � �

Aþ Bþ Cð Þ

1� �3
� � �2 ABþ AC þ BCð Þ

1� �3
� � � �

ABC

1� �3
� � A

�

Wn 0
�3

1� �3
� � 0 0 0

2A

1� �ð Þ

0
1

1� �3
� � 1þ �

2


 �
�2

�
A

1� �3
� � �2 0 0 max

2B

1� �ð Þ
;

2A

1þ �ð Þ

	 


0
1

1� �3
� � 1þ �

2


 �2

� �
Aþ Bð Þ

1� �3
� � 1þ �

2


 �
�

AB

1� �3
� � � 0 max

2C

1� �ð Þ
;

2A

1þ �ð Þ

	 


0
1

1� �3
� � 1þ �

2


 �3

�
Aþ Bþ C

1� �3
� � 1þ �

2


 �2
ABþAC þ BC

1� �3
� � 1þ �

2


 �
�

ABC

1� �3
� � 2A

1� �ð Þ

Figure 6
SAS contribution from size, and size and shape dispersion of crystals. Reduced PDFs GðrÞ of crystals with f.c.c. (unit cell 3.8907 Å) structure and negative
shape function��ðrÞ, which is the correction term in equation (6), for (a) monodisperse powders of cubic crystals with size ranging from�5 to�143 nm,
(b) monodisperse and polydisperse powders of cubic crystals, (c) monodisperse powders of cubic, hollow cubic and a 1:1 mixture of these crystals, and (d)
monodisperse powders of hollow cubic crystals and polydisperse powders of hollow cubic crystals. The short-range pair distances are magnified in the
inset. The particle sizes of the monodisperse powders were chosen as the mean of the polydisperse system and the size yielding the best match of the
shape functions. The left-side insets in (a) and (b) magnify the short-range pair distances. The right-side inset of (b) shows the SAS particle shape
contributions to the intensity profile.



directions, interpolation methods have been proven reliable to

capture the complete contribution (Leonardi, 2021).

Particle dispersity can be described by summing the shape

functions of each shape and size in equation (4) as

�poly rð Þ ’
P
�

	�

P
D

D3�� r;Dð Þ

	 
�P
�

	�

P
D

D3


 �
; ð13Þ

where each component is rescaled by the volume 	�D3 of the

particle. For a chosen particle shape � and a given size

probability distribution qðDÞ, equation (13) becomes

�poly rð Þ ’
P
D

D3�� r;Dð Þ
�P

D

D3

¼
R1
0

q Dð ÞD3� r;Dð Þ dD
� R1

0

q Dð ÞD3 dD; ð14Þ

where the normalization integral is the third moment of the

size probability distribution and the integral in the numerator

is the convolution of the probability distribution with the

shape function. Unless the shape function is known as a

closed-form expression (e.g. for the spherical shape), its

discrete approximation significantly affects the accuracy of the

solution. To ensure high accuracy, the order of the integrations

in equation (14) and equation (4) can be switched as

�poly rð Þ ’
P

n̂n

!n̂n

R1
0

g Dð ÞD3�n̂n r;Dð Þ dD

	 
� R1
0

g Dð ÞD3 dD;

ð15Þ

where the convolution in the numerator is now the same as

that employed by the whole powder pattern modelling and

WPDFM methods (Scardi & Leoni, 2001; Leonardi, 2021).

Because CVFs are usually described by a third-order poly-

nomial, the analytical solution is known for most common size

probability distributions such as log-normal and gamma.

Besides employing an analytical convolution, we calculate the

shape function via numerical integration to prove the gener-

ality of the approach. Similar to any existing line profile

analysis method, the computing performance and reliability of

the solution are dependent on the degree of discretization.

The larger the set of different sizes considered, the more

partial solutions must be computed and therefore the lower

the performance. Nonetheless, the finer the discretization, the

better the modelled distribution can capture the size distri-

bution in a real sample (Leoni & Scardi, 2004).

The size dispersity contribution is most significant for large

distances in the PDF. The larger particles in a polydisperse

system set the appearance and frequency of the longer pair

distances. The deviation between the shape functions for

mono- and polydisperse powders with the same mean particle

size increases with increasing size dispersity and pair distance

length. For example, a log-normal distribution of particles with

standard deviation half the mean size yields a deviation
>
� 55% for a pair distance r>� 55% of the mean particle size

[Fig. 6(b)]. A significantly larger size than the mean is required

to adequately approximate the shape function of the poly-

disperse system. This demonstrates the danger of ignoring size

dispersity effects in the analysis of PDF data. Shape dispersion

yields similar artefacts. Although usually ignored, shape often

changes with particle size. As an example, we consider the case

of hollowed nanocrystals synthesized via galvanic replace-

ment. The constant wall thickness yields a different size ratio,

�, between the particle envelope and the hollow region. A wall

thickness of 3 nm for nanocrystals with envelope size from 40

to 12 nm results in a size ratio ranging from 85 to 50%

[Figs. 6(c) and 6(d)].

4. Conclusions

We have illustrated that the shape function and the SAS

particle shape contribution for a sample of nanoparticles with

arbitrary shape and size can be efficiently calculated with high

accuracy using CVFs. In contrast to other methods, for

example the orientational average of the form factor or the

trend of a whole-particle RDF (Senesi & Lee, 2015b; Olds et

al., 2015; Wuttke, 2021), fits, interpolations or approximation

parameters are not required. If the closed-form expressions of

the CVFs are unknown, the CVF evaluated at a discrete set of

translation distances and directions can be used instead. The

resolution of the discretization was tuned to optimize accurate

modelling of SAS particle shape contributions over a wide

range of momentum transfer. The calculated scattering

profiles converged to the exact solution with increasing

particle shape resolution in the model description. In contrast

to the approach proposed by Olds et al. (2015), the calculation

of an auxiliary RDF was not required. Our approach is well

suited for integration into numerical analysis tools of powder

total scattering data that do not need the whole RDF. It also

enables the consistent modelling of the whole powder scat-

tering profile. Indeed, the same model information, the CVFs,

can be used to model both the small-angle and the Bragg

components, for example, via whole powder pattern modelling

and PDF modelling methods (Scardi & Leoni, 2001; Leonardi,

2021).

We demonstrated that the size probability distribution of

the polydisperse powder samples can be convoluted with the

shape function. The contribution from size dispersion was

accounted for at a small additional computing cost compared

with the solution for a monodisperse powder. Accurate shape

functions and SAS particle shape contributions to the intensity

profiles were computed efficiently for powders of large

nanoparticles as well as for large size dispersion. Our

approach overcomes limitations of direct methods, that are

particularly severe under those conditions (Neder & Proffen,

2020).

We reviewed how particle shape affects the SAS contribu-

tion to intensity profiles. CVFs are typically known in closed

form or via tabulated coefficients for a wide scenario of

particle shapes. In addition, we derived the analytical CVF

expressions for hollowed spheres and hollowed cubes. While

sinusoids in the SAS particle shape contribution can appear as

a result of the truncation of the coefficient series in the FT, we

showed that the source of ripples is encoded in the second

derivative of the shape function. Distinct behaviours were

observed in the shape function for concave and hollowed
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shapes. Accounting for deformations of known particle shapes

is left for future work.
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