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A data-driven bin-width optimization for the histograms of measured data sets

based on inhomogeneous Poisson processes was developed in a neurophysiology

study [Shimazaki & Shinomoto (2007). Neural Comput. 19, 1503–1527], and a

subsequent study [Muto, Sakamoto, Matsuura, Arima & Okada (2019). J. Phys.

Soc. Jpn, 88, 044002] proposed its application to inelastic neutron scattering

(INS) data. In the present study, the results of the method on experimental INS

time-of-flight data collected under different measurement conditions from a

copper single crystal are validated. The extrapolation of the statistics on a given

data set to other data sets with different total counts precisely infers the optimal

bin widths on the latter. The histograms with the optimized bin widths

statistically verify two fine-spectral-feature examples in the energy and

momentum transfer cross sections: (i) the existence of phonon band gaps; and

(ii) the number of plural phonon branches located close to each other. This

indicates that the applied method helps in the efficient and rigorous observation

of spectral structures important in physics and materials science like novel forms

of magnetic excitation and phonon states correlated to thermal conductivities.

1. Introduction

In pulsed-neutron experimental facilities, the number of

inelastically scattered neutrons collected over a massive 4D

space subtended by the momentum transfer q and the energy

transfer E has increased due to the increasing power of spal-

lation sources (Hasegawa et al., 2018) and novel measurement

schemes, such as the continuous rotation of single-crystal

samples (Weber et al., 2012) and multiple incident-neutron

energies (Nakamura et al., 2009). These facilities record each

single neutron scattering event (Peterson et al., 2015); hence,

the inelastic neutron scattering (INS) intensity distributions

can be flexibly represented without information loss in the

most effective form. This is a very interesting aspect of the

data stored in these facilities. This characteristic should be

utilized by data-driven statistical methods towards a more

effective measurement design and a more rigorous analysis of

material properties.

The INS intensity distributions are usually represented by

histograms in (q, E). Suitable bin widths are guessed on the

basis of knowledge of the instrumental resolution and adopted

analysis methods, and are determined by carefully checking

whether the results are essentially invariant with the candi-

dates of the bin widths. However, the INS experimental data

are statistical variables and the results drawn from them

should be statistically verified. One of the possible validations

of the results deduced from the histogram is to perform the

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576722003624&domain=pdf&date_stamp=2022-05-25


same experiment twice and compare the results, which

requires a doubling of the measurement time. Another is to fit

the spectral feature by a valid and more sophisticated analy-

tical function than the histogram, but this may be difficult if

the origin of the spectral feature is unclear and the spectral

feature is not formulated. Generally, a nonparametric histo-

gram method is suitable for estimating the underlying prob-

ability density of such unclarified data (Bishop, 2006).

However, since the choice of a histogram bin width signifi-

cantly affects the estimation accuracy, it needs to be optimized

following a certain statistical criterion. If a set of statistically

optimal bin widths is estimated from the given data set, this

data-driven estimation can be used to preliminarily and

quickly inspect the spectral features in the data set, working to

check the INS spectrum at least complementarily to the

conventional bin-width selection, because the estimation does

not empirically consider the instrumental resolution or the

adopted analysis methods.

Shimazaki & Shinomoto (2007) developed a bin-width

optimization method for a time histogram of single neuron

firing data in neurophysiology, by assuming that the set of

observed neuron firing times was generated by independently

repeated trials of inhomogeneous Poisson point processes.

Muto et al. (2019) recently extended the method to multi-

dimensional data and applied it to simulated INS data sets.

In the approach reported by Shimazaki & Shinomoto

(2007), statistics on a data set were extrapolated to infer the

optimal bin widths on a hypothetical data set of a different

total trial number from the former data set. By using this

extrapolation on INS data, for example, we can infer the

optimal bin widths of a future data set from the data set

already obtained. If this extrapolation works, and we predict

on the fly the necessary total count to reveal the targeted

spectral features, we can terminate the INS measurement with

sufficient and necessary acquisition time, promoting efficient

material analyses. As a data-driven approach, the extrapola-

tion method may be applied for revealing the optimal bin

widths of hypothetical data sets even if one does not have

prior knowledge of the spectral features. Two possible uses of

the inference for cases where the interesting features are

unknown are as follows: (i) we can estimate whether conti-

nuing the measurement is meaningful by checking if the

extrapolated optimal bin widths can be decreased by conti-

nuing the measurement within a limited machine time; (ii) we

can examine the count dependence of the extrapolated

optimal bin widths during the measurement and efficiently

terminate the measurement before the optimal bin widths on

all of the important axes are unnecessarily smaller than the

corresponding point resolutions defined by the measurement

condition.

However, the optimization method has not yet been

examined on actual experimental INS data. In particular, the

inference of the optimal bin widths by extrapolation has not

been tried on any experimental and simulated INS data. The

standard post-processing in the software packages developed

at neutron facilities (Inamura et al., 2013; Arnold et al., 2014;

Azuah et al., 2009) applies several corrections to the neutron

counts and forms a histogram whose bin heights are propor-

tional to a physically meaningful quantity, such as the scat-

tering law or the double differential scattering cross section

(DDSCS) of the INS. We did not apply the corrections and

have retained the neutron count statistics during the post-

processing, which was necessary for the method utilizing the

inhomogeneous Poisson point process (Shimazaki & Shino-

moto, 2007).

Our goal is to utilize the method to perform rigorous and

efficient material analyses with INS data. As necessary steps

for the final goal, we validate the optimization and extra-

polation results on the experimental INS data sets. Moreover,

we investigate the uncertainty in the bin-width solutions using

simulated data, capturing the major points of the experimental

INS data influencing the optimal bin widths.

Machine-learning-based methods have recently been

applied to experimental data in large experimental facilities

(Hey et al., 2020), including neutron scattering data (Butler et

al., 2021; Archibald et al., 2020; Demerdash et al., 2019;

Samarakoon et al., 2020). The optimization of the histogram

representation will provide a basic tool to proceed with

machine-learning studies because the optimized histogram

shows the right amount of information in the data in the

context that it represents the underlying probability density

most accurately among histograms with equal bin widths.

2. Methodology

2.1. Bin-width optimization and extrapolation

Assuming that the INS counts in the 4D space are gener-

ated by independently repeated trials of inhomogeneous

Poisson point processes, we can optimize the histogram bin

widths to minimize the mean integrated squared error (MISE)

between the histogram bin heights �̂� and the underlying

Poisson rate �,

MISE �
1

V

Z
V

E½ð�̂� � �Þ2� dV; ð1Þ

where V is the volume of the 4D space and E refers to the

expectation over different realizations of point events, given �.

This is reduced to minimize the following cost function

(Shimazaki & Shinomoto, 2007; Muto et al., 2019):

Cn ¼
2hkni � hðkn � hkniÞ

2
i

n2ð�qx
�qy

�qz
�EÞ

2 ; ð2Þ

��n;qx
;��n;qy

;��n;qz
;��n;E ¼ argmin�qx

;�qy
;�qz

;�E
Cn; ð3Þ

where ��n;x is the optimal bin width along the x axis of the

histogram containing a total count n, kn is the neutron count

within the bin and h�i means averaging � over bins. Since we

apply the optimization method developed for a point process

to density estimation, we use the total count n as a proxy of the

total trial number of point processes in the original paper. The

total count n can be replaced with the number of experimental

trials if the number of experimental trials performed to obtain
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the samples is available. The cost function used by Muto et al.

(2019) does not contain the factor n�2, probably because it is

irrelevant for choosing an optimal bin width for the data sets

at hand, but inclusion of n in the cost function plays a pivotal

role for us to infer the optimal bin width of hypothetical data

sets of different size as described below.

The cost function can be extrapolated from Cn to the one in

the hypothetical data containing a total count m 6¼ n, Cmjn

according to the following equation (Shimazaki & Shinomoto,

2007):

Cmjn ¼
1

m
�

1

n

� �
1

�qx
�qy

�qz
�E

hkni � Cn: ð4Þ

The optimal bin widths can be extrapolated as follows:

��mjn;qx
;��mjn;qy

;��mjn;qz
;��mjn;E ¼ argmin�qx

;�qy
;�qz

;�E
Cmjn:

ð5Þ

The present input data sets were histograms of fine bin

widths. The optimal bin widths were sought within multiples of

these initial histogram bin widths. Considering the computa-

tional cost, we set the initial bin widths such that the optimized

bin widths were two to five times larger than the initial bin

widths. We set the initial bin widths by repeating the optimi-

zation a couple of times, with different configurations of the

initial bin widths. (i) We set the initial bin widths large enough

so that the optimization was completed within a small amount

of time. (ii) If the optimized bin-width value was 1 in units of

the initial bin width, we decreased the initial bin width. If the

optimized bin-width value was a number that was too large in

units of the initial bin width, we increased the initial bin width.

(iii) We performed the optimization with the altered initial

bin-width configuration. (iv) We repeated (ii) and (iii) until all

of the initial bin widths satisfied the condition that the opti-

mized bin widths were two to five times larger than the initial

bin widths. This procedure would require much lower

computational cost than if we set the initial bin widths too

small.

Fig. 1 illustrates the procedures using equations (3) and (5).

We obtained the optimal bin widths for the intensity distri-

bution within the regions of interest (ROI) formed as a hyper-

rectangle in the data space. In order to use the optimization

and extrapolation method online with fast enough computa-

tion, the bin widths over which we looked for the minimum

cost function were limited to be smaller than half of the

corresponding edge lengths of the ROI. This limitation may

eliminate possible poor solutions where the ROI was repre-

sented by a single bin on some axes. This was not the case for

our results because the present optimized bin widths were not

the upper bounds.

2.2. Experimental data

Experimental INS time-of-flight event data were collected

on a face-centered cubic (f.c.c.) Cu single crystal with three

different measurement conditions; the present method could

be powerful on event data, because it enables us to flexibly set

the INS histogram bin widths without information losses. Data

set 1 was collected at 291 K on J-PARC MLF BL01

4SEASONS (Kajimoto et al., 2011), while data sets 2 and 3

were collected at 10 K on J-PARC MLF BL14 AMATERAS

(Nakajima et al., 2011). The incident neutron energies Ei were

50.0, 42.1 and 23.7 meV for data sets 1–3, respectively. The

FWHM values at the elastic peak �E0 were 4.0, 4.7 and

1.1 meV for data sets 1–3, respectively. To retain the neutron

count statistics, we omitted the standard procedures to correct

the data and make them proportional to the scattering law, ki/

kf correction (ki and kf are the incoming and outgoing neutron

wavenumbers, respectively), averaging counts among the

sampling points within a bin, and detector efficiency correc-

tions. One can simply make a histogram of the corrected data

with the bin widths optimized on the uncorrected data to

obtain an optimal histogram with bin heights proportional to

the scattering law.

Fig. 2 shows cross-sectional views of the initial histograms.

The coordination system of q is shown in the fourth row of

Table 1. Due to the scattering kinematics and the limited part

of the solid angle accessed by the detectors, neutrons cannot

be detected in some regions of the 4D space. These masked

spaces are colored black. As shown in the fifth row of Table 1,

most of the initial bin widths become finer as the data number

increases. The counts in an area common to the three data sets,

which is delimited by green rectangles in Fig. 2, are presented

in the sixth row of Table 1. They increased approximately four

times as the data number increased, mainly because the

measurement times for a given data space were set longer as

the data number increased. We used counts in the common 4D

space as a measure of the relative intensities of the data sets.

The white rectangles in Fig. 2 mark the cross-sectional ROI.

These regions are specified in rows seven to 10 of Table 1. In

data sets 1 and 2, we set the ROI as a compromise between
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Figure 1
Schematics of the present method for the case of a 2D data set. (a) Input
of the method as a histogram of fine bin widths �ini

q and �ini
E . The method

optimizes the bin widths using the count distribution within the ROI. (b)
Cost function. The bin widths are multiples of �ini

q and �ini
E . The integers

of multipliers nq and nE are shown in the horizontal plane axes. The
minimum of the cost function is at (nq = 2, nE = 4). (c) Cost function
extrapolated to a hypothetical data set with a four times larger total count
than the actual data set. The minimum of the cost function is at (nq = 1,
nE = 2).



excluding the masked space and accumulating the total counts

of the unmasked space. Data set 3 had a very narrow

unmasked data space along the energy axis, and we allowed a

much larger fraction of the masked space than for the other

data sets. As will be shown in Section 3.4, the consistency

between the experimental energy resolutions and the opti-

mized energy bin widths obtained using the present method

partly validated the ROI setting.

The following condition was applied to bin i considered in

the statistics of hkni and hðkn � hkniÞ
2
i to check the effect of

the masked data space on the results:P
h2Gi

mh >�
P

h2Gi

1; ð6Þ

where h is the index of the bins in the initial histogram, mh = 0

if the bin is masked (otherwise, mh = 1), Gi is the set of initial

histogram bins included in bin i, and � is a constant parameter

2 ½0; 1�. For data where the unmasked space along a specific

axis was very narrow (e.g. data set 3), anomalously large bin

widths would have the minimum of the cost function for large

� because the 4D space considered by the statistics depended

on the bin widths through equation (6). We heuristically

increased � as much as possible before obtaining the minimum

of the cost function located at anomalously large bin widths.

The last row of Table 1 presents the � values.

Fig. 3 shows a comparison of the optimal bin widths

obtained using equation (5), with � = 0.9 and 0 for data set 1.

The count dependencies of the optimal bin widths were very

similar between these cases. The same tendency was observed

in the other data sets (Fig. S1 in the supporting information).

However, we note uncertainties in the optimal bin widths,

which are caused by �. They became large in the count region

where the optimal bin widths would be altered by small count

changes. We expected more stable solutions in the other

regions.

2.3. Simulated data

The simulated data sets were generated from the theoretical

phonon states of f.c.c. Cu calculated within a harmonic phonon

approximation in the code phonopy (Togo & Tanaka, 2015)

using force constants calculated by the first-principles

projector augmented wave method (Kresse & Joubert, 1999)

implemented in the VASP software package (Kresse &

research papers

536 Kazuyoshi Tatsumi et al. � Optimization and inference of bin widths J. Appl. Cryst. (2022). 55, 533–543

Table 1
Specifications of the three kinds of experimental data.

� in the last row is a parameter in equation (6); bins with a fraction of the masked space larger than this value are taken into account in the calculation of the cost
function.

Data set 1 2 3

Incident neutron energy, Ei (meV) 50.0 42.1 23.7
FWHM @ elastic, �E0 (meV) 4.0 4.7 1.1
Directions of qx, qy, qz† ½110�; ½001�; ½110�
Initial bin widths, �ini

qx
, �ini

qy
, �ini

qz
, �ini

E ‡ 0.025, 0.025, 0.025, 0.5 0.0125, 0.025, 0.05, 0.2 0.01, 0.01, 0.04, 0.08
Count in a common 4D space§ 123 483 1885
Analyzed data area‡ �0.575 � qx � 1.525 0.75 � qx � 1.825 0.01 � qx � 2.29

1.35 � qy � 2.65 0.80 � qy � 2.125 �0.67 � qy � 1.35
�0.45 � qz � 0.475 �0.25 � qz � 0.20 �0.16 � qz � 0.18
10 � E � 35 8.2 � E � 33.4 10.0 � E � 21.12

� 0.9 0.9 0.7}, 0.5††

† In conventional reciprocal-lattice units (rlu). ‡ In rlu and meV for the reciprocal and energy coordinates, respectively. § Acquired in the whole measurement time within the data
space of 0.475 � qx � 0.525 rlu, 1.475 � q � 1.525 rlu, �0.1 � qz � 0.1 rlu and 13.0 � E � 15.5 meV. } For the experimental data. †† For the simulated data.

Figure 2
Cross sections of the experimental INS count distributions of the three
kinds of data to which we applied the method. 2D slices are taken from
the initial histograms; the integration ranges for the other two axes are 1
in units of the initial bin widths. The numerical scales in (q, E) correspond
to the bin centers, except that of E in data set 1 corresponds to the bin
bottoms. The coordination on the other two axes is shown in units of meV
or rlu above each plot. The method optimized the bin widths using the
count distribution in a 4D hyper-rectangle located in the white rectangles
in the cross sections. The small light-green rectangles in the second row of
all data sets and the third and fourth rows of data set 3 show the 4D space
commonly included in all data sets. We used the counts within the
common 4D space as a measure of the INS intensity of the data.



Furthmüller, 1996). A quantity proportional to the theoretical

DDSCS for the coherent INS was calculated according to the

standard formula of Squires (2012). In the first-principles band

calculations of the VASP code, the electron–electron inter-

actions were treated by the Perdew–Burke–Ernzerhof density

functional within the generalized gradient approximation

(GGA-PBE) (Perdew et al., 1996). The cutoff energy for the

plane-wave basis set was 500 eV. For the force constant

calculations, a 2 	 2 	 2 supercell of the f.c.c. unit cell was

used with an atom in the supercell displaced along [100] by

0.01 Å from the original position. The k points for the

supercell calculation were on the Monkhorst & Pack (1976)

3 	 3 	 3 mesh. More details can be found in the supporting

information (Section S1).

To consider the experimental uncertainty of the counts in

(q, E), the cross section was convoluted with Gaussian func-

tions N(E) and N(q), and the neutron counts were randomly

generated for each bin under the simulated Poisson rate

calculated by integrating the convoluted cross section function

over the bin. The initial bin widths and bin locations were the

same as in the experimental data sets. The FWHM of N(E)

was varied according to the energy broadening formula (Iida

et al., 2014) with the parameters of the beamlines used for the

experimental data. The FWHM of N(q) was 0.05 Å�1, similar

to the values reported by Iida et al. (2014). Fig. 4 shows

example cross-sectional views. The count distributions caused

by the phonon branches were similar to each other. In

contrast, more counts were scattered between the branches in

the experimental data, which would be partly reproduced by

incorporating the incoherent scattering contribution into the

simulated Poisson rate. We considered that the impact of

incoherent scattering on the uncertainty of the solutions was

small; hence, we neglected it.

2.4. Accelerating computation of histograms and cost
functions

For a large array of a 4D histogram with a set of small bin

widths, speeding up the computation is a prerequisite for the

method to be used online during the actual measurement

session. This was done in cooperation with a speedy data

transformation from the measurement coordinate system to

(q, E), as was done by Shipman et al. (2014) and Inamura et al.

(2018). We accelerated the cost function calculation using the

cumulative sums of the neutron counts to form more than 106

histograms in a manner similar to that of Muto et al. (2019).

The actual formulas are described in Section S2. We imple-

mented the calculation of the histograms and the cost func-

tions as a parallelized Fortran library with a message passing

interface library (https://www.open-mpi.org/). Using a 32 core

Xeon processor, the bin-width optimization for a single data

set lasted for about 20 s for data sets 1 and 2, and about 4 min

for data set 3.

3. Results and discussion

3.1. Energy resolution and optimal energy bin widths

As a first step in verification of the present results of the

method, Table 2 shows the optimized energy bin widths using

equation (3) and the FWHM of the energy peak at a phonon
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Figure 4
Example cross-sectional views of the (a) experimental and (b) simulated
data set 2 at qx = 1.5 rlu and qz = 0 rlu. 2D slices are taken from the initial
histograms. The integration ranges for the other two axes and rectangles
are the same as in Fig. 2.

Figure 3
Optimal bin-width results by the extrapolation method for data set 1 with
� = 0.9 (blue plus signs) and � = 0 (red crosses), � being a parameter in
equation (6); bins with a fraction of masked space larger than this value
are taken into account in the calculation of the cost function. The
horizontal axis shows the count in the 4D space which is commonly
spanned by all of the three kinds of data, located in the green regions in
Fig. 2. The vertical gray lines show the lower and upper bounds of the
counts of the corresponding experimental data sets in Section 3.2. The
units on the vertical axes are the bin widths of the initial histogram.



band energy minimum at point L, (qx, qy, qz, E) = (1.5 rlu, n +

0.5 rlu, 0 rlu, 15 meV), where n = 2, 1 and 0 for data sets 1–3,

respectively. We regarded the FWHM values as a measure of

the energy resolution in the experimental data sets. Both were

obtained from the experimental data sets formed by the event

data over the whole measurement times. The optimal bin

widths were not much larger than the FWHM values. The

present optimization results did not contradict the energy

resolution estimation using the FWHM values, partly vali-

dating the present optimization results.

We mention for clarity that the optimal bin widths in (q, E)

need not be close to the instrumental resolution. The optimal

bin-width values depend on the statistical quality of the given

data set. The optimal bin widths of a data set containing sharp

features and having a large total count, for example, would be

smaller than the instrumental resolution because � varies

greatly with respect to (q, E) and its MISE in equation (1) will

be decreased for a data set with a set of smaller bin widths.

This argument is consistent with Fig. 3, where the optimal

energy bin width is decreased as the count is increased beyond

the value corresponding to the experimental total measure-

ment time.

3.2. Consistency between the optimization and extrapolation
results

Several data sets of different total counts were prepared

from different parts of the event data by taking only the events

from the initial time to different final times. Using the extra-

polation method of equation (5) on a data set of a total count

n, we inferred the optimal bin widths on the data sets of

different total counts m. Fig. 5 shows these bin widths with

those optimized according to equation (3) on the actual data

sets of the total counts m for data set 1. The results on the data

set of the total count n are denoted by stars. We extrapolated

the bin widths to smaller count data sets as well in order to see

the trend over the whole experimental count range. The

extrapolated bin widths were mostly in line with the optimized

ones. This was the case for data sets 2 and 3 (Fig. S2).

Therefore, the extrapolation method was demonstrated to

predict the optimal bin widths for the data sets of prolonged

measurement times, which could be used to determine the

necessary total count to reveal the targeted spectral features.

The use of the total count numbers for n and m, instead of

the use of the experimental trial numbers for n and m, works

on the present data sets because of the above consistency. An

experimental trial could be an INS acquisition sequence for

which the whole range of the sample crystal rotation angles

from the predefined starting angle to the predefined ending

angle is swept once. The total sequence numbers for n and m

appear to be easy to use online, and this approach also

rigorously follows the original paper as mentioned in

Section 2.1.

In Fig. 5, the extrapolated energy bin width shows an

anomalous jump upwards at count 75: the qz bin width

decreases by 7 initial bin widths while the energy bin width

increases by 1 from count 61 to 75. The tiny jump compared

with the decrement in the other axis can happen because the

cost function contains statistical noise and/or because we

searched for the cost function minimum in the limited search

space in the bin widths, i.e. multiples of the initial bin widths.

This problem may be solved by more efficient optimization,

for example, Gaussian process regression (Rasmussen &

Williams, 2006), to search for the cost function minimum.

3.3. General count dependencies of the optimal bin widths
on the experimental data sets

Shimazaki & Shinomoto (2007), assuming specific func-

tional forms for the autocorrelation of the Poisson rate,

derived the following relationship between the total counts m

and the optimal bin widths ��m for the 1D histograms:
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Figure 5
Comparison of the optimal bin-width results by the optimization on the
actual data sets with different total counts (squares) and by the
extrapolation of the statistics from a single data set (star) to the
hypothetical data sets with different total counts (dots). The results
obtained are for data set 1. The minimum tick spacings on the vertical axis
are the bin widths of the initial histogram.

Table 2
FWHM (meV) of the INS peak at the L point [qx qy qz (rlu), E (meV)]
and optimized energy bin widths (meV).

Data set (qx qy qz, E) FWHM �*
E

1 (1.5 2.5 0, 15) 3 1.5
2 (1.5 1.5 0, 15) 3 0.8
3 (1.5 0.5 0, 15) 0.5 0.32



1

��m
/ �

1

m
�

1

nc

� �
for m> nc

¼ þ0 otherwise

ð7Þ

where nc is a constant determined by the Poisson rate and the

autocorrelation function.

Fig. 6 plots the inverse of the optimal bin-width products 1/

ð��mjn;qx
��mjn;qy

��mjn;qz
��mjn;EÞ with the inverse of the total

neutron counts 1=m. For a large 1=m, 1/ð��mjn;qx
��mjn;qy

	

��mjn;qz
��mjn;EÞ slightly increased as 1=m decreased. In contrast,

for a small 1=m, 1/ð��mjn;qx
��mjn;qy

��mjn;qz
��mjn;EÞ noticeably

increased with a decrease in 1/m. This behavior was qualita-

tively consistent with equation (7), partly validating the

results.

3.4. Count dependencies of the optimal bin widths on the
simulated and experimental data sets

Fig. 7 presents a comparison of the extrapolation results on

the experimental and simulated data sets. The count depen-

dencies of the bin widths in each panel were approximately

consistent between the experimental and simulated data.

Therefore, the simulated data represented the major points of

the experimental data determining the optimal bin widths. On

the basis of this consistency, we will investigate the uncertainty

in the solution of the method in Section 3.5. In the work of

Muto et al. (2019), the simulated INS data were generated

from a Poisson rate synthesized simply by convoluting a

Lorentzian energy function of a fixed width with phonon

branches. We tested the method on simulated data similar to

those used by Muto et al. (2019), generated from a Poisson rate

synthesized by a Lorentzian energy function of 3.2 meV

FWHM with phonon branches. The optimal bin widths for the
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Figure 7
Count dependencies of the optimal bin widths extrapolated from the statistics on the experimental (blue crosses) and the simulated data sets (red
circles). The vertical gray lines show the lower and upper bounds of the counts of the corresponding experimental data sets in Section 3.2. The minimum
tick spacings on the vertical axis are the bin widths of the initial histogram.

Figure 6
Relationship between the inverses of the optimal bin-width product and
the total count numbers. The optimal bin widths are obtained by the
extrapolation from the statistics on the experimental data sets
corresponding to the results shown as stars.



more simply simulated data sets 1 and 2 showed larger

discrepancies from the optimal bin widths on the experimental

data (Fig. 8). This was not the case for data set 3, partly

because the � values of the experimental and simulated data

shown in Table 1 differed. Thus, we preferred applying the

method on more rigorously simulated data sets to investigate

the uncertainty of the solution.

3.5. Uncertainty of solutions

For a simulated data set, we could find a set of bin widths

f�minISE;i; ði ¼ qx; qy; qz;EÞg, which, among the configurations

of the multiples of the initial bin widths, had the smallest

integrated squared error between the simulated Poisson rate

and the corresponding histogram. We considered f�minISE;ig as

the ‘true’ solution and investigated the difference between

f�minISE;ig and the set of bin widths optimized using equation

(3). Fig. 9 depicts the results for the simulated data set 1,

where 20 sets of the simulated data for each total count

number were tried. The number of times the same difference

was obtained for the 20 trials is represented by the colors in

each circular point. The minimum tick spacing on the vertical

axis corresponds to the bin width of the initial histogram. The

vertical gray lines denote the upper and lower bounds of the

counts considered for the corresponding experimental data

sets in Section 3.2. At counts equal to or more than the upper

bound, the bin-width differences were converged within two

initial histogram bin widths. This was the case for the

convergence in data sets 2 and 3 (Fig. S4). Therefore, the

uncertainty of the solutions due to the statistics of the cost

function with the same mask treatment was estimated as two

in units of the bin widths of the initial histogram. If the initial

bin widths are finer, the uncertainty will be estimated more

accurately, but we did not use the finer initial bin widths

because the present accuracy on the uncertainty is enough for

the validation of the present method.

3.6. Comparison of the optimized histograms between data
sets of different qualities

The 4D spaces of data sets 1 and 2 were significantly

overlapped; thus, we can compare the cross-sectional views of

the histograms with optimized bin widths between these data

sets, whose qualities were different, as seen from the count

numbers in the sixth row of Table 1. In Fig. 10(a1) for the

lower-quality data, we cannot find a gap at qy = 1 rlu and E =

25 meV. In contrast, a gap exists in Fig. 10(a2) for the higher-

quality data. Similarly, Fig. 10(b1) does not clearly show three

branches around qx = 0 to 1 rlu and E = 10 to 20 meV, whereas

Fig. 10(b2) illustrates them.

These contrasts demonstrate that, by using statistically

optimal bin widths, we can objectively and rigorously examine
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Figure 8
Comparison of the count dependencies of the optimal bin widths extrapolated from the statistics on the experimental (blue crosses) and simply simulated
data sets (red circles). Refer to the details in the main text. The vertical gray lines and the minimum tick spacings on the vertical axis are the same as in
Fig. 7.



the existence of faint structures in the data set whose optimal

bin widths are analyzed. Triplon band splitting was recently

observed by INS on the spin-1/2 2D dimerized antiferro-

magnet Ba2CuSi2O6Cl2 (Nawa et al., 2019). Due to the two

dimensionality of the INS distribution in this system, band

splitting was clearly demonstrated by integrating the INS

intensity along with the axis along which the spectrum was

dispersion-less. Selecting adequate bin widths and data

statistics was important in seeing the band splitting details.

This is the case for the fine structures of the phonon branches

associated with the cation order/disorder phases of AgBiSe2

(Niedziela et al., 2020) and the fragmental phonon branches of

the isolated point-defect-like intrinsic localized mode

suggested in PbSe (Manley et al., 2019). In general, interesting

but faint signals of the INS of materials studied in physics and

materials science could be seen by efficiently capturing counts

according to the optimal bin widths inferred by the extra-

polation method [e.g. the abovementioned triplon, magnetic

excitations of the frustrated system (Ito et al., 2017), and

phonon states correlated to thermal conductivities (Niedziela

et al., 2020; Manley et al., 2019; Kajimoto et al., 2018; Wu et al.,

2020)].

We add a few words on the limitations of the present

method. First, if we extrapolate the cost function from the one

obtained from small samples, the method suffers considerable

sample noise. We can determine whether we have enough

samples by checking if the optimal bin width of the current

data set is smaller than the observation range of the data. We

have already mentioned this check at the end of Section 2.2.

Second, we were not able to accurately quantify the sizes of

the spectral features (e.g. line widths of the phonon branches)

from the histogram with the optimized bin widths because of

the poor fit of the bars in the histograms to the underlying

probability densities. Alternative methods based on adaptive

kernels seem promising because they more accurately repre-

sent the probability densities of the INS (Shimazaki &

Shinomoto, 2010). However, estimating the density with

histogram bins or kernel bandwidths that were adaptively and

locally optimized at every position, as done for 1D cases

(Shimazaki & Shinomoto, 2010; Endres & Földiák, 2005), will

be more challenging for higher dimensions. For such data, one

may combine the copula method (Trivedi & Zimmer, 2007)

with the 1D adaptive kernel method to estimate the density.

The copula allows us to represent the joint density as a

product of the 1D marginal distributions and their depen-

dency (copula density). Therefore, one can apply the 1D

adaptive kernel method to estimate the marginal distributions

separately. At the same time, one can perform a non-

parametric histogram or a kernel density estimation of the

multi-dimensional copula density while optimizing a single bin

or a bandwidth common across the dimensions because the
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Figure 9
Convergence of the bin-width solution with respect to the count numbers
for the simulated data set 1. The optimization method using equation (3)
is applied on the simulated data. The differences in the optimized bin
widths from the bin widths minimizing the integrated squared errors are
plotted for the 20 data sets for each total count number. The color scale
indicates the number of times the same differences were obtained in 20
trials. The vertical gray lines show the lower and upper bounds of the
counts of the corresponding experimental data sets in Section 3.2. The
units on the vertical axes are the bin widths of the initial histogram.

Figure 10
Comparison of the histograms of the optimized bin widths between the
experimental data sets of different qualities: (a1), (a2) cross-sectional
views on qx = 1.5 rlu and qz = 0 rlu; and (b1), (b2) qy = 1.0 rlu and qz =
0 rlu. Numbers 1 and 2 are for data sets 1 and 2, respectively.



copula density is defined on uniform marginal distributions.

Such an approach can potentially improve the accuracy and

reduce the computational cost for estimating the multi-

dimensional density.

4. Summary

In this study, we applied the bin-width optimization and

extrapolation method on experimental INS data. The main

results are summarized as follows:

(i) We found no contradiction between the optimized

energy bin widths and the experimental energy resolutions for

three kinds of experimental data collected from the same

sample but with different measurement conditions.

(ii) The optimal bin widths obtained by the extrapolation

method precisely inferred the optimized bin widths on the

actual data sets. Therefore, the extrapolation method is

promising for the determination of the necessary total count

to reveal the targeted spectral structure and the appropriate

measurement termination.

(iii) The relationship between the inverse of the optimal

bin-width product and the inverse of the count is consistent

with the equation derived for the 1D data by Shimazaki &

Shinomoto (2007).

(iv) Using the simulated data, we speculated that the

uncertainty in the optimized bin-width solutions caused by the

statistics of the cost function with the same mask treatment

was within two in units of the initial histogram bin widths.

(v) For data sets of different qualities, the histograms with

the optimized bin widths clarified the existence of fine struc-

tures of a phonon band gap and the number of adjacent

phonon branches in the INS spectra, demonstrating that,

under the condition of having the corresponding data, the

histogram with the optimized bin widths could be used to

objectively and rigorously examine the fine structures studied

in physics and materials science (e.g. magnetic triplon bands,

magnetic excitations of a frustrated system and phonon states

correlated to thermal conductivities).

For the method to be utilized in INS experiments and

analyses, more interest must come from the users of neutron

experimental facilities. We expect this paper to convey the

method to these users and promote the efficiency of material

analyses through neutron scattering experiments. To help the

method demonstrate its impact at research facilities, we intend

to make the code open and easy to use by visiting researchers.
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